Document Type : Research Paper

Authors

Department of MCA, School of Computer Science and IT, Jain (deemed-to-be) University, Bengaluru, India.

10.22105/riej.2021.264744.1177

Abstract

Face recognition has always been one of the most searched and popular applications of object detection, starting from the early seventies. Facial recognition is used for access control, authentication, fraud detection, surveillance, and by individuals to unlock their devices. The less intrusive and robustness of the face detection systems, make it better than the fingerprint scanner and iris scanner. The frontal face can be easily detected, but multi-view face detection remains a difficult task, due to various factors like illumination, various poses, occlusions, and facial expressions. In this paper, we propose a Deep Neural Network (DNN) based approach to improve the accuracy of detection of the face. We show that Deep Neural Networks algorithms have better accuracy than traditional face detection algorithms for multi-view face detection. The Deep Neural Network (DNN) gives more precise and accurate results, as the DNN model is trained with large datasets and, the model learns the best features from the dataset.

Keywords

Main Subjects

[1]     Broumi, S., Dey, A., Talea, M., Bakali, A., Smarandache, F., Nagarajan, D., ... & Kumar, R. (2019). Shortest path problem using Bellman algorithm under neutrosophic environment. Complex and intelligent systems5(4), 409-416.
[2]     Kumar, R., Dey, A., Broumi, S., & Smarandache, F. (2020). A study of neutrosophic shortest path problem. In Neutrosophic graph theory and algorithms (pp. 148-179). IGI Global. DOI: 10.4018/978-1-7998-1313-2.ch006
[3]     Kumar, R., Edalatpanah, S. A., Jha, S., Broumi, S., Singh, R., & Dey, A. (2019). A multi objective programming approach to solve integer valued neutrosophic shortest path problems. Neutrosophic sets and systems, 24, 134-149.
[4]     Kumar, R., Edalatpanah, S. A., Jha, S., & Singh, R. (2019). A novel approach to solve gaussian valued neutrosophic shortest path problems. International journal of engineering and advanced technology (IJEAT), 8(3), 347-353.
[5]     Kumar, R., Edaltpanah, S. A., Jha, S., Broumi, S., & Dey, A. (2018). Neutrosophic shortest path problem. Neutrosophic sets and systems, 23, 5-15.
[6]     Pratihar, J., Kumar, R., Dey, A., & Broumi, S. (2020). Transportation problem in neutrosophic environment. In Neutrosophic graph theory and algorithms (pp. 180-212). IGI Global.
[7]     Kumar, R., Edalatpanah, S. A., Jha, S., & Singh, R. (2019). A Pythagorean fuzzy approach to the transportation problem. Complex and intelligent systems5(2), 255-263. https://doi.org/10.1007/s40747-019-0108-1
[8]     Pratihar, J., Kumar, R., Edalatpanah, S. A., & Dey, A. (2021). Modified Vogel’s approximation method for transportation problem under uncertain environment. Complex and intelligent systems7(1), 29-40. https://doi.org/10.1007/s40747-020-00153-4
[9]     Gayen, S., Jha, S., Singh, M., & Kumar, R. (2019). On a generalized notion of anti-fuzzy subgroup and some characterizations. International journal of engineering and advanced technology8(3), 385-390.
[10] Gayen, S., Smarandache, F., Jha, S., & Kumar, R. (2020). Interval-valued neutrosophic subgroup based on interval-valued triple t-norm. In Neutrosophic sets in decision analysis and operations research (pp. 215-243). IGI Global.
[11] Gayen, S., Smarandache, F., Jha, S., Singh, M. K., Broumi, S., & Kumar, R. (2020). Introduction to plithogenic subgroup. In Neutrosophic graph theory and algorithms (pp. 213-259). IGI Global.
[12] Gayen, S., Smarandache, F., Jha, S., Singh, M. K., Broumi, S., & Kumar, R. (2020). Soft subring theory under interval-valued neutrosophic environment (Vol. 36). Neutrosophic sets and systems, 36, 193-219.
[13] Gayen, S., Smarandache, F., Jha, S., & Kumar, R. (2020). Introduction to interval-valued neutrosophic subring (Vol. 36). Neutrosophic sets and systems, 36, 220-245.
[14] Gayen, S., Smarandache, F., Jha, S., Singh, M. K., Broumi, S., & Kumar, R. (2020). Introduction to plithogenic hypersoft subgroup. Neutrosophic sets and systems, 33, 208-233.
[15] Kumar, R., Edalatpanah, S. A., & Mohapatra, H. (2020). Note on “optimal path selection approach for fuzzy reliable shortest path problem”.  Journal of intelligent and fuzzy systems, 39(5), 7653- 7656.
[16] Kumar, R., Jha, S., & Singh, R. (2020). A different approach for solving the shortest path problem under mixed fuzzy environment. International journal of fuzzy system applications (IJFSA)9(2), 132-161. doi: 10.4018/IJFSA.2020040106
[17] Kumar, R., Jha, S., & Singh, R. (2017). Shortest path problem in network with type-2 triangular fuzzy arc length. Journal of applied research on industrial engineering4(1), 1-7.
[18] Kumar, R., Edalatpanah, S. A., Jha, S., Gayen, S., & Singh, R. (2019). Shortest path problems using fuzzy weighted arc length. International journal of innovative technology and exploring engineering8(6), 724-731.
[19] Kumar, R., Edalatpanah, S. A., Gayen, S., & Broum, S. (2021). Answer note “a novel method for solving the fully neutrosophic linear programming problems: suggested modifications”. Neutrosophic sets and systems39(1), 12.
[20] Mohapatra, H., Panda, S., Rath, A., Edalatpanah, S., & Kumar, R. (2020). A tutorial on powershell pipeline and its loopholes. International journal of emerging trends in engineering research8(4), 975-982.
[21] Mohapatra, H., Rath, S., Panda, S., & Kumar, R. (2020). Handling of man-in-the-middle attack in wsn through intrusion detection system. International journal of emerging trends in engineering research8(5), 1503-1510.
[22] Mohapatra, H., Debnath, S., & Rath, A. K. (2019). Energy management in wireless sensor network through EB-LEACH. International journal of research and analytical reviews (IJRAR), 56-61.
https://easychair.org/publications/preprint/tf5s
[23] Mohapatra, H., RATH, A. K., Landge, P. B., Bhise, D. H. I. R. A. J., Panda, S., & Gayen, S. A. (2020). A comparative analysis of clustering protocols of wireless sensor network. International journal of mechanical and production engineering research and development (IJMPERD) ISSN (P), 2249-6890.
[24] Mohapatra, H., & Rath, A. K. (2020). Survey on fault tolerance-based clustering evolution in WSN. IET networks9(4), 145-155.DOI:  10.1049/iet-net.2019.0155
[25] Mohapatra, H., Debnath, S., Rath, A. K., Landge, P. B., Gayen, S., & Kumar, R. (2020). An efficient energy saving scheme through sorting technique for wireless sensor network. International journal of emerging trends in engineering research8(8), 4278-4286.
[26] Mohapatra, H., & Rath, A. K. (2020). Fault tolerance in WSN through uniform load distribution function. International journal of sensors, wireless communications and control10(1), 1-10.
[27] Mohapatra, H., & Rath, A. K. (2019). Fault tolerance through energy balanced cluster formation (EBCF) in WSN. In Smart innovations in communication and computational sciences, 851, 313-321, Singapore: Springer. https://doi.org/10.1007/978-981-13-2414-7_29
[28] Mohapatra, H., & Rath, A. K. (2019). Fault tolerance in WSN through PE-LEACH protocol. IET wireless sensor systems9(6), 358-365.DOI:  10.1049/iet-wss.2018.5229
[29] Mohapatra, H. (2018). C programming: practice. Independently published.
[30] Mohapatra, H., & Rath, A. K. (2020). Fundamentals of software engineering: designed to provide an insight into the software engineering concepts. BPB Publications.
[31] Mohapatra, H. (2009). HCR by using neural network (Master's thesis, College of Engineering and Technology, Bhubaneswar). https://www.researchgate.net/profile/Hitesh-Mohapatra/publication/323547763_Handwritten_Character_Recognition_HCR_Using_Neural_Network/links/5a9c3c340f7e9be379681552/Handwritten-Character-Recognition-HCR-Using-Neural-Network.pdf
[32] Panda, M., Pradhan, P., Mohapatra, H., & Barpanda, N. K. (2019). Fault tolerant routing in heterogeneous environment. International journal of scientific and technology research8(8), 1009-1013.
[33] Furtado, F., & Singh, A. (2020). Movie recommendation system using machine learning. International journal of research in industrial engineering9(1), 84-98.
[34] Singh, A., Herunde, H., & Furtado, F. (2020). Modified haar-cascade model for face detection issues. International journal of research in industrial engineering9(2), 143-171.
[35] Herunde, H., Singh, A., Deshpande, H., & Shetty, P. (2020). Detection of pedestrian and different types of vehicles using image processing. International journal of research in industrial engineering9(2), 99-113.
[36] Mohapatra, H. (2020). Offline drone instrumentalized ambulance for emergency situations. International journal of robotics and automation (IJRA)9(4), 251-255.
[37] Mohapatra, H., & Rath, A. K. (2019). Detection and avoidance of water loss through municipality taps in India by using smart taps and ICT. IET wireless sensor systems9(6), 447-457.DOI:  10.1049/iet-wss.2019.0081
[38] Panda, H., Mohapatra, H., & Rath, A. K. (2020). WSN-based water channelization: an approach of smart water. In Smart cities—opportunities and challenges, 58, (pp. 157-166). Singapore: Springer.  https://doi.org/10.1007/978-981-15-2545-2_15
[39] Rout, S. S., Mohapatra, H., Nayak, R. K., Tripathy, R., Bhise, D., Patil, S. P., & Rath, A. K. (2020). Smart water solution for monitoring of water usage based on weather condition. International journal of emerging trends in engineering research, 8(9), 5335-5343.
[40] Kelly, M. D. (1970). Visual identification of people by computer (No. 130). Department of Computer Science, Stanford University
[41] Kanade, T. (1974). Picture processing system by computer complex and recognition of human faces. Dept. of Science, Kyoto University
[42] Delac, K., & Grgic, M. (2004, June). A survey of biometric recognition methods. Proceedings. elmar-2004. 46th international symposium on electronics in marine (pp. 184-193). IEEE. Zadar, Croatia.
[43] Viola, P., & Jones, M. (2001, December). Rapid object detection using a boosted cascade of simple features. Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition. CVPR 2001 (Vol. 1, pp. I-I). IEEE.DOI: 10.1109/CVPR.2001.990517
[44] Li, S. Z., Zhu, L., Zhang, Z., Blake, A., Zhang, H., & Shum, H. (2002, May). Statistical learning of multi-view face detection. European conference on computer vision, 2353, (pp. 67-81). Berlin, Heidelberg: Springer. https://doi.org/10.1007/3-540-47979-1_5
[45] Wu, B., Ai, H., Huang, C., & Lao, S. (2004, May). Fast rotation invariant multi-view face detection based on real adaboost. Sixth IEEE international conference on automatic face and gesture recognition, 2004. Proceedings. (pp. 79-84). IEEE.DOI: 10.1109/AFGR.2004.1301512
[46] Mathias, M., Benenson, R., Pedersoli, M., & Van Gool, L. (2014, September). Face detection without bells and whistles. European conference on computer vision, 8692, (pp. 720-735). Cham: Springer. https://doi.org/10.1007/978-3-319-10593-2_47
[47] Jones, M., & Viola, P. (2003). Fast multi-view face detection. MERL - mitsubishi electric research laboratories. https://www.merl.com/publications/TR2003-96
[48]  Huang, C., Ai, H., Li, Y., & Lao, S. (2005, October). Vector boosting for rotation invariant multi-view face detection. Tenth IEEE international conference on computer vision (ICCV'05) Volume 1 (Vol. 1, pp. 446-453). IEEE.DOI: 10.1109/ICCV.2005.246
[49] Huang, C., Ai, H., Li, Y., & Lao, S. (2007). High-performance rotation invariant multiview face detection. IEEE transactions on pattern analysis and machine intelligence29(4), 671-686.DOI: 10.1109/TPAMI.2007.1011
[50] Park, U., Tong, Y., & Jain, A. K. (2010). Age-invariant face recognition. IEEE transactions on pattern analysis and machine intelligence32(5), 947-954.DOI: 10.1109/TPAMI.2010.14
[51] Li, Z., Park, U., & Jain, A. K. (2011). A discriminative model for age invariant face recognition. IEEE transactions on information forensics and security6(3), 1028-1037.DOI: 10.1109/TIFS.2011.2156787
[52] Ding, C., & Tao, D. (2016). A comprehensive survey on pose-invariant face recognition. ACM transactions on intelligent systems and technology (TIST)7(3), 1-42. https://doi.org/10.1145/2845089
[53] Liu, D. H., Lam, K. M., & Shen, L. S. (2005). Illumination invariant face recognition. Pattern recognition38(10), 1705-1716. https://doi.org/10.1016/j.patcog.2005.03.009
[54] Tan, X., & Triggs, B. (2010). Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE transactions on image processing19(6), 1635-1650.DOI: 10.1109/TIP.2010.2042645
[55] Zheng, W., Tang, H., Lin, Z., & Huang, T. S. (2009, September). A novel approach to expression recognition from non-frontal face images. 2009 IEEE 12th international conference on computer vision (pp. 1901-1908). IEEE.DOI: 10.1109/ICCV.2009.5459421
[56] https://www. biography.com/actor/matthew-perry
[57] M. Vulpo. (2019, June). Retrieved from https://www.eonline.com
[58] Wikimedia Commons contributors. (2020, November). The free encyclopedia. Retrieved from https://en.wikipedia.org/w/index.php?title=Shah_Rukh_Khan&oldid=991433963
[59] M. Bleby. (2019, August). Financial review. Retrieved from https://www.afr.com/life-and-luxury/arts-and-culture/bollywood-king-shah-rukh-khan-talks-power-politics-and-metoo-20190801-p52d3h 
[60] The Free Encyclopedia Wikipedia. (2020, November). The free encyclopedia. Retrieved from https://en.wikipedia.org/w/index.php?title=Halsey_(singer)&oldid=991181483  
[61] https://pngimg.com/download/30244
[62] Wikimedia Commons contributors. (2020, October). Retrieved from https://commons.wikimedia.org/w/index.php?title=File:Mr._Bean_2011.jpg&oldid=490772443
[63] Brunelli, R., & Poggio, T. (1993). Face recognition: features versus templates. IEEE transactions on pattern analysis and machine intelligence15(10), 1042-1052.DOI: 10.1109/34.254061
[64] Sirovich, L., & Kirby, M. (1987). Low-dimensional procedure for the characterization of human faces. Josa a4(3), 519-524.
[65] Kirby, M., & Sirovich, L. (1990). Application of the Karhunen-Loeve procedure for the characterization of human faces. IEEE transactions on pattern analysis and machine intelligence12(1), 103-108.DOI: 10.1109/34.41390
[66] Moghaddam, B., Wahid, W., & Pentland, A. (1998, April). Beyond eigenfaces: probabilistic matching for face recognition. Proceedings third IEEE international conference on automatic face and gesture recognition (pp. 30-35). IEEE.DOi: 10.1109/AFGR.1998.670921
[67] Schölkopf, B., Smola, A., & Müller, K. R. (1997, October). Kernel principal component analysis. International conference on artificial neural networks, 1327, (pp. 583-588). Berlin, Heidelberg: Springer. https://doi.org/10.1007/BFb0020217
[68] Bartlett, M. S. (2001). Independent component representations for face recognition. In face image analysis by unsupervised learning, (Vol. 612), (pp. 39-67). Boston, MA: Springer. https://doi.org/10.1007/978-1-4615-1637-8_3
[69] Yang, J., Zhang, D., Frangi, A. F., & Yang, J. Y. (2004). Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE transactions on pattern analysis and machine intelligence26(1), 131-137.DOI: 10.1109/TPAMI.2004.1261097
[70] Shi, J., Samal, A., & Marx, D. (2006). How effective are landmarks and their geometry for face recognition?. Computer vision and image understanding102(2), 117-133. https://doi.org/10.1016/j.cviu.2005.10.002
[71] Daniyal, F., Nair, P., & Cavallaro, A. (2009, September). Compact signatures for 3D face recognition under varying expressions. 2009 sixth IEEE international conference on advanced video and signal based surveillance (pp. 302-307). IEEE.DOI: 10.1109/AVSS.2009.71
[72] Gupta, S., Markey, M. K., & Bovik, A. C. (2010). Anthropometric 3D face recognition. International journal of computer vision90(3), 331-349. https://doi.org/10.1007/s11263-010-0360-8
[73] Dryden, I. L., & Mardia, K. V. (2016). Statistical shape analysis: with applications in R (Vol. 995). John Wiley & Sons. DOI:10.1002/9781119072492
[74] Huttenlocher, D. P., Klanderman, G. A., & Rucklidge, W. J. (1993). Comparing images using the Hausdorff distance. IEEE transactions on pattern analysis and machine intelligence15(9), 850-863.DOI: 10.1109/34.232073
[75] Wiskott, L., Krüger, N., Kuiger, N., & Von Der Malsburg, C. (1997). Face recognition by elastic bunch graph matching. IEEE transactions on pattern analysis and machine intelligence19(7), 775-779.DOI: 10.1109/34.598235
[76] Takacs, B. (1998). Comparing face images using the modified Hausdorff distance. Pattern recognition31(12), 1873-1881. https://doi.org/10.1016/S0031-3203(98)00076-4
[77] Liu, C., & Wechsler, H. (2000). Robust coding schemes for indexing and retrieval from large face databases. IEEE transactions on image processing9(1), 132-137.DOI: 10.1109/83.817604
[78] Gao, Y., & Leung, M. K. (2002). Face recognition using line edge map. IEEE transactions on pattern analysis and machine intelligence24(6), 764-779.DOI: 10.1109/TPAMI.2002.1008383
[79] Albiol, A., Monzo, D., Martin, A., Sastre, J., & Albiol, A. (2008). Face recognition using HOG–EBGM. Pattern recognition letters29(10), 1537-1543. https://doi.org/10.1016/j.patrec.2008.03.017
[80] Chen, D., Cao, X., Wen, F., & Sun, J. (2013). Blessing of dimensionality: high-dimensional feature and its efficient compression for face verification. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3025-3032).
[81] Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., & Shah, R. (1993). Signature verification using a" siamese" time delay neural network. Advances in neural information processing systems6, 737-744
[82] Lin, S. H., Kung, S. Y., & Lin, L. J. (1997). Face recognition/detection by probabilistic decision-based neural network. IEEE transactions on neural networks8(1), 114-132.doi: 10.1109/72.554196
[83] Taigman, Y., Yang, M., Ranzato, M. A., & Wolf, L. (2014). Deepface: closing the gap to human-level performance in face verification. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1701-1708).
[84] Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A unified embedding for face recognition and clustering. Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 815-823).
[85] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM60(6), 84-90. https://doi.org/10.1145/3065386
[86] https://p0.pikist.com/photos/861/709/person-man-male-portrait-head-face-side-face-hairstyle-looking-thumbnail.jpg  
[87] Wikimedia Commons contributors. (2020, October). Wikimedia commons, the free media repository. Retrieved from https://commons.wikimedia.org/w/index.php?title=File:Ston e_Creek_teachers.jpg&oldid=506079995"  
W. Champion, G. Berryman, C. Martin, & J. Buckland. (2011) Retrieved from https://www.youtube.com/watch?v=3Tu7dW9nzXg.