Document Type : Review Paper


Operations Research Department, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza, 12613, Egypt. Department of Mathematics, College of Science and Arts, Qassim University, Al-Badaya, 51951, Saudi Arabia.


In this paper, a multi-objective assignment problem with fuzzy parameters (FMOASP) is introduced. These fuzzy parameters are characterized by an  interval-valued fuzzy numbers instead of fuzzy numbers. The signed distance ranking of  interval- valued fuzzy numbers of the parameters are not random but bear well-defined relationship to one another. A new approach namely, optimal flowing method is proposed to obtain the ideal and the set of all fuzzy efficient solutions for the problem. A numerical example is given to demonstrate the computational efficiency of the proposed approach.


Main Subjects

  1. Bao, C. P., Tsai, M. C., & Tsai, M. I. (2007). A new approach to study the multi-objective assignment problem. An interdisciplinary journal53, 123-132.
  2. Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management science17(4), B-141.
  3. Chankong, V., & Haimes, Y. Y. (1983). Multiobjective decision making: theory and methodology. North-Holland, New York.
  4. Dubois, D. J. (1980). Fuzzy sets and systems: theory and applications(Vol. 144). Academic press.
  5. Emrouznejad, A., Zerafat Angiz L, M., & Ho, W. (2012). An alternative formulation for the fuzzy assignment problem. Journal of the operational research society63(1), 59-63.
  6. Marcel, G., & Vetrivelan, N. (2015). Qos-aware transmission for multimedia applications in manet using aco with fuzzy logic. International journal of innovations in scientific and engineering research (Ijiser)2(9), 199-213.
  7. Geetha, S., & Nair, K. P. K. (1993). A variation of the assignment problem. European journal of operational research68(3), 422-426.
  8. Gupta, A., & Kumar, A. (2012). A new method for solving linear multi-objective transportation problems with fuzzy parameters. Applied mathematical modelling36(4), 1421-1430.
  9. Haddad, H., Mohammadi, H., & Pooladkhan, H. (2002). Two models for the generalized assignment problem in uncertain environment. Management science letters2(2), 623-630. DOI: 5267/j.msl.2011.11.005
  10. Jayalakshmi, M., & Sujatha, V. (2018). A new algorithm to solve multi-objective assignment problem. International journal of pure and applied mathematics119(16), 719-724.
  11. Kagade, K. L., & Bajaj, V. H. (2010). Fuzzy method for solving multi-objective assignment problem with interval cost. Journal of statistics and mathematics1(1), 1-9.
  12. Khalifa, H. A., & Al-Shabi, M. (2018). An interactive approach for solving fuzzy multi-objective assignment problems. Journal of advances in mathematics and computer science28(6), 1-12. DOI: 9734/JAMCS/2018/44339
  13. Khalifa, H. A. E. W., & Kumar, P. (2020). A novel method for neutrosophic assignment problem by using interval-valued trapezoidal neutrosophic number. Neutrosophic sets and systems, 36, 25-36.
  14. Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval research logistics quarterly2(1‐2), 83-97.
  15. Mukherjee, S., & Basu, K. (2010). Application of fuzzy ranking method for solving assignment problems with fuzzy costs. International journal of computational and applied mathematics5(3), 359-369.
  16. Pramanik, S., & Biswas, P. (2012). Multi-objective assignment problem with generalized trapezoidal fuzzy numbers. International journal of applied information systems2(6), 13-20.
  17. Salehi, K. (2014). An approach for solving multi-objective assignment problem with interval parameters. Management science letters4(9), 2155-2160.
  18. Tsai, C. H., Wei, C. C., & Cheng, C. L. (1999). Multi-objective fuzzy deployment of manpower. International journal of the computer, the internet and management7(2), 1-7.
  19. Yadaiah, V., & Haragopal, V. V. (2016). A new approach of solving single objective unbalanced assignment problem. American journal of operations research6(01), 81. DOI: 4236/ajor.2016.61011
  20. Zadeh, L. A. (1965). Fuzzy sets. Information and control8(3), 338-353.
  21. Zimmermann, H. J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy sets and systems1(1), 45-55.