The survey of data envelopment analysis models in fuzzy stochastic environments

Document Type: Review Paper

Author

Department of Industrial Engineering, Ayandegan Institute of Higher Education, Tonekabon, Iran.

10.22105/riej.2020.219518.1121

Abstract

One of the best techniques for evaluating the performance of organizations is data envelopment analysis. Data Envelopment Analysis (DEA) is a non-parametric method for evaluating the performance of decision-making units (DMUs) that recognizes the relative performance of DMUs based on mathematical programming. The classic DEA model was initially formulated for optimal inputs and outputs, But in real-world problems, the values observed from input and output data are often ambiguous and random. In fact, decision-makers may be faced with a specific hybrid environment where there are fuzziness and randomness in the problem. To overcome this problem, data envelopment analysis models in the random fuzzy environment have been proposed. Although the DEA has many advantages, one of the disadvantages of this method is that the classic DEA does not actually give us a definitive conclusion and does not allow random changes in input and output. In this research data envelopment analysis models in fuzzy random environments is reviewed.

Keywords

Main Subjects


[1]      Hatami-Marbini, A., Emrouznejad, A., & Tavana, M. (2011). A taxonomy and review of the fuzzy data envelopment analysis literature: two decades in the making. European journal of operational research, 214(3), 457-472.

[2]      Sengupta, J. K. (1992). A fuzzy systems approach in data envelopment analysis. Computers & mathematics with applications, 24(8-9), 259-266.

[3]      Triantis, K., & Girod, O. (1998). A mathematical programming approach for measuring technical efficiency in a fuzzy environment. Journal of productivity analysis, 10(1), 85-102.

[4]      Guo, P., & Tanaka, H. (2001). Fuzzy DEA: a perceptual evaluation method. Fuzzy sets and systems, 119(1), 149-160.

[5]      Hatami-Marbini, A., Tavana, M., & Ebrahimi, A. (2011). A fully fuzzified data envelopment analysis model. International journal of information and decision sciences, 3(3), 252-264.

[6]      Lertworasirikul, S., Fang, S. C., Joines, J. A., & Nuttle, H. L. (2003). Fuzzy data envelopment analysis (DEA): a possibility approach. Fuzzy sets and systems, 139(2), 379-394.

[7]      Wang, Y. M., Luo, Y., & Liang, L. (2009). Fuzzy data envelopment analysis based upon fuzzy arithmetic with an application to performance assessment of manufacturing enterprises. Expert systems with applications, 36(3), 5205-5211.

[8]      Kao, C., & Liu, S. T. (2000). Fuzzy efficiency measures in data envelopment analysis. Fuzzy sets and systems, 113(3), 427-437.

[9]      Chen, C. B., & Klein, C. M. (1997). A simple approach to ranking a group of aggregated fuzzy utilities. IEEE transactions on systems, man, and cybernetics, Part B (Cybernetics), 27(1), 26-35.

[10]  Saati, S. M., Memariani, A., & Jahanshahloo, G. R. (2002). Efficiency analysis and ranking of DMUs with fuzzy data. Fuzzy optimization and decision making, 1(3), 255-267.

[11]  Parameshwaran, R., Srinivasan, P. S. S., Punniyamoorthy, M., Charunyanath, S. T., & Ashwin, C. (2009). Integrating fuzzy analytical hierarchy process and data envelopment analysis for performance management in automobile repair shops. European journal of industrial engineering, 3(4), 450-467.

[12]  Puri, J., & Yadav, S. P. (2014). A fuzzy DEA model with undesirable fuzzy outputs and its application to the banking sector in India. Expert systems with applications, 41(14), 6419-6432.

[13]  Shiraz, R. K., Tavana, M., & Paryab, K. (2014). Fuzzy free disposal hull models under possibility and credibility measures. International journal of data dnalysis techniques and strategies, 6(3), 286-306.

[14]  Momeni, E., Tavana, M., Mirzagoltabar, H., & Mirhedayatian, S. M. (2014). A new fuzzy network slacks-based DEA model for evaluating performance of supply chains with reverse logistics. Journal of intelligent & fuzzy systems, 27(2), 793-804.

[15]  Payan, A. (2015). Common set of weights approach in fuzzy DEA with an application. Journal of intelligent & fuzzy systems, 29(1), 187-194.

[16]  Aghayi, N., Tavana, M., & Raayatpanah, M. A. (2016). Robust efficiency measurement with common set of weights under varying degrees of conservatism and data uncertainty. European journal of industrial engineering, 10(3), 385-405.

[17]  Land, K. C., Lovell, C. K., & Thore, S. (1993). Chance‐constrained data envelopment analysis. Managerial and decision economics, 14(6), 541-554.

[18]  Olesen, O. B., & Petersen, N. C. (1995). Chance constrained efficiency evaluation. Management science, 41(3), 442-457.

[19]  Huang, Z., & Li, S. X. (1996). Dominance stochastic models in data envelopment analysis. European journal of operational research, 95(2), 390-403.

[20]  Cooper, W. W., Huang, Z., Lelas, V., Li, S. X., & Olesen, O. B. (1998). Chance constrained programming formulations for stochastic characterizations of efficiency and dominance in DEA. Journal of productivity analysis, 9(1), 53-79.

[21]  Li, S. X. (1998). Stochastic models and variable returns to scales in data envelopment analysis. European journal of operational research, 104(3), 532-548.

[22]  Bruni, M. E., Conforti, D., Beraldi, P., & Tundis, E. (2009). Probabilistically constrained models for efficiency and dominance in DEA. International journal of production economics, 117(1), 219-228.

[23]  Cooper, W. W., Deng, H., Huang, Z., & Li, S. X. (2004). Chance constrained programming approaches to congestion in stochastic data envelopment analysis. European journal of operational research, 155(2), 487-501.

[24]  Tsionas, E. G., & Papadakis, E. N. (2010). A Bayesian approach to statistical inference in stochastic DEA. Omega, 38(5), 309-314.

[25]  Udhayakumar, A., Charles, V., & Kumar, M. (2011). Stochastic simulation based genetic algorithm for chance constrained data envelopment analysis problems. Omega, 39(4), 387-397.

[26]  Tsolas, I. E., & Charles, V. (2015). Incorporating risk into bank efficiency: A satisficing DEA approach to assess the Greek banking crisis. Expert systems with applications, 42(7), 3491-3500.

[27]  Farnoosh, R., Khanjani, R., & Chaji, A. (2011). Stochastic FDH model with various returns to scale assumptions in data envelopment analysis. Journal of advanced research in applied mathematics, 3(11), 21-32.

[28]  Wu, C., Li, Y., Liu, Q., & Wang, K. (2013). A stochastic DEA model considering undesirable outputs with weak disposability. Mathematical and computer modelling, 58(5-6), 980-989.

[29]  Wanke, P., Barros, C. P., & Emrouznejad, A. (2018). A comparison between stochastic DEA and fuzzy DEA approaches: revisiting efficiency in Angolan banks. RAIRO-operations research, 52(1), 285-303.

[30]  Olesen, O. B., & Petersen, N. C. (2016). Stochastic data envelopment analysis—A review. European journal of operational research, 251(1), 2-21.

[31]  Kwakernaak, H. (1978). Fuzzy random variables—I. Definitions and theorems. Information sciences, 15(1), 1-29.

[32]  Feng, X., & Liu, Y. K. (2006). Measurability criteria for fuzzy random vectors. Fuzzy optimization and decision making, 5(3), 245-253.

[33]  Liu, Y. K., & Liu, B. (2003). Fuzzy random variables: A scalar expected value operator. Fuzzy optimization and decision making, 2(2), 143-160.

[34]  Liu, B. (2009). Some research problems in uncertainty theory. Journal of uncertain systems, 3(1), 3-10.

[35]  Qin, R., & Liu, Y. K. (2010). Modeling data envelopment analysis by chance method in hybrid uncertain environments. Mathematics and computers in simulation, 80(5), 922-950.

[36]  Tavana, M., Shiraz, R. K., Hatami-Marbini, A., Agrell, P. J., & Paryab, K. (2012). Fuzzy stochastic data envelopment analysis with application to base realignment and closure (BRAC). Expert systems with applications, 39(15), 12247-12259.

[37]  Tavana, M., Shiraz, R. K., Hatami-Marbini, A., Agrell, P. J., & Paryab, K. (2013). Chance-constrained DEA models with random fuzzy inputs and outputs. Knowledge-based systems, 52, 32-52.

[38]  Tavana, M., Khanjani Shiraz, R., & Hatami-Marbini, A. (2014). A new chance-constrained DEA model with birandom input and output data. Journal of the operational research society, 65(12), 1824-1839.

[39]  Paryab, K., Shiraz, R. K., Jalalzadeh, L., & Fukuyama, H. (2014). Imprecise data envelopment analysis model with bifuzzy variables. Journal of intelligent & fuzzy systems, 27(1), 37-48.

[40]  Shiraz, R. K., Tavana, M., & Di Caprio, D. (2018). Chance-constrained data envelopment analysis modeling with random-rough data. RAIRO-operations research, 52(1), 259-284.

[41]  Nasseri, S. H., Ebrahimnejad, A., & Gholami, O. (2018). Fuzzy stochastic data envelopment analysis with undesirable outputs and its application to banking industry. International journal of fuzzy systems, 20(2), 534-548.

[42]  Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision-making units. European journal of operational research, 2(6), 429-444.

[43]  Tavana, M., Khanjani Shiraz, R., & Hatami-Marbini, A. (2014). A new chance-constrained DEA model with birandom input and output data. Journal of the operational research society, 65(12), 1824-1839.

[44]  Tavana, M., Shiraz, R. K., Hatami-Marbini, A., Agrell, P. J., & Paryab, K. (2013). Chance-constrained DEA models with random fuzzy inputs and outputs. Knowledge-based systems, 52, 32-52.