Document Type : Research Paper


1 Department of Mathematics, Sree Vidyanikethan Engineering College, Tirupati, -517502, Andhra Pradesh, India.

2 Department of Mathematics, S. V. University, Tirupati, -517502, Andhra Pradesh, India.


Let (Zn, +) be a finite group of integers modulo n and Dn a non-empty subset of Zn containing proper devisors of n. In this paper, we have introduced the difference divisor graph Diff (Zn, Dn) associated with Zn whose vertices coincide with Zn such that two distinct vertices are adjacent if and only if either a-b belongs to Dn or b-a belongs to Dn . We have investigated its algebraic and graph theoretic properties. Further, we have proved that the difference divisor graph Diff (Zn, Dn) is not a Cayley graph.


Main Subjects

[1]      Singh, G. S., & Santhosh, G. (2000). Divisor graphs-I. preprint.
[2]      Kannan, K., Narasimhan, D., & Shanmugavelan, S. (2015). The graph of divisor function () D n. International journal of pure and applied mathematics102, 483-494.
[3]      Beck, I. (1988). Coloring of commutative rings. Journal of algebra116(1), 208-226.
[4]      Anderson, D. F., & Livingston, P. S. (1999). The zero-divisor graph of a commutative ring. Journal of algebra217(2), 434-447.
[5]      Chalapathi, T., Madhavi, L., & Venkataramana, S. (2013). Enumeration of triangles in a divisor Cayley graph. Momona ethiopian journal of science5(1), 163-173.
[6]      Chen, W. K. (1997). Graph theory and its engineering applications (Vol. 5). World Scientific Publishing Company.
[7]      Dörfler, F., Simpson-Porco, J. W., & Bullo, F. (2018). Electrical networks and algebraic graph theory: Models, properties, and applications. Proceedings of the IEEE (pp. 977-1005). IEEE.
[8]      El-Basil, S. (2008). Combinatorial properties of graphs and groups of physico-chemical interest. Combinatorial chemistry & high throughput screening11(9), 707-722.
[9]      Kelarev, A. V., & Quinn, S. J. (2004). A combinatorial property and power graphs of semigroups. Commentationes mathematicae universitatis carolinae45(1), 1-7.
[10]  Klotz, W., & Sander, T. (2007). Some properties of unitary Cayley graphs. The electronic journal of combinatorics14(1), 45.
[11]  Madhavi, L. (2002). Studies on domination parameters and enumeration of cycles in some arithmetic graphs (Doctoral theses, Sri Venkateswara University, Tirupati, India). Retrieved from
[12]  Chalapathi, T., & V M S S Kiran Kumar, R. (2017). Order divisor graphs of finite groups. Malaya journal of matematik, 5(2), 464–474.
[13]  Biggs, N., Biggs, N. L., & Biggs, E. N. (1993). Algebraic graph theory (Vol. 67). Cambridge university press.
[14]  Apostol, T. M. (2013). Introduction to analytic number theory. Springer Science & Business Media.
[15]  Bertram, E. A. (1983). Some applications of graph theory to finite groups. Discrete mathematics44(1), 31-43.
[16]  Chartrand, G., Lesniak, L., & Zhang, P. (2010). Graphs & digraphs. Chapman and Hall/CRC.
[17]  Cayley, P. (1878). Desiderata and suggestions: No. 2. The Theory of groups: graphical representation. American journal of mathematics1(2), 174-176.
[18]  Steinhardt, J. (2007). Cayley graphs formed by conjugate generating sets of Sn. Cornel university library, 1-22.
[19]   Bondy, A., &  Murty, M. R. (2007). Graph Theory. London: Springer.