
 

 

 

 

Difference Divisor Graph of the Finite Group 

R. V M S S Kiran Kumar1 , T. Chalapathi2 

1Department of Mathematics, Sree Vidyanikethan Engineering College, Tirupati, -517502, Andhra 

Pradesh, India. 
2Department of Mathematics, S. V. University, Tirupati, -517502, Andhra Pradesh, India. 

 

A B S T R A C T 

Let  ,nZ   be a finite group of integers modulo n and nD a non-empty subset of nZ containing 

proper devisors of n . In this paper, we have introduced difference
 
divisor graph ( , )n nDif Z D

associated with nZ whose vertices coincide with nZ such that two distinct vertices are adjacent if 

and only if either na b D  , or, nb a D  . Then we have investigated its algebraic and graph 

theoretic properties. Further, we have proved that the difference divisor graph ( , )n nDif Z D is not a 

Cayley graph.  
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1. Introduction 

The notion of divisibility is an important tool in the study of theory of numbers and theory of 

algebra. The proper divisor of a positive integer n is denoted by d ; the number of divisors of n

is denoted by the arithmetic function ( )d n and the divisor function of n . Here d n but d n and 

let us agree upon 0d  that is 0d  . For an integer 1n  , we denote by 
nZ {0, 1,..., 1}n  the 

additive group, respectively and the ring of integers modulo n . 

In recent years, divisors of a positive integer have played a central role in the study of arithmetic 

graphs. For instance, divisor graphs [1], Graph of Divisor function [2], zero divisor graphs [3, 4], 

and Cayley divisor graph [5] are few examples of arithmetic graphs associated with divisors of 
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positive integers. There is another branch of graph theory called algebraic graph theory. It is one 

of the modern and active branches of pure mathematics, and it is mainly concerned with the 

properties of algebraic structures through graph structures. In recent years, algebraic graphical 

methods are likewise being utilized as a part of a few territories of engineering science, see [6, 

7]. In particular, there has been a nearby creation between algebraic graph and finite group 

theories for over a century. Clean examinations and stunning outcomes from finite group theory 

have been demonstrated through combinatorial properties of algebraic graphs and the other way 

around [8, 9].  

The algebraic structure nZ is very eminent algebraic tool for constructing modern algebraic 

graphs. For such kind of study, some researchers defined algebraic graphs whose vertices are sets 

of elements of nZ and edges are defied with respect to a condition on the divisors of n . This 

serves as the underlined motivation for this work the GCD-graphs to finite rings 
nZ was first 

associated by Koltz and Sander for various values of 1n  [10]. Given 1n   and a non-empty 

subset n nD Z , the gcd-graph denoted by ( )n nX D is defined as follows: each vertex is an 

element of nZ with two distinct vertices a and b are adjacent if and only if gcd( , ) na b n D  , 

where they computed mainly Eigen values of ( )n nX D . Madhavi introduced another class of 

algebraic graph of divisor function [11], called divisor Cayley graph *( , )n nCay Z S  that is the 

undirected simple graph with vertices 
nZ , and for distinct vertices a and b are adjacent if and 

only if either *

na b S  , or, *

nb a S  , where * ( )n n nS D D   . Further, the investigation of 

*( , )n nCay Z S was done by Chalapathi et al. [5]. Recently, Chalapathi and Kiran [12] introduced 

the order divisor graphs of subgroups of finite groups and studied its structural properties. For 

basic terminology and notations in algebraic graph theory we refer to [13], and for number 

theoretic properties of arithmetic functions we refer to [14]. 

2. Difference Divisor Graph 

For any positive integer 1n  , we denote nD as a set of proper divisors of n . In this section, we 

define difference divisor graph and study its properties associated with finite group nZ . Note that 

n nD Z and ( ) 1nD d n  , where ( )d n is divisor function of n .  

Definition 2.1 Let 1n   be a positive integer, then we define difference divisor graph                   

( , )n nDif Z D associated with a finite group nZ as the undirected simple graph whose set of 

vertices coincides with 
nZ such that two distinct vertices a and b are adjacent if and only if either 

na b D  , or, nb a D  .  



237                  Difference divisor graph of the finite group 

 

Throughout this paper n will always denote a positive integer and 1n  . Now to justify our claim 

that the difference divisor graph is new, we as well illustrates by the following example how it is 

different from well-known algebraic graphs  associated with group 
nZ , refer [10 and 11]. 

Example 2.2 Let 9n  , then 9 {0,1,2,...,8}Z  be the group of integers modulo 9, here 

9 {1, 3}D  and *

9S 
9 9( )D D  {1, 3, 6, 8} . Clearly, the GCD -graph ( )nX D and divisor Cayley- 

graph *( , )n nCay Z S  are both different form difference divisor graph ( , )n nDif Z D . 

Theorem 2.3 For each 1n  , the graph ( , )n nDif Z D is connected.  

Proof. Since ( 1) ( 2) 1a a   
nD for every na Z , so the vertex ( 1)a  is adjacent to the 

consecutive vertex ( 2)a  in the graph ( , )n nDif Z D . Thus, there exist a path 0 1 2  

( 2) ( 1)n n    between the vertices 0 and 1n   in ( , )n nDif Z D , and hence ( , )n nDif Z D is 

connected.  

Theorem 2.4 The graph ( , )n nDif Z D is a tree if and only if n is prime. 

Proof. Suppose ( , )n nDif Z D is a tree of order n . Then it is acyclic graph of size 1n  . Assume 

that n  is not a prime, there exist a proper divisor d of n such that either ( ) 0d d    or 

( ) 0d d   in the group 
nZ . So, we consider the following two cases. 

Case 1. If ( ) 0d d   , then 
2

n

n
d Z  if and only if n  is even, otherwise d must be zero. Thus

1
2 2

n n 
  
 

, 1
2 2

n n 
  

 
, and 1 1

2 2

n n   
     

   
are the elements in 

nD , so the pairs 1,
2 2

n n 
 

 
,

, 1
2 2

n n 
 

 
, and 1, 1

2 2

n n 
  

 
 are edges of the graph ( , )n nDif Z D . This means that 3 : 1

2

n
C

 
 

 

2
―

n
1 1

2 2
― ―

n n   
    

   
is a cycle of length 3 in ( , )n nDif Z D , which is a contradiction to our 

hypothesis that ( , )n nDif Z D is an acyclic graph. 

Case 2. If ( ) 0d d   , then 
2

n
d  . So, there exist at least three vertices 1

2

n
 , 2

2

n
 , and 3

2

n


in ( , )n nDif Z D such that the vertex sequence 2 1
2 2

―
n n   
    

   
3 2

2 2
― ―

n n   
    

   
is a cycle in 

( , )n nDif Z D , which is again a contradiction.  From Case 1 and Case 2 we conclude that n  must 

be a prime number.  

Conversely, suppose that n  is prime. For any 0a   in 
nZ , we have ( )o ka  ( )o a n  for all 

{0}nk Z  . It is clear that ( )o a b n   for every , na b Z and 1a b   if and only if a and b
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are consecutive elements in 
nZ . Since n is prime; therefore, the vertex 0 is not adjacent to the 

vertex 1n in ( , )n nDif Z D because 1 nn D  if and only if n is prime. Hence, ( , )n nDif Z D is a 

tree of order n . 

Theorem 2.5 The graph ( , )n nDif Z D is not complete if and only if 2n  .  

Proof. Follows that a well-known observation that 1 nn D  if and only if 2n  , i.e. the vertex 

0 is not adjacent to the vertex 1n in ( , )n nDif Z D if and only if 2n  . 

Corollary 2.6 The graph ( , )n nDif Z D is complete if and only if 2n  . 

Proof.  Suppose that ( , )n nDif Z D is a complete graph. Then any two vertices in 
nZ are adjacent 

in ( , )n nDif Z D . To show that 2n  , let if 2n  , then let n be 3 and clearly the vertices 0, 1, 2

 ( , )n nV Dif Z D ; by the Theorem 2.4, ( , )n nDif Z D is a tree; it is not a complete graph. It follows 

that n cannot be 3 . Further, if 3n  , then clearly, by the Theorem 2.5, ( , )n nDif Z D is not 

complete. Thus, n cannot be greater than or equal to 3 . Hence n must be 2 .  

Sufficiency. The sufficiency is clear to see as for instance, 2 2( , )Dif Z D
2K , complete graph of 

order 2 . 

Theorem 2.7 If 1n  is odd, then ( , )n nDif Z D is a bipartite graph. 

Proof. Since 1n  is odd, each proper divisor of must be odd, thus, no two odd labeled vertices 

are adjacent and similarly no two even labeled vertices are adjacent in ( , )n nDif Z D . This implies 

that the set 
nE of even labeled vertices and the set nO of odd labeled vertices form a bipartition 

( , )n nE O of the vertex set 
nZ in the graph ( , )n nDif Z D and hence it is a bipartite graph. 

Remark 2.8 The graph ( , )n nDif Z D is bipartite but not complete for any odd 1n  .  

Theorem 2.9 If n is even, then ( , )n nDif Z D is a not a bipartite graph. 

Proof. Assume that n is even. Suppose, if ( , )n nDif Z D is bipartite graph. Then there exist a 

bipartition  ,n nA B where 
nA and 

nB are the set of even and odd integers of 
nZ , respectively. 

Without loss of generality we may assume that 0 nA and 1 nn B  . Since n is even, there exist 

a vertex 
2

n
in

nZ . Clearly, the vertices 1
2

n
 and 1

2

n
 are in 

nB and the vertex 
2

n
in 

nA . Therefore, 

the triad 1, , 1
2 2 2

n n n 
  

 
form a triangle in ( , )n nDif Z D . This violates the condition of 

bipartition. So our assumption is not true and hence ( , )n nDif Z D is not a bipartite graph.  
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It should be appointed that the number of distinct edges in a path of simple graph G is called a 

length of the path. The distance ( , )d x y of vertices x and y of a graph G is the length of a 

shortest ,x y -path. The diameter of G is the maximum distance of any two vertices of G may 

have and it is denoted by ( )diam G . Similarly, the girth of G is denoted by gir( )G and defined as 

the length of the smallest cycle in G . Note that gir( )G   if G is an acyclic graph. 

Theorem 2.10 [19]. A tree with n vertices has diameter 1n . 

Theorem 2.11 For 2n  we have 

 ( , )n ndiam Dif Z D

1 if 2

1 if , an odd prime

3 if 4 is even

4 if , 1 is positive integer

n

n n p

n

n p 




 
 


  

 

Proof. If 2n  , then by the Corollary 2.6, 2 2( , )Dif Z D 2K is a complete graph, which has 

diameter 1 . In other case, by the Theorem 2.5, ( , )n nDif Z D is not complete, so that

 ( , ) 1n ndiam Dif Z D  . If n p is an odd prime, then by the Theorem 2.4, ( , )n nDif Z D is a tree 

with pendent vertices 0 and 1n . So, in view of Theorem 2.10, has diameter 1n . 

Suppose 4n  is a positive even integer. Then there exists a vertex
2

n
in ( , )n nDif Z D such that 

2

n

is adjacent to the other vertices 0, 2n  and 1n . So, there exist a path 0
2

―
n
― ( 2) ( 1)―n n 

of length 3 , which is smallest since the vertex 0 is not adjacent to the vertex 1n . So, in this 

case  ( , )n ndiam Dif Z D is 3 . Finally, we consider the case when n is odd but not prime. But the 

vertices 0 and 1n of ( , )n nDif Z D are not adjacent and deg(0)  deg( 1)n .nD  Also, 0 and 

1n have no common neighbor, it is clear that  ( , )n ndiam Dif Z D (0, 1) 4d n   . Now to show 

that (0, 1) 4d n   for n p , 1  . We know that the set of proper divisors of p is 
p

D 

2 1{1, , ,...., }p p p and 1 0p  , 1 12p p   ,  12 2p p    ,    1 2p p    are in 
p

D 

. Then by the definition of difference divisor graph, there exist a smallest path 1 10 2― ―p p  

)( 1)(2― ―p p   of length 4 because ( , )
p p

Dif Z D  is a triangle free graph. This shows that 

(0, 1) 4d p   . Hence, in this case,  ( , )n ndiam Dif Z D is 4 for n p . 

Theorem 2.12 The girth of the difference divisor graph is given by  
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 gir ( , )n nDif Z D

if n isa primenumber

3 if is an even number

4 if isodd but not a primenumber

n

n




 



. 

Proof.  Suppose n is prime, then by the Theorem 2.4, ( , )n nDif Z D is acyclic graph, and thus 

girth of ( , )n nDif Z D is infinity. Next, suppose n is even and 2n  , then in view of Theorem 2.9, 

( , )n nDif Z D is not a bipartite graph, so there exist an odd cycle in ( , )n nDif Z D . Thus, we always 

have a 3 -cycle, namely ( 1)n  ( 2)― n  ( 3)― n  ( 1)― n  , which is smallest in ( , )n nDif Z D . 

Hence,  gir ( , )n nDif Z D 3 . Finally, suppose n is odd but not prime. Then by the Theorem 2.11, 

( , )n nDif Z D is a triangle free graph, and so we obtain a smallest cycle ( 2)( 1)― nn  ( 3)― n ―

( 1)( 4)― nn   of length 4 in ( , )n nDif Z D . Thus, the girth of ( , )n nDif Z D is equal to 4 .  

The investigations on group theory via combinatorial properties of graphs giving amazing results 

found in [15, 16]. This results as essential motivation for this work. The algebraic graphs namely, 

“Cayley graphs” associated to finite groups was originated by the Arthur Cayley [17]. Given a 

finite group X and a non-empty generating symmetric  subset S X , the Cayley graph denoted 

by  ,  Cay X S is defined as each vertex is an element of X with two vertices 

 ( ),  y  ,  x V Cay X S being adjacent if either 1xy or 1yx S  , see [18]. 

In view of above investigations on Cayley graphs, we shall prove an important result that 

( , )n nDif Z D is not a Cayley graph. 

Theorem 2.13 Let 1n  be a positive integer. Then ( , )n nDif Z D is not a Cayley graph.  

Proof. Suppose ( , )n nDif Z D is Cayley graph of the finite group 
nZ . Then the subset 

nD in 
nZ is 

a symmetric set. By the definition of symmetric set, for every nd D  nDd  . This shows that 

the structure ( , )nD  forms an abelian subgroup of ( , )nZ  , which is not true because sum of 

two proper divisors of 1n  may not a proper divisor. 

2. Traversable Properties of Difference Divisor Graph  

A simple graph is said to be traversable if there exists a path between all the vertices without 

retracing the same path. In this section, we describe some categories like Eularian path and 

Hamiltonian path based on this path, and hence it shows that the difference divisor graph 

( , )n nDif Z D is Eularian and Hamiltonian for various values of 1n  . 

Theorem 3.1 For any positive integer 1n  , the difference divisor graph ( , )n nDif Z D is not 

Eularian.  
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Proof.  By the definition of difference divisor graph, ( , )n nDif Z D is not regular if and only if 

2n  . So, clearly, deg( 1)n nD and deg( 2)n 1nD  . Now there are two possibilities; if 

nD is even, then 1nD  is odd. On the other hand, if nD is odd, then 1nD  is even. Hence in 

both the possibilities, we found that degree of each vertex cannot be even, hence by the 

characterization of Eularian graphs [19], the graph ( , )n nDif Z D is not an Eularian.  

Theorem 3.2 Let 2n  be even. Then the graph ( , )n nDif Z D is Hamiltonian.  

Proof. Let 2n  be an even positive integer, we shall now show that ( , )n nDif Z D is Hamiltonian. 

For thus we shall show that ( , )n nDif Z D has a cycle that visits every vertex exactly once. To do 

this, let i be the 
thi vertex in ( , )n nDif Z D defined as {0, 1, 2,..., 1}i n  . Since n is even, 

2

n
exists 

and also 
2

n

n
D ; therefore, the pairs (0, 1) , (1, 2) ,…, 1, 1

2

n
n

 
  

 
,  1, 2n n  ,  2, 3n n  ,…

, 1
2 2

n n 
 

 
, and , 0

2

n 
 
 

are adjacent in ( , )n nDif Z D . So, we construct a cycle 0 1 2 

1
2

n 
    

 
 1n    2n   1

2

n 
    

 
0

2

n
   which covers all the vertices in ( , )n nDif Z D

. Thus there exist a cycle of length n that visits each vertex in  ( , )n nDif Z D , and hence the graph 

is Hamiltonian.  

Theorem 3.3 Let 2n  be odd. Then ( , )n nDif Z D is not Hamiltonian. 

Proof. Let ( )d n be the number of divisors of 2n  . We shall now show that ( , )n nDif Z D  is not 

Hamiltonian. If possible assume that ( , )n nDif Z D  is Hamiltonian, then by characterization of 

Hamiltonian graphs [19] for any two vertices a and b  in ( , )n nDif Z D , the following in equality 

holds: 

deg( )a  deg( )b n . 

Without loss of generality, we may assume that 0a  and 1b n  are two vertices of the graph 

( , )n nDif Z D for any positive odd integer 2n  . By the definition of difference divisor graph, we 

have deg(0) deg( 1) nn D   .Therefore, 2 nD n  2( ( ) 1)d n n  
2

( )
2

n
d n


 , which is 

not true for any positive odd integer 2n  . Hence ( , )n nDif Z D  is not Hamiltonian. 
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