Document Type : Research Paper


1 Department of Operations Research, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza 12613, Egypt.

2 Department of Mathematics, College of Science and Arts, Al-Badaya 51951, Qassim University, Saudi Arabia.

3 Faculty of Organizational Sciences, University of Belgrade, Belgrade, Serbia.

4 Department of Applied Mathematics, Ayandegan Institute of Higher Education, Tonekabon, Iran.


The current study investigates to characterize the Complex Programming Problem (CPP) solution in a fuzzy environment. The paper is divided into two parts: 1) the first presents a Fuzzy Complex Programming Problem (F-CPP) with fuzzy complex constraints, and 2) the second presents the optimality criteria using the fuzzy complex cone. The CPP is suggested by involving fuzzy numbers in the constraints in parts. Using the cut set concepts, the problem is converted into the complex programming. A number of basic theorems with proofs are established concerning the basic results for the fuzzy complex set of solutions for the F-CPP, and the optimality criteria of the saddle point for F-CPP with fuzzy cones is derived.


Main Subjects

[1]     Levinson, N. (1966). Linear programming in complex space. Journal of mathematical analysis and applications, 14(1), 44–62. DOI:10.1016/0022-247X(66)90061-8
[2]     Mond, B., & Hanson, M. A. (1968). Symmetric duality for quadratic programming in complex space. Journal of mathematical analysis and applications, 23(2), 284–293.
[3]     Zhang, S., & Xia, Y. (2018). Solving nonlinear optimization problems of real functions in complex variables by complex-valued iterative methods. IEEE transactions on cybernetics, 48(1), 277–287. DOI:10.1109/TCYB.2016.2632159
[4]     Hanson, M. A., & Mond, B. (1967). Quadratic programming in complex space. Journal of mathematical analysis and applications, 20(3), 507–514. DOI:10.1016/0022-247X(67)90076-5
[5]     Duca, D. I. (1979). On vectorial programming problem in complex space.
[6]     Ferrero, O. (1992). On nonlinear programming in complex spaces. Journal of mathematical analysis and applications, 164(2), 399–416. DOI:10.1016/0022-247X(92)90123-U
[7]     Abrams, R. A. (1972). Nonlinear programming in complex space: Sufficient conditions and duality. Journal of mathematical analysis and applications, 38(3), 619–632. DOI:10.1016/0022-247X(72)90073-X
[8]     Ben-Israel, A. (1969). Linear equations and inequalities on finite dimensional, real or complex, vector spaces: A unified theory. Journal of mathematical analysis and applications, 27(2), 367–389. DOI:10.1016/0022-247X(69)90054-7
[9]     Smart, I., & Mond, B. (1991). Complex nonlinear programming: Duality with invexity and equivalent real programs. Journal of optimization theory and applications, 69(3), 469–488. DOI:10.1007/BF00940685
[10]   Youness, E. A., & Elbrolosy, M. E. (2004). Extension to necessary optimality conditions in complex programming. Applied mathematics and computation, 154(1), 229–237. DOI:10.1016/S0096-3003(03)00706-9
[11]   Malakooti, B., & Al-Najjar, C. (2010). The complex interior-boundary method for linear and nonlinear programming with linear constraints. Applied mathematics and computation, 216(7), 1903–1917. DOI:10.1016/j.amc.2010.01.113
[12]   Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338–353.
[13]   Dubois, D. J., & Prade, H. (1980). Fuzzy sets and systems: theory and applications (Vol. 144). Academic Press.
[14]   Zimmermann, H. J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy sets and systems, 1(1), 45–55. DOI:10.1016/0165-0114(78)90031-3
[15]   Narasimhan, R. (1980). Goal programming in a fuzzy environment. Decision sciences, 11(2), 325–336. DOI:10.1111/j.1540-5915.1980.tb01142.x
[16]   Hannan, E. L. (1981). On fuzzy goal programming. Decision sciences, 12(3), 522–531. DOI:10.1111/j.1540-5915.1981.tb00102.x
[17]   Tanaka, H., Okuda, T., & Asai, K. (1973). Fuzzy mathematical programming. Transactions of the society of instrument and control engineers, 9(5), 607–613.
[18]   Bellman, R., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management science, 17(4), B--141. DOI:10.1142/9789812819789_0004
[19]   Tanaka, H., & Asai, K. (1984). Fuzzy linear programming problems with fuzzy numbers. Fuzzy sets and systems, 13(1), 1–10. DOI:10.1016/0165-0114(84)90022-8
[20]   Buckley, J. J. (1989). Fuzzy complex numbers. Fuzzy sets and systems, 33(3), 333–345. DOI:10.1016/0165-0114(89)90122-X
[21]   Zhang, S., & Xia, Y. (2015). Two fast complex-valued algorithms for solving complex quadratic programming problems. IEEE transactions on cybernetics, 46(10), 2837–2847. DOI:10.1109/TCYB.2015.2490170
[22]   Khalifa, H. A., Kumar, P., & Smarandache, F. (2020). On optimizing neutrosophic complex programming using lexicographic order (Vol. 32). Infinite Study.
[23]   Mond, B. (1970). Nonlinear nondifferentiable programming in complex space. In Nonlinear programming (pp. 385–400). Elsevier.
[24]   Huang, T. Y. (2020). Second-order parametric free dualities for complex minimax fractional programming. Mathematics, 8(1), 67. DOI:10.3390/math8010067
[25]   Elbrolosy, M. E. (2016). Efficiency for a generalized form of vector optimization problems in complex space. Optimization, 65(6), 1245–1257. DOI:10.1080/02331934.2015.1104680
[26]   Usha, P. K., & Kumar, P. (2020). Single transmit fuzzy queuing model with two-classes: execution proportions by ranking technique. Journal of engineering science and technology, 15(4), 2395–2406.
[27]   Qiu, J., Xue, H., Li, G., & Yang, X. (2020). Fuzzy relation bilevel optimization model in the wireless communication station system. IEEE access, 8, 60811–60823. DOI:10.1109/ACCESS.2020.2984095
[28]   Khalifa, H. A. E. W., & Kumar, P. (2022). A fuzzy programming approach to neutrosophic complex nonlinear programming problem of real functions in complex variables via lexicographic order. Opsearch, 59(4), 1396–1412. DOI:10.1007/s12597-022-00584-2
[29]   Berman, A. (1973). Cones, matrices and mathematical programming (Vol. 79). Springer Science & Business Media.