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Abstract 

The current study investigates to characterize the Complex Programming Problem (CPP) solution in a fuzzy 

environment. The paper is divided into two parts: 1) the first presents a Fuzzy Complex Programming Problem (F-

CPP) with fuzzy complex constraints, and 2) the second presents the optimality criteria using the fuzzy complex 

cone. The CPP is suggested by involving fuzzy numbers in the constraints in parts. Using the α −cut set concepts, 

the problem is converted into the α −complex programming. A number of basic theorems with proofs are 

established concerning the basic results for the fuzzy complex set of solutions for the F-CPP, and the optimality 

criteria of the saddle point for F-CPP with fuzzy cones is derived.  
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1|Introduction    

Complex Programming Problem (CPP) applications are found in [1]–[3]. In earlier works in the field of CPP, 

the majority of the authors considered only the real part of the objective function of the problem as the 

objective function of the problem, neglecting the imaginary part, and the corresponding constraints have been 

assumed as a cone in the complex space ℂn. However, in several applications of the real-world problem, the 

imaginary part involved in objective function especially plays a crucial role.  

Mathematical programming in complex space has been originated by [1], where Farkas's theorem has 

generalized to the complex space. Hanson and Mond [4] have generalized Wolfe's duality optimization from 

real lines to complex numbers. Duca [5] formulated the vectorial optimization model involving complex 

numbers and derived the necessary and sufficient conditions at the point to be the efficient solution to the 

problem. Ferrero [6] considered the finite dimensional spaces using the separation arguments. In addition, 

the optimality conditions have been established in the real and imaginary parts of the objective function. 

Abrams [7] established sufficient conditions for optimal points of the objective function's real part, neglecting 

the imaginary part. Ben-Israel [8] introduced two theorems with proofs for equalities. Smart and Mond [9] 

have shown that the necessary conditions for optimality in polyhedral-cone-constrained nonlinear 

programming problems are sufficient with the special type of invexity hypothesis. In addition, they extended 

the duality results for a Wolfe-type dual. Youness and Elborolosy [10] formulated the optimization problem 

involving complex numbers. Malakooti [11] developed a complex method with interior search directions to 

solve linear and nonlinear programming problems.  

One of the difficulties that emerged with the application of MP is that the parameters are not constants but 

uncertain. In fuzzy sets, as Zadeh [12] proposed, fuzzy numerical data is used as the fuzzy subsets of real 

lines, referred to as fuzzy numbers. Later, Dubois and Prade [13] studied the applications of mathematical 

operations on real lines to fuzzy numbers with the help of the fuzzification principle. The fuzzy nature of a 

goal programming problem was discussed by [14] and later followed by [15], [16], and many other authors 

working in that field. Tanaka et al. [17] introduced the concepts of fuzzy mathematical programming 

problems, following Bellman and Zadeh [18] and then by Tanaka and Asai [19].  

Buckley [20] proposed the definition of fuzzy complex numbers following the concept of α − cut  and 

investigated two special types depending on the forms z = x + iy and z = reiγ. Zhang and Xia [21] proposed 

two algorithms for solving complex quadratic mathematical programming problems with linear equality 

constraints and both an l1 -norm and linear equality constraints. Zhang and Xia [3] proposed two complex-

valued optimization solutions to constrained nonlinear programming problems of real functions in complex 

variables. Khalifa et al. [22] characterized the solution of complex nonlinear programming with interval-valued 

neutrosophic trapezoidal fuzzy parameters. Many researchers have developed the optimization model in 

complex spaces (for instance, Mond [23], Huang [24], and Elbrolosy [25]). Usha and Kumar [26] studied the 

queuing model using the fuzzy ranking method in a fuzzy environment. Khalifa et al. [22] characterized the 

solution of complex nonlinear programming with interval-valued neutrosophic trapezoidal fuzzy parameters. 

Qiu et al. [27] developed a fuzzy relation bi-level optimization model. They presented an application in the 

wireless communication station system. Khalifa and Kumar [28] recently applied fuzzy goal programming for 

nonlinear complex programming in a neutrosophic environment. 

This paper is divided into two parts: The first part considers an Fuzzy Complex Programming Problem (F-

CPP) with fuzzy complex constraints, and the second part presents the optimality criteria using the fuzzy 

complex cone. The CPP is considered in all the two parts by involving fuzzy numbers in the constraints. 

Using the α −cut set concepts, the problem is converted into the corresponding α −complex programming. 

Some basic theorems with proofs are established concerning the basic results for the fuzzy complex set of 

solutions for the F-CPPs, and the optimality criteria of the saddle point for F-CPP with fuzzy cones is derived.  

The remaining structure of this study is outlined below:  
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Fig. 1. Research method. 

 

2|Preliminaries 

Represent ℜ = (−∞, ∞) as real line, and z = {x + iy: x, y ∈ ℜ, i = √−1} as a complex number, ℂ = field of 

complex numbers. 

Definition 1 ([20]). A map Z:̃  ℂ → [0,1] is referred to as a fuzzy complex set, μZ̃(z) is said to be a membership 

function of Z̃ for z, F(ℂ) = {Z̃: Z:̃  ℂ → [0,1]} represents all fuzzy complex sets on ℂ. 

Definition 2. The α −cut set of a complex set Z̃ , designated by Z̃α , can be written as follows: 

Definition 3 ([20]). Supp Z̃ = {z = x + i y ∈ ℂ: μZ̃(z) ≥ 0} is referred to as the support of Z̃. 

Definition 4 ([20]). 

I. Z̃ ∈ F(ℂ) is convex fuzzy complex set on ℂ, iff for all α ∈ [0,1], Z̃α is a convex complex set. 

II. Z̃ ∈ F(ℂ) is a closed fuzzy complex set on ℂ, iff for α ∈ [0,1], Z̃α is a closed complex set. 

III. If Z̃ ∈ F(ℂ), Supp Z̃  is bounded set on ℂ, iff for α ∈ [0,1], Z̃α is bounded on ℂ. 

IV. Z̃ ∈ F(ℂ) is normal fuzzy complex set on ℂ, iff for α ∈ [0,1], {z ∈ ℂ: μZ̃(z) = 1} ≠ ∅. 

Definition 5. A normal convex fuzzy complex set on ℂ is referred to as a fuzzy complex number. 

Definition 6 ([5], [29]). Let us consider that ϕ ≠ H ⊂ ℂn. 

I. H is a cone, provided that for each z ∈ H and each α ∈ ]0, ∞[, we have α z ∈ H. 

II. H is a convex cone, when it is both – convex as well as a cone. 

III. Intersection of all convex cones in ℂn containing the set H is a convex cone spanned by H, and it is 

designated by con (H). 

Section 2
• Introduces the required preliminaries.

Section 3

• formulates complex optimization problem with fuzzy constraints and some basic  
theorems with proofs which characterized the solution of  the problem. 

Section 4
• The optimality criteria using the fuzzy complex cone. 

Section 5
• A numerical experimentation is performed.

Section 6
• Paper is summarized with future directions.

Z̃α = {z = x + i y ∈ ℂ: μZ̃(z) ≥ α}.  
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Definition 7 ([5]). A polyhedral cone S in ℂn is a convex cone generated by finitely many vectors, that is, a 

set of the form S ℜ+
k = {Ax: x ∈ ℜ+

k }, for some positive integer k and A ∈ ℂn×k.  

3|Problem Definition (Part I) 

Let us recall a problem in complex space as follows: 

where M̃ referrers to a fuzzy complex non-empty subset of ℂn (i.e., ∅ ≠ M̃ ⊂ ℂn), and f: M̃ → ℂ is a function 

of complex variable z. 

Problem (1) is transformed to its crisp counterpart as below: 

where μM̃(z) = μM̃(x, y) = min(μM̃(x), μM̃(y)) , μM̃(x): ℜn → [0,1], x ∈ ℜn;  μM̃(y): ℜn → [0,1], y ∈ ℜn. 

Definition 8. The fuzzy feasible point z° ∈ M̃ with the membership function μM̃(z°) = μM̃(x°, y°) =

min(μM̃(x°), μM̃(y°)) , z° = x° +  i y° is a fuzzy optimal solution to the Problem (2) when Re f(z°) =

min(Re f(z): z ∈ M̃ with membership μM̃(z)). 

Theorem 1. Let M̃ be a non-empty fuzzy complex subset of ℂn and f: M̃ → ℂ be a function of quasi-convex 

real part on M̃ relative to ℜ+ = [0, ∞[. Then, M̃  is convex. 

Proof: Let z1 and z2 be two solutions of Problem (2), then z1, z2 ∈ M̃ with μM̃(z1), μM̃(z2), and Re f(z1) =

Re f(z2) = min(Re f(z): z ∈ M̃) and therefore 

Since M̃ is a fuzzy complex set, then for 0 ≤ ζ ≤ 1 ⇒ zζ = ζz1 + (1 − ζ)z2 ∈ M̃ with μM̃(ζz1 + (1 − ζ)z2) ≥

min(μM̃(z1), μM̃(z2) ). From the assumption of the Theorem 1 and from Eq. (3), we have 

Or equivalently, Re f(z1) ≤ Re f(z2). Thus, zζ is a convex set. 

Theorem 2. Let us consider that ϕ ≠ M̃ ⊂ ℂn,  and f ∶  M̃ → ℂ be a function and z1 be a solution to Problem 

(1). If  f has a strictly convex real part of  z1 following ℜ+ , then z1 is the unique solution to the Problem (1). 

Proof: Let z2 be another solution to the Problem (1), z1 ≠ z2, then z1, z2 ∈ M̃ with membership function 

μM̃(z1) = μM̃(x1, y1) = min(μM̃(x1), μM̃(y1)),  μM̃(z2) = μM̃(x2, y2) = min(μM̃(x2), μM̃(y2)), with 

μM̃(x1): ℜn → [0,1]. Since z1 = x1 + i y1, z1 ∈ M̃ ⊂ ℂn, Re(z1) = Re (z2) min Re {f(z): z ∈ M̃}, this leads to 

Let  0 ≤ ζ ≤ 1. Since, M̃  is convex in ℂn, then z𝛇 = (1 − ζ)z1 + ζz2 ∈ M̃ with membership μM̃((1 − ζ)z1 +

ζz2) ≥ min(μM̃(z1), μM̃(z1)). Moreover, since f has a strictly convex real part at z1 with respect to ℜ+, it follows 

that 

Therefore, 

  

min Re f(z), 

s. t. 

z ∈ M̃, 

(1) 

min Re f(z), 

s. t. 

z ∈ μM̃(z), 

(2) 

0 = Re f(𝑧1) − Re f(𝑧2) ∈ ℜ+. (3) 

Re f(z1) − Re f(z2) ∈ ℜ+. (4) 

Re f(z1) − Re (z2) = 0. (5) 

Re ((1 − ζ)f(z1) + ζf (z2) − f(zζ)) > 0,  (6) 
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This contradicts that z1 is a solution to Problem (1).     

Definition 9. The point z° ∈ M̃  with membership μM̃(z°) = μM̃(x°, y°) = min(μM̃(x°), μM̃(y°)  is a local 

solution to Problem (1) if there is a neighbourhood ũ of the point z° so that Re f(z°) = min{Re f (z): z ∈ M̃ ∩ ũ}, 

with membership function μM̃∩ũ = min(μM̃(z)), μũ(z)). 

Theorem 3. Let us consider that ϕ ≠ M̃ ⊂ ℂn, and  f ∶ M̃ → ℂ be a function with concave real part on M̃ 

relative to ℜ+ , under the assumption that its real part is not a constant, if z° is a solution to Problem (1), then 

z° is a member of the set representing the boundary of M̃. 

Proof: If int (M̃) = ∅, then z° belongs to the boundary of  M̃. Assume the case when int (M̃) ≠ ∅. Since Re f(z) 

is not constant, it follows that there exists z1 ∈ M̃ with the membership function μM̃(z1) such that 

Now, let z ∈ int (M̃), then there exists a real number ε > 0  so that  B̃(z, ε) ⊆ M̃ with μB̃(z,ε) < μM̃(z). Let us 

denote 

Let w =
1

ζ
z + (1 −

1

ζ
) z1. Since 

It follows that, w ∈ B̃(z, ε), and w ∈ M̃ wit memberships μB̃(z,ε)(w) ≤ μM̃(w). Then, we deduce that Re f(z°) ≤

Re(w), referring to the equation  

Hence, we obtain z = ζ w + z1 − ζ z1,  i.e., z = ζ w + (1 − ζ) z1, since z1 ∈ M̃, w ∈ B̃(z, ε) ⊆ M̃, 0 < ζ < 1, 

then z ∈ M̃ with the following membership function 

Since f(z) has a concave real part on M̃ relative to ℜ+, we have 

Re f(zζ) <  Re ((1 − ζ)f(z1) + ζf (z2)) < Re f(z1) − ζ Re f(z1) +  ζ Re f(z2) = Re f(z1). (7) 

Re f(z°) < Re f(z1). (8) 

ζ =
‖z − z1‖ + 1

‖z − z1‖ + 1 + ε
, 0 < ζ < 1.  

‖z − w‖ = ‖z −
1

ζ
z − z1 +

1

ζ
z1‖ 

= ‖z (1 −
1

ζ
) − (1 −

1

ζ
) z1‖ 

= ‖(1 −
1

ζ
) (z − z1)‖ 

= |1 −
1

ζ
| ‖z − z1‖ 

= |1 −
‖z − z1‖ + 1 + ε

‖z − z1‖ + 1
| . ‖z − z1‖ 

=  |1 −
‖z − z1‖ + 1

‖z − z1‖ + 1
−

ε

‖z − z1‖ + 1
| . ‖z − z1‖ 

= |
−ε

‖z − z1‖ + 1
| . ‖z − z1‖ < ε 

=
ε

‖z − z1‖ + 1
. ‖z − z1‖ < ε. 

 

w =
1

ζ
z + (1 −

1

ζ
) z1 ⇒

1

ζ
z = w − z1 +

1

ζ
z1 ⇒

1

ζ
z = w + (

1

ζ
− 1) z1.  

μM̃ ≥ min(μM̃(w), μM̃(z1)).  
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If z ∈ int (M̃). Then 

Thus, Re f cannot attain its minimum at an interior point of M̃.   

Remark 1: Let z° be a solution of Problem (1). Then, z° is a local solution to Problem (1). But the converse does 

not generally hold. 

Theorem 4. Let z° be a non-empty fuzzy subset of ℂn with membership function μM̃(z) = μM̃(x, y) =

min(μM̃(x), μM̃(y) ), where μM̃(x): ℜn → [0,1], μM̃(y): ℜn → [0,1], x, y ∈ ℜn, and f: M̃ → ℂ be a function with 

a convex real part on M̃ relative to ℝ+. If z° is a local solution of Problem (1), then z° is a solution of Problem 

(1) with membership μM̃(z°) = μM̃(x°, y°) = min(μM̃(x°), μM̃(y°) ) , μM̃(x°): ℜn → [0,1], μM̃(y°): ℜn →

[0,1], x°, y° ∈ ℜn. 

Proof: Let z° be a local solution to Problem (1). Then there is a ε ∈ ℜ, ε > 0, so that 

with membership function 

Let us assume that there exists a point z1 with the property that 

It can be observed that z1 = z∘. Since, M̃ is a fuzzy convex set, it follows that zζ = (1 − ζ)z∘ + ζz∘ ∈

M̃;  for all  0 ≤ ζ ≤ 1, and membership μM̃((1 − ζ)z∘ + ζz∘) ≥ min(μM̃(z∘), μM̃(z1) ), let us choose 0 ≤ ζ ≤ 1 

such that 0 < ζ <
ε

‖z°−z1‖
. 

Then, ‖zζ − z°‖ = ‖(1 − ζ)z∘ + ζz1 − z°‖ = ζ ‖z° − z1‖ ≤ ε, and thus zζ ∈ M̃⋂B̃(z∘, ε), with membership 

μM̃∩B̃(z°,ε) = min (μM̃(zζ), μB̃(z∘,ε)(zζ)). Hence, we obtain  

Moreover, since the function f has a convex real part on M̃ relative to ℝ+, it follows that 

Which contradicts Eq. (11) and so there is no other solution for the Problem (1), and so the local solution z° is 

a global solution to Problem (1).   

4|Problem Statement (Part II) 

Let us recall an optimization problem as below: 

Re f(z) = Re f((1 − ζ)z1 + ζw) 

≥ (1 − ζ)Re f(z1) + ζ Re f(w) 

> (1 − ζ)Re f(z°) + ζ Re f(z°) = Re f(z°). 

 

Re f(z°) < Re f(z). (9) 

Re f(z°) < Re f (z),   for all  z ∈ M̃ ⋂μB̃(z∘,ε), (10) 

μM̃(z) = min(μM̃(x∘), μM̃(y∘) ), μB̃(z∘,ε)(z) = min(μM̃(z), μB̃(z∘,ε)).  

Re f(z1) < Re f(z∘). (11) 

Re f(z°) < Re f(zζ).  

Re f(z1) < Re f(z°),  

Re f(zζ) < (1 − ζ)Re f(z°) + ζ Re f(z1) < (1 − ζ)Re f(z°) + ζ Re f(z°) ⇒ Re f(z1) <

Re f(z°).  

(12) 

min Re f(z), 

s.t. 

z ∈ X̃, 

g(z) ∈ Ũ, 

(13) 
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where ∅ ≠ X̃ ⊂ ℂn, ∅ ≠ Ũ,  with memberships μX̃(z) = μX̃(x, y) = min(μX̃(x), μX̃(y)), μX̃(x): ℜn → [0,1], x ∈

ℜn, μX̃(y):  ℜn → [0,1], y ∈ ℜn, μŨ(g(z)) = μŨ(u(x, y), v(x, y)) = min(μŨ (u), μŨ(v)), z = x + i y, g(x, y) =

u(x, y) + i v(x, y),  μŨ(u): ℜm → [0,1], u ∈ ℜm, μŨ(v):  ℜm → [0,1], v ∈ ℝm, and f: X̃ → ℂ, g: X̃ → ℂm are two 

functions. For r ∈ ℝ, and Problem (13), we define the function as follows: 

Definition 10. Y ⊂ ℂn referrers to fuzzy cone with membership function U: Y → [0,1], if:  

I. U(0) = 1. 

II. U(ζz) ≤ U(z);  for all z ∈ Y, ζ ≥ 0, z = x + i y, U(z) = U(x, y) = min(U(x), U(y)), U(x): ℝn →

[0,1], U(y): ℝn → [0,1]. 

Remark 2: In the case of the complex cone U generalized by infinite vectors, a fuzzy complex cone is termed 

a fuzzy polyhedral cone.  

Example 1. Let Y ⊂ ℂn be the space of all complex numbers, the function U, defined by 

        

is an example of a fuzzy complex cone in ℂ. 

Theorem 5. Suppose ∅ ≠ X̃ ⊂ ℂn, Ũ is a fuzzy polyhedral cone in ℂm with non-empty interior f: X̃ → ℂ 

representing a function with a convex real part on X̃ relative to ℜ+, and g: X̃ → ℂm be a concave function on 

X̃ with respect to Ũ. If z° is a solution of Problem (13), then there is a r° ∈ ℜ, v° ∈ Ũ∗ with membership 

                                                  

where φr°
(z, v) = r f(z) −  〈g(z), v)〉;  for all(z, v) ∈ X̃ × Ũ∗. 

Proof: Since z° is a solution to Problem (13), therefore the following system: 

is inconsistent. 

Denote ℂ ℜ+̃ be the closed fuzzy convex cone, which is defined by μℂ ℜ+̃  (x, y) = min (μℂ ℜ+̃  (x), μℂ ℜ+̃  (y)), 

μℂ ℜ+̃  (x): ℜ → [0,1], μℂ ℜ+̃  (y): ℜ → [0,1], v = x + i y, for all  x, y ∈ ℜ. 

Let us rewrite the System (18) as expressed in the following form: 

Since the System (19) is consistent, it follows that there exists r° ∈ ℜ, v° ∈ ℂm such that 

Let us choose z = z° ∈ X, we have 

φr(z, v) = r f(z) −  〈g(z), v)〉, for all (z, v) ∈ X̃ × Ũ∗, μX̃×Ũ∗
(z, v) = μX̃(z) × μŨ∗

(v). (14) 

U(z) = U(x, y) = {

0,                if x < 0 ∨ y < 0,
y

x
,    if x > 0, y > 0 ∧ y < x,

1,    if x ≥ 0, y ≥ 0 ∧ y ≥ x,

  

μŨ∗
(v°) = μŨ∗

(xv°
, yv°

) = min(μŨ∗
(xv°

), μŨ∗
(yv°

)). (15) 

Re 〈g(z°), v° 〉 = 0. (16) 

Re φr°
(z°, v) < Reφr°

(z°, v°) ≤ Re φr°
(z, v°),   for all (z°, v°) ∈ X̃ × Ũ, (17) 

Re (f(z) −  f(z°)) < 0, 

z ∈ X̃, 

g(z) ∈ Ũ, 

(18) 

f(z°) −  f(z) ∈ int (ℂ ℜ+̃),   

z ∈ X̃, 

g(z) ∈ Ũ, 

(19) 

r° ∈ (ℂ ℜ+̃)∗ = ℜ+, v° ∈ ℂm, (r°, v°) ≠ (0,0). (20) 

Re (〈f(z°) −  f(z), r°〉 + 〈g(z), v°〉) ≤ 0,   for all z ∈ X̃. (21) 
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Because  v° ∈ U∗  and g(z°) ∈ Ũ, we get Re 〈g(z°), v°〉 ≥ 0, and therefore, Re 〈g(z°), v°〉 = 0. 

From Eq. (16) and Inequality (21) and the fact that z° is a solution of Problem (13), it follows that 

 

which is the same as in Inequality (18). 

In order to choose that the Inequality (17) is satisfied, from g(z°) ∈ Ũ  with membership 

We get  Re 〈g(z°), v〉 ≥ 0;  for all v ∈ Ũ∗, and therefore  Re (r°f(z°) − 〈g(z°), v°〉) ≤ Re (r°f(z°) −

〈g(z°), v°〉);  for all v ∈ Ũ∗, because of Re〈g(z°), v°〉 = 0.                    

5|Concluding Remarks 

In the current study, we introduced some results for optimization in complex space with fuzzy complex set 

in the constraints, and also, the F-CPP with fuzzy complex cone in the constraint has been introduced. Some 

basic theorems that characterized the problem's solution have been stated with proof. There are many 

problems and research points to be investigated in the field of fuzzy complex MP problems; some of these 

points are as follows: 

I. Study of fuzzy complex linear programming problem considering the real and imaginary parts. 

II. Study of fuzzy complex fractional programming problems in both single-objective and multi-objective 

functions. 
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