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A B S T R A C T 

Matrix and its determinant are two basic tools, which are important in financial, accounting, and 

economic affairs. Therefore, in this paper, a simple and effective method is proposed to obtain the 

determinant of fuzzy matrices. First, using arithmetic operations based on Transmission Average 

(TA), the second order fuzzy determinant is calculated. Then, Sarrus rule is defined to calculate third 

order fuzzy determinant. Finally, by defining minor of fuzzy matrix and ijth adjugate of the fuzzy 

matrix, nth order fuzzy determinant is calculated. The effectiveness and applicability of the proposed 

method are verified by solving some numerical examples. 
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1. Introduction 

Modeling of many problems in engineering, economic science, etc. leads to a matrix and 

determinant [1-6]. Since uncertainty is involved in the data achieved from the real environment 

and determining the exact value of the parameters is difficult, the output of the mathematical 

models generally does not has the necessary efficiency. For this reason, it is essential to use an 

appropriate tool to deal with uncertain data in optimization issues. One of the most important 

tools to deal with uncertainty is fuzzy theory, which has been widely used in various issues [7-

13]. For example, Kim et al. [14] proposed determinant theory for square fuzzy matrices 

involving Bully matrices using Cayley Hamilton theorem. Also, in 1994, determinant and adjoint 

of a square fuzzy matrices were defined in [15]. Recently, TA-based arithmetic operation has 

been proposed in [16] and Allahviranloo et al. [17] solved the fuzzy linear equations using this 

method. Moreover, Dhar [18] calculated the fuzzy determinant using reference functions. In this 

                                                 
 Corresponding author 

E-mail address: babakordif@yahoo.com 
DOI: 10.22105/riej.2019.202666.1098 

 
 

International Journal of Research in Industrial 

Engineering                                              

www.riejournal.com 

Int. J. Res. Ind. Eng. Vol. 8, No. 3 (2018) 254–261 

 



255                  Calculation of fuzzy matrices determinant 

paper, using TA-based arithmetic operations, a simple method is proposed to calculate the fuzzy 

determinant.  

The structure of the paper is as follows. In Section 2, some necessary basic definitions based on 

TA are presented. In Section 3, the proposed method for calculation of the fuzzy determinant is 

introduced. Numerical examples are presented in Section 4 and conclusion and future works are 

presented in Section 5. 

2. Basic Definitions 

In this section, some basic definitions which are required in the following are defined. These 

notations can be found in [19-23]. 

Definition 1. Let A be a fuzzy set in R  (A = {(x, μA(x))|x ∈ R} ). Then 

 A is called normal if there exists an x ∈ Rsuch that μÃ(x) = 1. Otherwise, A is subnormal, 

 The support of A, denoted supp(A), is the subset of R whose elements all have nonzero membership 

grades in A. In the other words, supp(A) = {x ∈ R|μA(x) > 0}. 

 An α-level set (or 𝛼 −cut) of a fuzzy set A in R is a non-fuzzy set denoted by Aα and defined by 

Aα = {
{ x ∈ R|μÃ(x) > 0 }   α > 0,

cl(supp (A))                α = 0.
 

Where cl(supp(A)) denotes the closure of the support of A. 

Definition 2. Let Ã be a Normal, Convex and Continuous (NCC) fuzzy set on the universal set 

U. Then, 

ac (Ã) =
1

2
{min (core(Ã)) + max (core(Ã))} . 

Definition 3. A fuzzy number Ã is called a pseudo-triangular fuzzy number if its membership 

function μÃ(x) is given by 

μÃ(x) = {
lÃ(x)       a ≤ x ≤ a ,

rÃ(x)       a ≤ x ≤ a ,

0                otherwise .

 

where lÃ(x) and rÃ(x) are non-decreasing and non-increasing functions, respectively. The pseudo-

triangular fuzzy number Ã is denoted by the quintuplet Ã = (a, a, a, lÃ(x), rÃ(x)) and the triangular 

fuzzy number by Ã = (a, a, a, −, −). 

Definition 4. A fuzzy number Ã is called a pseudo-trapezoidal fuzzy number if its membership 

function μÃ(x) is given by 

μÃ(x) = {

lÃ(x)       a ≤ x ≤ a1,

1                a1 ≤ x ≤ a2 ,

rÃ(x)       a2 ≤ x ≤ a ,

0                otherwise.

 



Babakordi and Taghi-Nezhad / Int. J. Res. Ind. Eng 8(3) (2019) 254-261                  256 

Where lÃ(x) and rÃ(x) are non-decreasing and non-increasing functions, respectively. The pseudo-

trapezoidal fuzzy number Ã is denoted by the Senary Ã = (a, a1, a2, a, lÃ(x), rÃ(x)) and the 

trapezoidal fuzzy number by the Senary Ã = (a, a1, a2, a, −, −). 

Definition 5. Consider two pseudo-triangular fuzzy numbers  

Ã = (a, a, a, lÃ(x), rÃ(x)) , B̃ = (b, b, b, lB̃(x), rB̃(x)) 

with the following α-cut forms 

Ã =∪α Aα, Aα = [Aα, Aα], B̃ =∪α Bα, Bα = [Bα, Bα]. 

In the following, we define fuzzy arithmetic operations based on TA. 

 

Definition 6. Consider two pseudo-trapezoidal fuzzy numbers: 

Ã = (a, a1, a2, a, lÃ(x), rÃ(x)) , B̃ = (b, b1, b2, b, lB̃(x), rB̃(x)), 

Ã + B̃ =∪α (Ã + B̃)α,

(Ã + B̃)
α
= [

a + b

2
+ (

Aα + Bα
2

) ,
a + b

2
+ (

Aα + Bα
2

)] ,
 (1) 

Ã − B̃ =∪α (Ã − B̃)α,

(Ã − B̃)
α
= [

a − 3b

2
+ (

Aα + Bα
2

) ,
a − 3b

2
+ (

Aα + Bα
2

)] ,
 (2) 

Ã. B̃ =∪α (Ã. B̃)α,

(Ã. B̃)
α
=

{
 
 
 
 

 
 
 
 [(

b

2
)Aα + (

a

2
) Bα, (

b

2
) Aα + (

a

2
)Bα] ,        a ≥ 0, b ≥ 0,

[(
b

2
)Aα + (

a

2
) Bα, (

b

2
) Aα + (

a

2
)Bα] ,        a ≥ 0, b ≤ 0,    

[(
b

2
)Aα + (

a

2
) Bα, (

b

2
) Aα + (

a

2
)Bα] ,        a ≤ 0, b ≤ 0,

[(
b

2
)Aα + (

a

2
) Bα, (

b

2
) Aα + (

a

2
)Bα] ,        a ≤ 0, b ≥ 0.

 (3) 

Ã−1 =∪α (Ã
−1)

α
,    (Ã−1)

α
= [

1

a2
Aα,

1

a2
Aα]. (4) 

Ã. B̃−1 =∪α (Ã. B̃
−1)

α
,

(Ã. B̃−1)
α
=

{
 
 
 
 

 
 
 
 [(

1

2b
)Aα + (

a

2b2
) Bα, (

1

2b
)Aα + (

a

2b2
) Bα] ,        a ≥ 0, b > 0,

[(
1

2b
)Aα + (

a

2b2
) Bα, (

1

2b
)Aα + (

a

2b2
) Bα] ,        a ≥ 0, b < 0,    

[(
1

2b
)Aα + (

a

2b2
) Bα, (

1

2b
)Aα + (

a

2b2
) Bα] ,        a ≤ 0, b < 0,

[(
1

2b
)Aα + (

a

2b2
) Bα, (

1

2b
)Aα + (

a

2 
) Bα] ,        a ≤ 0, b > 0.

 (5) 
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with the following α-cut forms: 

�̃� =∪α 𝐴α, 𝐴α = [𝐴α, 𝐴α],

0 ≤ α ≤ 1, 𝐴1 = [𝑎1, 𝑎2],

�̃� =∪α 𝐵α, 𝐵α = [𝐵α, 𝐵α],

0 ≤ α ≤ 1, 𝐵1 = [𝑏1, 𝑏2].

 

Let 

ϕ =
a1 + a2
2

, φ =
b1 + b2
2

. 

In the following, the fuzzy arithmetic operations are defined based on TA. 

3. Proposed Method 

Definition 7. If all elements of a matrix are fuzzy numbers, the matrix is called fuzzy matrix. 

Ã + B̃ =∪α (Ã + B̃)α,

(Ã + B̃)α = [
ϕ + φ

2
+ (

Aα + Bα
2

) ,
ϕ + φ

2
+ (

Aα + Bα
2

)] ,
 (6) 

Ã − B̃ =∪α (Ã − B̃)α,

(Ã − B̃)
α
= [

ϕ − 3φ

2
+ (

Aα + Bα
2

) ,
ϕ − 3φ

2
+ (

Aα + Bα
2

)] ,
 (7) 

Ã. B̃ =∪α (Ã. B̃)α,

(Ã. B̃)
α
=

{
 
 
 
 

 
 
 
 [(

φ

2
)Aα + (

ϕ

2
)Bα, (

φ

2
) Aα + (

ϕ

2
)Bα] ,        ϕ ≥ 0, φ ≥ 0,

[(
φ

2
) Aα + (

ϕ

2
)Bα, (

φ

2
) Aα + (

ϕ

2
)Bα] ,        ϕ ≥ 0, φ ≤ 0,    

[(
φ

2
) Aα + (

ϕ

2
)Bα, (

φ

2
) Aα + (

ϕ

2
)Bα] ,        ϕ ≤ 0, φ ≤ 0,

[(
φ

2
) Aα + (

ϕ

2
)Bα, (

φ

2
) Aα + (

ϕ

2
)Bα] ,        ϕ ≤ 0, φ ≥ 0.

 (8) 

Ã−1 =∪α (Ã
−1)

α
, (Ã−1)

α
= [(

1

ϕ2
) Aα, (

1

ϕ2
) Aα]. (9) 

Ã. B̃−1 =∪α (Ã. B̃
−1)

α
,

(Ã. B̃−1)
α
=

{
 
 
 
 

 
 
 
 [(

1

2φ
)Aα + (

ϕ

2φ2
) Bα, (

1

2φ
)Aα + (

ϕ

2φ2
) Bα] ,        ϕ ≥ 0, φ > 0,

[(
1

2φ
)Aα + (

ϕ

2φ2
) Bα, (

1

2φ
)Aα + (

ϕ

2φ2
) Bα] ,        ϕ ≥ 0, φ < 0,    

[(
1

2φ
)Aα + (

ϕ

2φ2
) Bα, (

1

2φ
)Aα + (

ϕ

2φ2
) Bα] ,        ϕ ≤ 0, φ < 0,

[(
1

2φ
)Aα + (

ϕ

2φ2
) Bα, (

1

2φ
)Aα + (

ϕ

2φ2
) Bα] ,        ϕ ≤ 0, φ > 0.

 (10) 



Babakordi and Taghi-Nezhad / Int. J. Res. Ind. Eng 8(3) (2019) 254-261                  258 

Definition 8. Determinant of a 2 × 2 fuzzy matrix as Ã = [
ã11ã12
ã21ã22

] is shown by |Ã| and is defined 

as follow: 

(|Ã|)
α
= ((ã11)α. (ã22)α) − ((ã12)α. (ã21)α),        |Ã| =∪α (|Ã|)α. (11) 

Definition 9. (Sarrus rules for calculating determinant of a 3 × 3 fuzzy matrix) Consider 

matrix Ã = [
ã11ã12ã13
ã21ã22ã23
ã31ã32ã33

]. To obtain the determinant, first (Ã)
α
is achieved: 

(|Ã|)
α
= ((( ã11)α. ( ã22)α. ( ã33)α) + (( ã12)α. ( ã23)α. ( ã31)α) +

                +(( ã13)α. ( ã21)α. (ã32)α) − ((( ã13)α. ( ã22)α. ( ã31)α)

                +(( ã11)α. ( ã23)α. ( ã32)α) + (( ã12)α. (ã21)α. (ã33)α)).
  (12) 

Definition 10. Let Ã = [

ã11ã12     …    ã1n
ã21ã22     …    ã2n
   ⋮        ⋮        ⋮        ⋮
ãn1ãn2     …    ãnn

], ijth minor of fuzzy matrix is denoted by M̃ij and is a 

matrix cut down from Ã by removing its ith row and jth column. 

Definition 11. Consider Ã = [

ã11ã12     …    ã1n
ã21ã22     …    ã2n
   ⋮        ⋮        ⋮        ⋮
ãn1ãn2     …    ãnn

], ijth adjutant of the fuzzy matrix is shown by Ãij 

and is defined as follow: 

(Ãij)α
= (−1)i+j(|M̃ij|)α

Ãij =∪α (Ãij)α
 . 

In the following, the expansion method is explained that can be used for calculating determinant 

of n × n fuzzy matrices.  

Definition 12. Consider fuzzy matrix �̃� = [

�̃�11�̃�12     …    �̃�1𝑛
�̃�21�̃�22     …    �̃�2𝑛
   ⋮        ⋮        ⋮        ⋮
�̃�𝑛1�̃�𝑛2     …    �̃�𝑛𝑛

]. The determinant of thematrix can be 

evaluated by expanding each row or column of the matrix. For example, by expanding with 

respect to the first row: 

(|Ã|)
α
=(ã11)α(Ã11)α+(ã12)α(Ã12)α+.⋯+(ã1n)α(Ã1n)α ,

|Ã|=∪α(|Ã|)α .
 (13) 

4. Numerical Examples 

In this section, the performance of the proposed method is shown through some numerical 

examples.  

Example 1. Consider the following matrix: 
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Ã = [
(0,4,6,

1

4
x, (1 −

1

4
(x − 4)2)

1
2)    (−3, −2,−1,−,−)      (1,2,7,−, −)

                (3,4,5, −, −)             (1,2,4, −, −)           (6,8,11, −,−)

                (1,2,3, −, −)               (1,2,3, −, −)           (3,4,5, −, −)

], 

there is: 

(�̃�)𝛼 = [

[4𝛼, 4 + √4 − 4𝛼2]  [−3 + 𝛼,−1 − 𝛼]   [1 + 𝛼, 7 − 5𝛼]

[3 + 𝛼, 5 − 𝛼]             [1 + 𝛼, 4 − 2𝛼]       [6 + 2𝛼, 11 − 3𝛼]

[1 + 𝛼, 3 − 𝛼]             [1 + 𝛼, 3 − 𝛼]          [3 + 𝛼, 5 − 𝛼]

] , 

 

From Eq. (12): 

(|Ã|)
α
= [−

297

8
+
105

8
α,−

85

8
+
√1 − α2

2
−
107

8
α]  . 

Therefore 

|Ã| =∪α [−
297

8
+
105

8
α,−

85

8
+
√1 − α2

2
−
107

8
α]. 

Example 2. Consider the following matrix: 

Ã=[
(−4,1,2, −, −)    (5,6,7, −, −)    (1,2,4, (1 − (x − 2)2)

1

2, (1 −
1

4
(x − 2)2)

1

2)

(1,2,3, −, −)     (6,6,7, −, −)                   (1,2,3, −, −)   
(−4,1,2, −, −)   (4,5,7, −, −)                     (−7,2,3, −, −)

], 

from Eq. (13) the following is achieved: 

(|Ã|)
α
= (ã11)α(Ã11)α + (ã12)α(Ã12)α + (ã13)α(Ã13)α =

          = [−
13

2
+
5

2
α −

5

4
√1 − α2,

17

4
−
33

4
α +

5

8
√1 − α2] +

            [−
3

4
√1 − α2,

3

2
√1 − α2] + [−

2

8
+
18

8
α,
77

8
−
61

8
α] =

            [−
60

16
−
1

2
√1 − α2 +

28

16
α,
29

16
−
61

16
α +

17

32
√1 − α2] .

 

Therefore 

|Ã| =∪α [−
60

16
−
1

2
√1 − α2 +

28

16
α,
29

16
−
61

16
α +

17

32
√1 − α2]. 

5. Conclusion  

Since determinant is a key tool in calculating the matrix properties, in this paper, Sarrus rules 

was investigated to calculate the determinant of 3 × 3  fuzzy matrices. Moreover, the expansion 

method was explained to generally calculate the determinant using TA-based arithmetic 

operations. The advantage of the proposed method is that the determinant of a fuzzy matrix is 
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always a fuzzy number. The superiority of the proposed method with respect to the method in 

[7] is that in the aforementioned paper, the determinant is calculated for matrices whose elements 

belong to [0,1]. However, in the present paper, the determinant is achieved for matrices with 

semi-trapezoidal and semi-triangular elements. In the next paper, the fuzzy equation set is going 

to be solved using fuzzy determinant.   
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