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A B S T R A C T 

  In this paper, an optimization model for aggregate planning of multi-product and multi-period 

production system has been formulated. Due to the involvement of too many stakeholders as well as 

uncertainties, the aggregate production planning sometimes becomes extremely complex in dealing 

with all relevant cost criteria. Most of the existing approaches have focused on minimizing only 

production related costs, consequently ignored other cost factors, for instance, supply chain related 

costs. However, these types of other cost factors are greatly affected by aggregate production 

planning and its mismanagement often results in increased overall costs of the business enterprises. 

Therefore, the proposed model has attempted to incorporate all the relevant cost factors into the 

optimization model which are directly or indirectly affected by the aggregate production planning. 

In addition, the considered supply chain related costs have been segregated into two major categories. 

While the raw material purchasing, ordering, and inventory costs have been grouped into an upstream 

category, finished goods inventory, and delivery costs in the downstream category. The most notable 

differences with the other existing models of aggregate production planning are in the consideration 

of the cost factors and formulation process in the mathematical model. A real-life industrial case 

problem is formulated and solved by using a genetic algorithm to demonstrate the applicability and 

feasibility of the proposed model. The results indicate that the proposed model is capable of solving 

any type of aggregate production planning efficiently and effectively.  
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1. Introduction 

Aggregate Production Planning (APP) refers to 3 to 18 months of medium-term capacity 

planning. The main objective of this planning is to meet fluctuating demand over the planning 

horizon and to achieve customer satisfaction [1]. It mainly includes taking decision on production 

quantity, inventory, and workforce for the time horizon to ensure low cost product and timely 
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delivery [2].  Al-e et al. [3] described APP as a method that aggregates all data related to 

manufacturing and determines the best way to fulfill expected requirements through the use of 

available physical resources. Dakka et al. [4] described the APP as a production approach 

predicting the existence of an aggregate production unit, such as volume, production time, or 

dollar value. In this dynamic business environment, the effective aggregate planning is seen as 

key to success of a manufacturing company. During the last three decades, both academic 

institutes and industries have put great effort into designing and developing effective approaches 

and methods for APP. One of the major objectives of these efforts were to develop cost 

optimization model for APP. Different types of algorithms have been used to develop these 

models. However, the manufacturing environment and cost parameters have been changed over 

time because of changes in customer requirements and technology improvements.  

In this modern manufacturing scenario, matching of supply and demand has become a major 

challenge to thrive for the manufacturing companies [5]. However, the proper APP helps 

matching supply and demand while reducing total costs. The aggregate plan output consists of 

the total quantities of each product or product group to be manufactured during the scheduling 

period of the various manufacturing activities required to achieve the planned levels of 

production. It intends to set general manufacturing objectives and to help plan the accessibility 

of additional inputs and support operations to fulfill manufacturing objectives. There are various 

types of mathematical techniques and models to perform the task of APP. 

Many researchers have developed integrated approach to address the aggregate production 

problems and presented many models integrating different algorithms and techniques to solve 

the problems [6-9]. Although, main objective of all these models was to minimize overall 

production costs, they also focused on other important decision variables. However, production 

cost structure and manufacturing environment have become very dynamic. As a result, models 

for solving aggregate production problem also require the consideration of these factors. Again, 

there exists variety in type of production and also in production time. Traditional models lack the 

considerations of these important factors in solving APP problems. 

Therefore, the aim of this study is to develop a cost optimization model for multi-product and 

multi-period with certain demand and considering escalating factors. This model attempts to 

minimize production costs, inventory costs, ordering costs, training costs, and worker hiring and 

firing costs. Then, the cost optimization model is solved using Genetic Algorithm (GA). First, 

the single objective function is developed assuming 11 decision variables. After that, authors 

have developed some constraints for the model with these decision variables. Finally, this model 

has been solved using GA. A case study has been presented for an electronic industry. 

Uniqueness of this model is that unlike traditional aggregate production planning cost 

optimization model, inventory costs have been divided into raw material inventory costs and 

finished good inventory costs. This model also considers training costs of workers as it has 

become an indispensable part for manufacturing industry. 
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The rest of this paper is organized as follows. Section 2 describes the previous literatures on 

aggregate production planning. Section 2 describes the problem, details assumptions, and 

develops the aggregate production planning cost optimization model. Section 3 outlines the step 

by step procedure of GA. Section 4 presents a numerical example to demonstrate the application 

of proposed cost optimization model for an electronic company. Section 5 discusses the findings 

from the application of the model. The final section draws conclusions and make relevant 

recommendations. 

2. Literature Review 

Although the issue of APP was introduced in the 1950s, it is still extensively researched by many 

researchers. Over the past few decades, they have constructed various models, each with their 

own pros and cons, to effectively solve the aggregate production planning problem. They also 

classified each method as being capable of either generating an optimal or near-optimal solution.  

Some researchers used linear programming approaches with different application cases to solve 

APP problem. Hsieh and Wu [10] created a deterministic linear programming model for APP 

with an imprecise nature. This research examines how the imprecise nature of the Computer-

Integrated Production Management System (CIPMS) affects the outcomes of the planning. Wang 

and Fang [11] suggested Fuzzy Linear Programming (FLP) technique for solving the issue of 

APP with different objectives where the item price, the unit cost to subcontract, the workforce 

level, the manufacturing capability, and the market requirements are inherently fuzzy. However, 

the limitation of this model is that it applied the conventional mathematical programming 

technique to medium-term production planning. Wang and Liang [12] proposed an interactive 

multiple fuzzy objective linear programming model for solving the aggregate production decision 

problem in fuzzy environment. They considered the time value of money to construct constraints 

of this model. Gulsun et al. [13] outlined the LP model for aggregate production planning to 

determine the most appropriate approach while minimizing general production costs and 

minimizing the impact of hiring or layoff decisions on the level of motivation of the workers. An 

integrated model combining with linear programming, simulation, and interactive approach was 

proposed by Nowak [14] in which the linear programming models were used to generate initial 

solutions, simulation experiments were performed to check the fluctuation in demands and 

interactive procedure was used for identifying the final solution of the problem. Chakrabortty et 

al. [15] developed multi-period and multi-product APP which was formulated as an integer linear 

programming model using a triangular possibility distribution [15].  

Various meta-heuristic algorithms like ant colony algorithm, particle swarm algorithm, GA have 

been used by many researchers in solving APP. Kumar and Haq [2] applied hybrid ant colony 

algorithm combined with GA to solve aggregate production problem. Many scheduling problems 

can also be optimized by ant colony algorithm [16, 17]. Pal et al. [18] developed a model to solve 

aggregate procurement, production, and shipment decision problems using particle swarm 

algorithm combined with artificial bee colony algorithm.  
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In this study, authors have used a popular meta-heuristic, GA to solve the proposed aggregate 

product model. GA is a nature inspired algorithm which has become very popular in solving 

aggregate production problem. The early evolution of GA can be observed from late 1950’s and 

early-1960’s [19]. Ramezanian et al. [20] used Mixed Integer Linear Programming (MILP) to 

formulate two-phase aggregate production planning problem and applied GA combined with tabu 

search to solve the problem. However, cost parameters were not explicitly considered in this case. 

Chakrabortty and Hasin [21] carried out a case study on a readymade garments in Bangladesh. 

They suggested an APP model with an adaptive Fuzzy-Based Genetic Algorithm (FBGA) 

technique to solve a two-product and two-period APP with some susceptible management 

constraints such as imprecise requirements, varying production expenses, etc. Hossain et al. [22] 

developed a mathematical model for solving APP using GA and big M method. Savsani et al. 

[23] applied GA to develop aggregate production planning model. However, this model lacks 

consideration of explicit cost structure in the optimization model. Mahmud et al. [24] developed 

an APP model in possibilistic environment applying multi-objective GA. Apart from these, many 

other mathematical models of aggregate production planning problem have been developed 

applying different meta-heuristic algorithms [25-27]. However, most of these works lack the 

consideration of explicit cost structures in their models. Therefore, current research aims to 

develop an optimization model for aggregate production planning considering explicit cost 

structures. To achieve this objective, GA has been applied.  

3. Problem Formulation 

3.1. Problem Assumptions 

The aggregate production problem for multi-product and multi-period can be described as 

follows. Assume that a company manufactures 𝑛 types of products over a planning horizon 𝑡 to 

satisfy market demand. This model aims to build a single objective GA to determine the optimum 

aggregate strategy for meeting specified demand by changing periodic and overtime 

manufacturing rates, inventory levels, labor levels, subcontracting and back-ordering rates, order 

amount, waste level, and other controllable variables. The mathematical model herein is created 

on the basis of the above characteristics on the following assumptions. 

 All parameter values are fixed over the next t planning horizon. 

 The intensifying variables are resolved over the next 𝑡 planning horizon in each of the cost 

categories. 

 Current levels of labor, machine capacity, inventory, backorder, order quantity per period and 

warehouse space cannot exceed their respective peak levels in each period.  

 The fixed demand over a given period can either be satisfied or backordered, but in the next period, 

the backorder must be met. 

 For the development of the model, some confidential information that is not provided to others 

from the sector has been assumed. 

 For any sort of product, outsourcing is not acceptable. 
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 Workers are trained in every period of time to obtain the necessary level of expertise. 

 Work In Process (WIP) inventory cost is not considered.  

 The specified time horizon contains two monthly periods. 

 Each type of products is assigned to just one production line. 

In this research, authors have considered maximum types of costs and formulated the APP model 

and try to solve the APP model with GA.  

3.2. Problem Notation 

n −- Specific product types.              

t − No. of periods. 

Dt − Demand uncertain for nth product in period (𝑡) (units) (Forecasted). 

𝑅𝑥𝑡 − Regular time production of 𝑛th Product in period 𝑡 (units).  

𝑅𝑐𝑡 − Regular time production cost per unit for 𝑛th product in period 𝑡 (TK/unit). 

𝑖𝑟 − Escalating factors regular time production cost (%). 

𝑂𝑥𝑡 − Overtime production of 𝑛th product in period 𝑡 (units). 

𝑂𝑐𝑡 − Overtime production cost per unit of 𝑛th product in period 𝑡 (TK/unit). 

𝑖𝑜 − Escalating factors overtime production cost (%). 

𝑆𝑥𝑡 − Subcontracting production of 𝑛th product in period 𝑡 (units). 

𝑆𝑐𝑡 − Subcontracting production cost per unit for 𝑛th product in period 𝑡 (TK/unit). 

𝑖𝑠 − Escalating factors subcontracting production cost (%). 

𝐼𝑓𝑛𝑡 − Inventory level of finished goods in 𝑛th product in period 𝑡 (unit) 

𝐼𝑓𝑐𝑡 − Inventory carrying cost of finished goods per unit for 𝑛th product in period 𝑡 (TK/unit). 

𝐼𝑟𝑛𝑡 − Inventory level of raw material per unit 𝑛th product in period 𝑡 (unit). 

𝐼𝑟𝑐𝑡 − Inventory carrying cost of raw material per unit for 𝑛th product in period 𝑡 (TK/unit). 

𝑖𝑓𝑟 − Escalating factors inventory carrying cost (%). 

𝐵𝑛𝑡 − Back order of 𝑛th product in period 𝑡 (unit).  

𝐵𝑐𝑡 − Back order cost per unit for 𝑛th product in period 𝑡. 

𝑖𝑏 − Escalating factors for back order cost.             

𝐻𝑛𝑡 − Hired worker in period 𝑡 (man hour). 

𝐻𝑐𝑡 − Cost of hired in period 𝑡 (TK/man hour). 

𝐹𝑛𝑡 − Worker fired in period 𝑡 (man hour). 

𝐹𝑐𝑡 − Cost of fired worker in period 𝑡 (TK/man hour). 

𝑖𝑓 − Escalating factor to hire and fire cost (%). 

𝑇𝑅𝑛𝑡 − No. of training workers. 

𝑇𝑅𝑐𝑡 − Average cost for training per unit labor (TK/unit). 

𝑖𝑡 − Escalating factors of training cost (%). 

𝑊𝑥𝑛𝑡 − Wastage level of 𝑛th product in period 𝑡 (unit). 

𝑊𝑐𝑡 − Wastage cost per unit in 𝑛th product in period 𝑡. 

𝐴𝑊𝑛𝑡 − Allowable wastage produce in factory (unit). 

𝑊𝑃𝑛𝑡 − Average percentage of wastage of 𝑛th product in period 𝑡 (unit). 

𝑂𝑑𝑐𝑡 − Average ordering cost per order for 𝑛th product in period 𝑡. 
𝑂𝑑𝑛𝑡- No. of order for nth product in period 𝑡. 

𝑖𝑜𝑟 − Escalating factors of ordering cost (%).  
𝐿𝑛𝑡 − Hours of labor usage per unit of 𝑛th product in period 𝑡 (Machine-hour/unit). 

 𝐻𝑜𝑛𝑡 −Hours of machine usage per unit of 𝑛th product in period 𝑡 (machine-hour/unit). 

𝑊𝐻𝑛𝑡 − Warehouse spaces per unit of 𝑛th product in period 𝑡 (feet). 
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𝐿𝑚𝑎𝑥 − Maximum labor level available in period 𝑡 (man hour). 

𝑀𝐶𝑡𝑚𝑎𝑥 − Maximum machine capacity available in period 𝑡 (machine-hour). 

𝑊𝐻𝑡𝑚𝑎𝑥 − Maximum warehouse spaces available in period 𝑡 (feet). 

𝑚𝑖𝑛𝑖𝑓 − Minimum quantity of finished goods inventory per product.  

𝑚𝑖𝑛𝑖𝑟 − Minimum quantity of raw material inventory per product.  

𝑚𝑎𝑥𝑖𝑓 − Maximum quantity of finished goods inventory per product. 

𝑚𝑎𝑥𝑖𝑟 − Maximum quantity of raw material inventory per product.  

𝑚𝑎𝑥𝑤- Maximum number of workers for product in period 𝑡. 

𝐵𝑛𝑡𝑚𝑎𝑥- Maximum number of unit backordered nth product in period t. 

𝑇𝑤𝑛𝑡 −  Total number of workers in the industry (average). 

𝐵𝑛(𝑡−1) − Number of unit backordered 𝑛th product in period 𝑡 − 1 (Units). 

𝐼𝑟𝑛(𝑡−1) − Number of units held in raw material inventory 𝑛th product in period 𝑡 − 1 (Units). 

𝐼𝑓𝑛(𝑡−1) − Number of units held in finished goods inventory 𝑛th product in period 𝑡 − 1 (Units). 

3.3. Decisions Variables 

 𝑅𝑥𝑛𝑡 − Regular time production in 𝑛th product in period 𝑡 (Units). 

 𝑂𝑥𝑛𝑡 − Over time production in 𝑛th product in period 𝑡 (Units). 

 𝑆𝑥𝑛𝑡 − Subcontracting volume of 𝑛th product in period 𝑡 (Units). 

 𝐵𝑛𝑡 − Number of backordered for 𝑛th product in period 𝑡 (Units). 

 𝐼𝑟𝑛𝑡 − Number of units held in raw material inventory 𝑛th product in period 𝑡 (Units). 

 𝐼𝑓𝑛𝑡 − Number of units held in finished goods inventory 𝑛th Product in period 𝑡 (Units) 

 𝑊𝑥𝑛𝑡 − Waste level of nth product in period 𝑡 (Units). 

 𝐻𝑛𝑡 − Worker hired 𝑛th product in period 𝑡 (Man hour). 

 𝐹𝑛𝑡 − Worker fired 𝑛th product in period 𝑡 (Man hour). 

 𝑂𝑑𝑛𝑡 − Order quantity per order for 𝑛th product in period 𝑡 (units). 

 𝑇𝑟𝑛𝑡 − Workers training for 𝑛th product in period 𝑡 (Man hour). 

3.4. Single Objective APP Model 

Mainly, the aim of owner of the industry is profit maximization or cost minimization to survive 

in the competitive market. For this reason, the authors have developed single objective cost 

minimization model for an electronic industry through summation of five types of different costs. 

Authors have also considered escalating factor for all type of cost as money value may change 

with time. 

 Minimization of production costs: 

Z1=∑   n
n=1  ∑   RxtRct(1 + ir)tt

t=1 + BxtBct(1 + ib)t + SxtSct(1 + is)t+OxtOct(1 + io)t. 
(1) 

 Minimization of inventory costs: 

Z2 =∑n=1
n ∑t=1

t (IrntIrct + IfntIfct)(1 + ifr)t. 
(2) 

 Minimization of ordering costs: 

Z3=∑ ∑  (Odct ∗ (( Dt + (Dt ∗ WPnt))/Qnt)(1 + ior)tt
t=1

n
n=1 .  

(3) 

 Minimization of training costs: 
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𝑍4=∑ ∑  TrntTrct
t
t=1

n
n=1 (1 + it)t.  

(4) 

 Minimization of worker hiring and firing costs: 

Z4=∑n=1
n  ∑   (HtHct + FtFct)(1 + it)tt

t=1 .  (5) 

Now, combined with upper all objectives:  

Zmin =  ∑  ∑   t
t=1  (RxntRct(1 + ir)tn

n=1 + BxntBct(1 + ib)t + SxntSct(1 + is)t+OxntOct(1 +

io)t) + 

∑n=1
n ∑t=1

t (IrntIrct + IfntIfct)(1 + ifr)t + ∑n=1
n ∑   ((HntHct + FntFct)(1 + ihf)

tt
t=1 + 

∑n=1
n ∑   t

t=1 (WxtWct) (1 + iwi)
t +  ∑n=1

n ∑   (Odct ∗ (
 Dt+  (Dt∗WPnt)

Qnt
) (1 + io)t +t

t=1  

∑ ∑  TrntTrct
t
t=1

n
n=1 (1 + it)t. 

(6) 

3.5. Constraints 

3.5.1. Constraints on finished goods inventory 

Certain demand for nth product in period (t) is equal to summation of regular time production in 

nth product in period and over time production in nth product in period t and subcontracting 

volume of nth product in period t and number of units backordered nth product in period t and 

number of units held in inventory nth product in period (t-1) and minus the summation of number 

of units held in inventory nth product in period t and number of units backordered nth product in 

period t-1. 

𝐼𝑓𝑛𝑡 ≥ 𝑚𝑖𝑛𝑖  for ∀n,  ∀t. (8) 

Number of units held in inventory nth product in period t is greater than minimum quantity of 

inventory per product of product t. 

Ifnt ≤  maxif  for ∀n,  ∀t.           (9) 

Number of units held in finished goods inventory nth product in period t is less than maximum 

quantity of finished goods inventory per product of product t.  

3.5.2. Constraints on raw material inventory 

Irn(t−1)- Irnt +  Rnt + Ont + Snt= Dt+(Dt ∗ WPnt)  for ∀n,  ∀t. (10) 

Total demand with considering average percentage of wastage is equal to the summation of raw 

material inventory in period t-1 with other production unit and subtract the raw material inventory 

in period t. 

Ifnt ≤  maxir  for ∀n,  ∀t.      (11) 

Dt=  Rnt + Ont + Snt + Bnt +  Ifn(t−1) − Ifnt − Bn(t−1)   for ∀n,  ∀t. (7) 
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Number of units held in raw material inventory nth product in period t is less than maximum 

quantity of raw material inventory per product of product t.  

Ifnt ≥ mini     for ∀n,  ∀t.                                (12) 

Number of units held in raw material inventory nth product in period t is greater than minimum 

quantity of raw material inventory per product of product t.  

3.5.3. Constraints on quantity per order, backordered, and subcontracting volume 

Ont + Snt  ≤ Rnt   for ∀n,  ∀t.                                                                   (13) 

Regular time production for nth product in period t is greater than the summation of overtime 

production in nth product in period t and subcontracting volume of nth product in period t. 

Bnt ≤ Bntmax      for ∀n,  ∀t.                                                                                (14) 

Number of unit backordered nth product in period t is less than maximum number of unit 

backordered nth product in period t. 

 Qnt ≥  500      for ∀n,  ∀t.                                                                                                                                                              (15) 

Quantity per order for nth product in period t is always greater than 500. 

3.5.4. Constraints on machine capacity and warehouse space 

WHfnt ∗ Ifnt ≤ WHftmax  for ∀n,  ∀t. (16) 

Maximum warehouse spaces available in period t is greater than the multiplication of  warehouse 

spaces per unit of nth product in period t (feet) and number of units held in finish good inventory 

nth product in period t. 

WHrnt ∗ Irnt ≤   WHrtmax    for ∀n,  ∀t. (17) 

Maximum warehouse spaces available in period t is greater than the multiplication of  warehouse 

spaces per unit of nth product in period t (feet) and number of units held in raw material inventory 

nth product in period t 

(Rxnt + Oxnt) ∗ Hont    ≤ MCtmax    for ∀n,  ∀t. (18) 

Total value of the summation of regular time production in nth product in period and over time 

production in nth product in period t with the multiplication of hours of machine usage per unit 

of nth product in period t is less than the maximum machine capacity available in period t 

(machine-hour). 
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3.5.5. Constraints on labor levels 

∑  ∑   t
t=1 Ln(t−1) ∗ (n

n=1 Rn(t−1) + On(t−1)) + Ht − Ft = ∑  ∑   t
t=1 Ln(t−1) ∗ (n

n=1 Rnt + Ont)   for ∀n,  

∀t. 
(19) 

Here the equation represents a set of constraints in which the labor levels are identified by man 

hour in period t equal the labor levels in period t-1 plus new hires and subtraction of fires in 

period t. 

∑  ∑   t
t=1 Ln(t−1) ∗ (n

n=1 Rnt + Ont)  ≤  Lmax   for ∀n,  ∀t. (20) 

Actual labor levels cannot exceed the maximum available labor levels in each period.  

3.5.6. Constraints on wastage unit 

(Rnt + Ont)* WPnt ≤ AWnt   for ∀n,  ∀t. (21) 

Total value of the summation of regular time production in nth product in period and overtime 

production in nth product in period t with multiplication of the percentage of wastage of nth 

product in period t (unit) is less than waste level of nth product in period t. 

3.5.7. Constraint on training labor 

TRnt = ∑n=1
n Hnt      for ∀n. (22) 

Number of workers training for nth product in period t is equal to summation of the workers hired 

for nth product for the same period t. 

3.5.8. Constraint on non-negativity variables 

Odnt- Hnt − Fnt −  Ifnt −  Irnt − Bnt −  Rxnt- Oxnt- Sxnt −   Wxnt-  Trnt ≥ 0       for ∀n, ∀t.                 (23) 

The value of all decision variable must be greater than zero. 

4. A Brief Outline of GA  

GAs workability is based on Darwinian's most fitting survival theory. GAs may contain a 

population, fitness, breeding, mutation, and selection of a chromosome, gene, and set of 

population. GAs start with a set of solutions, called population, represented by chromosomes. 

Solutions from a single population are taken and used to form a new population motivated by the 

potential for the new population to be better than the old population. Further, solutions are 

selected according to their fitness to form new solutions, that is, offspring. Repetition of the above 

process will be continued until some condition is fulfilled. Algorithmically, the basic GA is 

outlined as below [28]: 
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Step 1. Generate a random population of chromosome, which is the right solution to the 

problem. 

Step 2. Assess the fitness of the population of each chromosome (Fitness). 

Step 3. Create a new population by repeating following steps until the new population is 

completed. 

 Selection: Select two parent chromosomes from a population according to their fitness. 

Better fitness and bigger chance to be selected to be the parent. 

 Crossover: With a crossover probability, cross over the parents to form new offspring, 

that is, children. If no crossover was performed, offspring is the exact copy of parents. 

 Mutation: With a mutation probability, mutate new offspring at each locus. 

 Accepting: Place new offspring in the new population. 

Step 4. Use new generated population for a further run of the algorithm. 

Step 5. 
If the end condition is satisfied, stop, and return the best solution in current 

population. 

Step 6. Go to Step 2. 

Some associated terms of GA have been discussed below [29]. 

4.1. Crossover Options 

Crossover options specify how the GA combines two individuals, or parents, to form a crossover 

child for the next generation. Here we have chosen five different crossover (scattered crossover, 

single point crossover, two point crossover, arithmetic crossover, and constraint-dependent 

crossover) options for five scenarios. 

Scattered crossover: It creates a random binary vector and selects the genes where the vector is 

a 1 from the first parent, and the genes where the vector is a 0 from the second parent, and 

combines the genes to form the child. For example, if p1 and p2 are the parents such as p1 = [a 

b c d e f g h] and p2 = [1 2 3 4 5 6 7 8] and the binary vector is [1 1 0 0 1 0 0 0], then the function 

returns the following child 1 = [a b 3 4 e 6 7 8]. 

Single point crossover: It chooses a random integer n between 1 and number of variables and 

then selects vector entries numbered less than or equal to n from the first parent and selects vector 

entries numbered greater than n from the second parent. For example, if p1 and p2 are the parents 

such as p1 = [a b c d e f g h] and p2 = [1 2 3 4 5 6 7 8] and the crossover point is 3, the function 

returns the following child = [a b c 4 5 6 7 8]. 

Two point crossover: It selects two random integer m and n between 1 and number of variables. 

The function selects vector entries numbered less than or equal to m from the first parent, vector 
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entries numbered from m+1 ton, inclusive, from the second parent, vector entries numbered 

greater than n from the first parent. The algorithm then concatenates these genes to form a single 

gene. For example, if p1 and p2 are the parents such as p1 = [a b c d e f g h] and p2 = [1 2 3 4 5 

6 7 8] and the crossover points are 3 and 6, the function returns the following child = [a b c 4 5 6 

g h].  

Arithmetic crossover: It is a crossover operator that linearly combines two parent chromosome 

vectors to produce two new offspring according to the following equations: 

 Offspring1  a *Parent1  1 a *Parent2                           

 Offspring2  1– a *Parent1 a *Parent2                        

Where ‘a’ is a random weighting factor (chosen before each crossover operation). 

4.2. Mutation Options  

Mutation options specify how the GA makes small random changes in the individuals in the 

population to create mutation children. Mutation provides genetic diversity and enables the GA 

to search a broader space. Here the authors use constraint dependent mutation and adapt feasible 

mutation options. Adaptive feasible randomly generates directions that are adaptive with respect 

to the last successful or unsuccessful generation. The feasible region is bounded by the 

constraints and inequality constraints. A step length is chosen along each direction so that linear 

constraints and bounds are satisfied. 

4.3. Creation Function  

Creation function creates the initial population for GA. Here the authors choose feasible 

population & Constraint dependent options. Feasible population creates a random initial 

population that satisfies all bounds and linear constraints. It is biased to create individuals that 

are on the boundaries of the constraints and create well-dispersed populations. This is the default 

if there are linear constraints. 

4.4. Selection Options  

Selection options specify how the GA chooses parents for the next generation. Here the authors 

used only Tournament selection option for tournament size 2 and 4. Tournament selection 

chooses each parent by choosing Tournament size players at random and then choosing the best 

individual out of that set to be a parent. 

4.5. Migration Options 

Migration options specify how individuals move between subpopulations. Migration occurs if 

we set population size to be a vector of length greater than 1. When migration occurs, the best 
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individuals from one subpopulation replace the worst individuals in another subpopulation. 

Individuals that migrate from one subpopulation to another are copied. They are not removed 

from the source subpopulation. 

The GAs performance is largely influenced by crossover and mutation operators. The block 

diagram representation of GA is shown in Figure 1. 

4.6. Genetic algorithm parameters 

The authors have used MATLAB (2015a) computer software to solve the proposed Single 

Objective Genetic Algorithm (SOGA) approach for this case study. Total five runs were 

implemented considering five scenarios with different SOGA parameters shown in Table 1. Also 

Table 5 lists the single objective values for five SOGA runs through MATLAB. 

 

 

Figure 1. The block diagram representation of genetic algorithms [28]. 
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Table 1. Different genetic algorithm options used for five scenarios. 

Parameter Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

Population Type 
Double 

vector 

Double 

vector 

Double 

vector 

Double 

vector 

Double 

vector 

Population Size 200 100 50 120 220 

Creation 

Function 

Constraint 

dependent 

Constraint 

Dependent 

Feasible 

population 

Feasible 

population 

Constraint 

dependent 

Scaling function Rank Rank Rank Rank Rank 

Selection 

Fraction 

(size) 

Tournament 

(4) 

Tournament 

(4) 

Tournament 

(2) 

Tournament 

(2) 

Tournament 

(2) 

Reproduction 

(Fraction) 

Crossover 

(0.8) 

Crossover 

(0.8) 

Crossover 

(0.5) 

Crossover 

(0.5) 

Crossover 

(0.8) 

Mutation 
Constraint 

dependent 

Constraint 

dependent 

Adaptive 

feasible 

Adaptive 

feasible 

Adaptive 

feasible 

Crossover Single point Two point 
Constraint 

dependent 
Arithmetic Scattered 

Migration 

(Fraction) 

Forward 

(0.2) 
Both (0.2) Both (0.2) Forward (0.2) Both (0.2) 

 

5. Model Implementation 

A well-known electronic industry was used as a case study to demonstrate the practicality of the 

proposed methodology. This company readily produces various electronic items and among them 

some are novel and some are expensive. Therefore, it requires a lot of appropriate observations 

and accurate manufacturing practices to gain the market and satisfy the buyers within specified 

lead time. Among various types of products, authors have collected data only for fan production 

sector and formulated aggregate production plan for table fan (Product 1) and another type of 

ceiling fan (Product 2). 

The APP decision problem for manufacturing plant (electronic industry) have been presented in 

this research and solved with GA approach for minimizing the total costs. The planning horizon 

is 2 months long including April and May. Relevant data for this problem are presented in Table 

2, Table 3, and Table 4. 
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Table 2. List of relevant cost for all decision variables. 

 

 

 

 

 

 

 

 

 

 

 

 

It is needed to know cost of the different product per unit for different period for solving APP 

problem as this is the cost minimization problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Items 

Costs of 

Product-

1 (TK) 

Period (1) Period (2) Period (1) Period (2) 

Rct 40 40 52 52 

Oct 70 70 80 80 

Bct 20 20 25 25 

Sct 60 60 65 65 

Irct 5 5 6 6 

Ifct 4.5 4.5 5.5 5.5 

Wct 800 800 1000 1000 

Odct 2000 2000 2200 2200 

TRct 5 5 5 5 

Hct 50 50 50 50 

Fct 20 20 20 20 

Table 3. Initial data for two products.  

𝐼𝑓𝑛(𝑡−1) (units) 2500 2800 

𝐼𝑟𝑛(𝑡−1) (units) 3000 3200 

𝑅𝑛(𝑡−1) 4800 5500 

𝑂𝑛(𝑡−1) 950 1375 

Total workers (people) 20 25 

Regular + overtime working hour 10 10 

No. of machine (units) 18 22 

Total working day per period 25 25 

Escalating factor for all types of cost for all period =1% 
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Table 4. Other relevant data for calculation. 

Items Product-1 Product-2 Period (1) Period (2) Period (1) Period (2) 

Dt 6500 units 6200 units 7000 units 7200 units 

maxif 3500 units 3500 4000 units 4000 

maxir 3200 units 3200 3500 units 3500 

minif 500 units 500 500 500 

minir 500 units 500 500 units 500 

Bntmax 350 units 350 300 300 

WHftmax 3150 feet 3150 3200 feet 3200 

WHfnt 0.9 feet - 0.8 feet - 

WHrtmax 3840 3840 3500 3500 

WHrnt 1.2 1.2 1.0 1.0 

MCtmax 3600 m/c hour - 6875 m/c hour - 

Hont 0.63 0.63 0.8 0.8 

WPnt .025 .025 .030 .030 

 AWxt 200 units 200 units 250 units 250 units 

Ln(t−1) 1.15 1.15 1.10 1.10 

Lmax 7000 Man-hour 7000 7500 Man-hour 7500 

 

By putting above combination (from Table 1) in MATLAB software for optimization using with 

GA, the authors have got five different objective values for five different scenarios which are 

shown in Table 5. 

Table 5. Calculated single-objective values for different scenario. 

Scenario Objective value (Z) 

1 8.462226845090458E9 

2 8.462225795686462E9 

3 8.462226017043371E9 

4 8.462224824834982E9 

5 8.462226609028172E9 
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The authors have got graph comparing with fitness value to generation from GA tool from 

MATLAB for five different GA scenario. These 5 scenarios have been shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

Figure 2a. Scenario 1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2b. Scenario 2. 
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Figure 2c. Scenario 3. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2d. Scenario 2. 
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Figure 2e. Scenario 2. 

Figure 2. Graph for five different scenario (a), (b), (c), (d) and (e) (source: MATLAB-2015a). 

 

6. Results and Discussion 

In order to solve the proposed mathematical model of APP, a well-established meta-heuristic 

technique named genetic algorithm is employed. As meta-heuristic methods are problem 

independent and provides reasonably good solution within a defined computational timeframe, 

they are preferred to apply in various optimization problems. Since genetic algorithm does not 

ensure the global optimal solution and often trap into local optimal, to improve the results, we 

set our experiments for five different scenarios with different parameter settings as shown in 

Table 5. It shows that the minimum cost is obtained for the fourth scenario where 120 population 

size and arithmetic crossover option were considered. Since results of genetic algorithm in each 

run varies slightly, therefore we have run the program three times for each scenario and taken the 

average. Improved result might be possible for different other combinations of the GA 

parameters. Table 6 shows the output values of decision variables for multi-products multi-

periods APP of the studied electronic factory. For the sake of illustration, the proposed APP 

model is solved for two product and two periods time horizon only.  However, the developed 

model is quite general and it expected to be applicable for many products and many periods as 

well as other types of production process.  

 



221                  An optimization model for aggregate production planning and control: a genetic algorithm approach… 

 
Table 6. Outputs of multi-product & multi-period APP plan for the case study (scenario 4). 

Variables Optimized value Variables Optimized value 
Regular time production in nth product in period t Number of units held in raw material inventory nth 

product in period t 

 Rx11 4987.277 𝐼𝑟11 1324.277 

 Rx12 5099.086 𝐼𝑟12 1319.278 

 Rx21 5558.594 𝐼𝑟21 1548.595 

 Rx22 5847.942 𝐼𝑟22 1532.595 

Over time production in nth product in period t Waste level of nth product in period t 

 Ox11 0 𝑊𝑥11 23.728 

 Ox12 90.087 𝑊𝑥12 33.568 

 Ox21 .001 𝑊𝑥21 49.97 

 Ox22 134.942 𝑊𝑥22 4.638 

Subcontracting volume of nth product in period t Worker hired nth product in period t (Man hour) 

 Sx11 0 𝐻11 769.713 

 Sx12 1160.826 𝐻12 232.181 

 Sx21 .001 𝐻21 998.73 

 Sx22 1417.117 𝐻22 466.717 

Number of backordered for nth product in period t Worker fired nth product in period t (Man hour) 

 B11 .001  𝐹11 36.844 

 B12 350  𝐹12 0 

 B21 0  𝐹21 109.276 

 B22 300  𝐹22 0 

Number of units held in finished goods inventory nth 

product in period t 

Order quantity per order for nth product in period t 

(units) 

If11 837.278  𝑂𝑑11 515.319 

If12 500  𝑂𝑑12 510.305 

If21 1178.595  𝑂𝑑21 544.09 

If22 500  𝑂𝑑22 501.561 

Workers training for nth product in period t (Man 

hour) 

𝑇𝑟(1,2)1 1768.444 

𝑇𝑟(1,2)2 698.898 
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Note that, all the input variables of the proposed APP model are involved with substantial 

uncertainties, consideration of deterministic values may lead to poor performance of the model. 

Also, anticipations of the values of these variables with large quantity of historical datasets can 

improve the solution quality.  

7. Conclusions 

Over the last few decades, researchers have formulated many aggregate planning models 

considering various decision variables and using different solution technique. Most of them have 

primarily focused on minimizing production related costs, and ignored others type of costs like 

supply chain related costs. However, many supply chain related costs, both upstream and 

downstream are directly or indirectly affected by aggregate production planning. In this research, 

authors addressed this gap along with other production related costs which have often been 

overlooked in past studies such as training costs, hiring costs, and wastage costs. The novelty of 

this work lies on the formulation of the mathematical model and consideration of the cost factors. 

The results of the case study indicated that the proposed model can be effectively applied in real-

life multi-product multi-period aggregate production planning. Although the proposed model is 

applied in electronic factory, it is quite general and expected to be applied in any other types of 

factory with minor modifications. This provides decision support to managers in setting up APP 

in order to achieve maximum profit by minimizing the total costs. The developed APP model has 

been solved by using GA, however other meta-heuristic optimization techniques including 

Particle Swarm Optimization (PSO), Simulated Annealing, Ant Colony Optimization and 

Artificial Bee Colony Optimization can also be employed [30-32]. Designing an APP model 

considering uncertain cost factors for large size problem can be a potential future research 

direction. 
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