

International Journal of Research in Industrial Engineering www.riejournal.com

Ranking Efficient DMUs Using the Tchebycheff Norm with Fuzzy Data in DEA

S. H. Mirzaei^{1,*}, A. Salehi²

¹Department of Mathematics, Islamic Azad University, Arak Branch, Arak, Iran. ²Department of Mathematics, Islamic Azad University, Science and Research, Tehran Branch, Tehran, Iran.

ABSTRACT

In many real applications, the data of production processes cannot be precisely measured. Hence the input and output of Decision Making Units (DMUs) in Data Envelopment Analysis (DEA) may be imprecise or fuzzy-numbered. In original DEA models, inputs and outputs are measured by exact values on a ratio scale, therefore conventional DEA can't easily measure the performance of DMUs and rank them. The researchers have introduced mane deferent model for ranking DMUs by fuzzy number. In this paper, we proposed a new method by using the Tchebycheff norm for ranking DMUs with fuzzy data. We explain our method by numerical example with the triangular fuzzy number.

Keywords: Data envelopment analysis, Ranking, Tchebycheff norm, Fuzzy system.

Article history: Received: 28 January 2019

Revised: 03 May 2019

Accepted: 08 June 2019

1. Introduction

Data Envelopment Analysis (DEA) is a powerful approach in measuring efficiency of decision making units with multiple inputs and outputs. DEA was introduced by Charnes et al. [4] and extended by Banker et al. [2]. DEA successfully divides them into two categories, efficient DMUs and inefficient DMUs. One of the main challenges associated with the application of DEA is the difficulty in quantifying some of these input and output factors. In other words, a key to success of the DEA approach is the accurate measure of all factors, including inputs and outputs. However, a production process usually involves complicated inputs and outputs; in that many factors are very difficult to measure in a precise manner. This makes an approach which is able

^{*} Corresponding author

E-mail address: sh_mirzaei82@yahoo.com

DOI: 10.22105/riej.2019.169577.1072

to deal with inexact numbers or numbers in ranges and desirable. One way represented the uncertain values by membership functions of the fuzzy set theory [20]. When some observations are fuzzy, the goal and constraints in the decision process become fuzzy as well. We can find several fuzzy approaches to the assessment of efficiency in the DEA literature. Sengupta [16] was the first to introduce a fuzzy mathematical programming approach where the constraints and objective function are not satisfied crisply. In his paper, a generalization of DEA models is considered for DMUs with multiple inputs and a single output. A fuzzy k-means clustering approach as a means of identifying unusual and/or extreme efficiency behavior is proposed in [14]. In Cooper et al. [5], the imprecise DEA method has been developed. This method permits mixture of imprecisely data within specified bounds and exactly known data. Kao and Liu [11] developed a method to find the membership functions of the fuzzy efficiency scores when some observations are fuzzy numbers. After evaluation DMUs by DEA model may be more than one DMU be efficient. For elimination this problem the ranking models are proposed. Some methods for ranking efficient DMUs with crisp data are proposed. Anderson and Petersen [1] evaluated that a DMUs efficiency possibly exceeds the conventional score 1.0, by comparing the DMU evaluated with a linear combination of other DMUs, while excluding the observations of the DMU evaluated. They tried to discriminate between these efficient DMUs, by using different efficiency scores larger than 1.0. Mehrabian et al. [12] presented the popular of these methods. These methods would have some deficiencies if data have certain structures. There are some methods based on norms. Jahanshahloo et al. [10] introduced an L_1 -norm approach that removes some deficiencies arising from AP and MAJ, but that cannot rank non-extreme DMUs. Also Balf et al. [13] used the Tchebycheff norm for ranking DMUs. All the models that were proposed for ranking DMUs with crisp data aren't able to ranking DMUs whit fuzzy data, therefore researchers tried to find models for ranking fuzzy DMUs. Jahanshahloo et al. [9] proposed ranking DMUs by L₁-norm with fuzzy data in DEA. In this paper, by considering fuzzy DMUs we propose a new method based on Tchebycheff norm for ranking DMUs. Our proposed model is written based on domination between under evaluation DMU and other DMUs those are belong to the T'_{C} that T'_{C} obtained by omitting under evaluated DMU from T_C (Production Possibility Set (PPS) of CCR model). This paper consists of the following sections: Preliminary of fuzzy is presented in Section 2, review of ranking models is introduced in Section 3. In Section 4 we present our model, finally, an example with fuzzy data and then the conclusion be given.

2. Preliminaries

2.1. Fuzzy Numbers

Definition 1. A fuzzy number is a fuzzy set like $\mu: R \to I$ [0,1] which satisfies [8]:

- μ is upper semi-continuous.
- $\mu(\mathbf{x}) = 0$ outside some interval[a, d].
- There are real numbers a, b such that $a \le b \le c \le d$ and

μ (x) is monotonic increasing on [a, b],
μ (x) is monotonic decreasing on [c, d],
μ (x) = 1, b ≤ x ≤ c.

2.2. Distance Measure for Fuzzy Numbers

A fuzzy set $A = (a_1, a_2, a_3, a_4)$ is called a generalized left right fuzzy numbers (GLRFN) if its membership function satisfy the following (see [18]):

$$\mu(x) = \begin{cases} L(\frac{a_2 - x}{a_2 - a_1}) & , a_1 \le x \le a_2 \\ 1 & , a_2 \le x \le a_3 \\ R(\frac{x - a_3}{a_4 - a_3}) & , a_3 \le x \le a_4 \\ 0 & , & else \end{cases}$$
(1)

Where L and R, are strictly decreasing functions defined on [0, 1] and satisfying the conditions:

$$L(x) = R(x) = 1$$
 if $x \le 0$, (2)

$$L(x) = R(x) = 0$$
 if $x \ge 0$. (3)

For $a_2 = a_3$, we have the classical definition of Left Right Fuzzy Numbers (LRFN) of [7]. As described by [3], Triangular Fuzzy Numbers (TFN) are special cases of GLRFN with L(x) = R(x) = 1-x and $a_2 = a_3$. A triangular fuzzy number is denoted as $\tilde{A} = (a_1, a_2, a_3)$, see Figure 1.

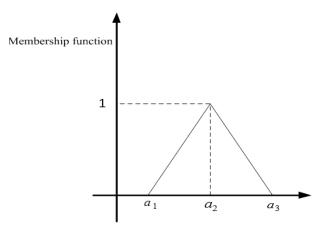


Figure 1. Triangular fuzzy number.

The membership function of a triangular fuzzy number is express as following [3]:

160

$$\mu_{\bar{A}}(x) = \begin{cases} \frac{x - a_1}{a_2 - a_1} & a_1 \le x \le a_2 \\ \frac{a_3 - x}{a_3 - a_2} & a_2 \le x \le a_3 \\ 0, & \text{Otherwise.} \end{cases}$$
(4)

Definition 2. (α -level set or α -cut). The α -cut of a fuzzy set \tilde{A} is a crisp subset of X and is denoted by $\left[\tilde{A}\right]_{\alpha} = \left\{x \mid \mu_{\tilde{A}}(x) \ge \alpha\right\}$ [7].

A GLRFN A is denoted as $A = (a_1, a_2, a_3, a_4)_{L^A - R^A}$ and an α -level interval of fuzzy number A as

$$A(\alpha) = (A^{l}(\alpha), A^{u}(\alpha))_{LR}$$

$$A^{l}(\alpha) = a_{2} - (a_{2} - a_{1})L_{A}^{-1}(\alpha)$$

$$A^{u}(\alpha) = a_{3} + (a_{4} - a_{3})R_{A}^{-1}(\alpha).$$
(5)

Let F be the family of the fuzzy numbers on R.

Definition 3. For $\tilde{A}, \tilde{B} \in F$, define the signed distance of \tilde{A}, \tilde{B} as follows (see [18]):

$$d(A,B) = \int_{0}^{1} w(\alpha) [(A^{l}(\alpha) - B^{l}(\alpha)) + (A^{u}(\alpha) - B^{u}(\alpha))] d\alpha.$$
(6)

Here, $w(\alpha)$ is weighting function that $w:[0,1] \rightarrow [0,1]$. If $\int_{0}^{1} w(\alpha) d\alpha = \frac{1}{2}$ then we say that $w(\alpha)$ is a regular function.

Definition 4. For $\tilde{A}, \tilde{B} \in F$, define the ranking of \tilde{A}, \tilde{B} by saying (see [19]):

$$\begin{aligned} d(\tilde{A}, \tilde{B}) \rangle 0 & \text{if } \tilde{A} \succ \tilde{B} \\ d(\tilde{A}, \tilde{B}) \langle 0 & \text{if } \tilde{A} \prec \tilde{B} \\ d(\tilde{A}, \tilde{B}) = 0 & \text{if } \tilde{A} \approx \tilde{B}. \end{aligned}$$

$$(7)$$

Definition 5. Let μ be a fuzzy number with α -cut representation $(L_{\mu}(0), R_{\mu}(0))$ and let $w : [0,1] \rightarrow [0,1]$ be a reducing function. Then the value of μ (with respect to w) is (see [6]):

$$Val_{w}(\mu) = \int_{0}^{1} w(\alpha) [L_{\mu}(\alpha) + R_{\mu}(\alpha)] d\alpha.$$
(8)

Property 1. For a trapezoidal fuzzy number $T = (a_1, a_2, a_3, a_4)$ and $w(\alpha) = \alpha$ it is easy to show that:

$$Val(T) = \frac{a_3 + a_2}{2} + \frac{[(a_4 - a_3) - (a_2 - a_1)]}{6}.$$
(9)

Property 2. T is a crisp interval, $a_4 = a_3$, $a_2 = a_1$. Obviously, $a_4 - a_3 = a_2 - a_1 = 0$ and, hence:

$$Val(T) = \frac{a_3 + a_2}{2}.$$
 (10)

Property 3. T is a triangular fuzzy number, $a_2 = a_3 = v$, the vertex of the triangle. In this case

$$Val(T) = v + \frac{[(a_4 - v) - (v - a_1)]}{6}.$$
(11)

2.3. DEA Methodology

Consider *n*, DMUs use m input to produce s output. Let x_{ip} (≥ 0) represent input *i* of

 $DMU_{p}(p \in \{1,...,n\})$ and $y_{ip} (\geq 0)$ represents output r of it. Its actual point of operation is given by $(x_{p}, y_{p}) = (x_{1p}, ..., x_{mp}, y_{1p}, ..., y_{mp})$ and the projected point of DMU_{p} is given by $(X, Y) = \begin{pmatrix} \sum_{j=1}^{n} \lambda_{j} x_{1j}, ..., \sum_{j=1}^{n} \lambda_{j} x_{mj}, \sum_{j=1}^{n} \lambda_{j} y_{1j}, ..., \sum_{j=1}^{n} \lambda_{j} y_{nj} \end{pmatrix}$. The Production Possibility Sets (PPS) T_{c}

is defined as following.

$$T_{c} = \left\{ (X, Y) | X \ge \sum_{j=1}^{n} \lambda_{j} x_{j} , Y \le \sum_{j=1}^{n} \lambda_{j} y_{j} , \lambda_{j} \ge 0 , j = 1, ..., n \right\}.$$
 (12)

For evaluation of the efficiency of DMU_p , the envelopment form of CCR model in the input oriented case is as follows model [4].

$$Min \ \theta - \varepsilon \left(\sum_{i=1}^{m} s_{i}^{-} + \sum_{r=1}^{s} s_{r}^{+} \right)$$

s.t.

$$\sum_{j=1}^{n} \lambda_{j} x_{ij} + s_{i}^{-} = \theta x_{ip} , \quad i = 1, ..., m$$

$$\sum_{j=1}^{n} \lambda_{j} y_{rj} - s_{r}^{+} = y_{rp} , \quad r = 1, ..., s$$

$$\lambda_{j} \ge 0 , \quad j = 1, ..., n$$

$$s_{i}^{-} \ge 0 , \quad i = 1, ..., m$$

$$s_{r}^{+} \ge 0 , \quad r = 1, ..., s .$$
(13)

Definition 6. DMU_p is efficient in model (13) if and only if $\theta^* = 1$, $s^{-*} = 0$ and $s^{+*} = 0$ (* means the optimal solution).

And its dual, the multiplier form of CCR model in the input oriented case is as follows [4]:

$$Max \sum_{r=1}^{s} u_{r} y_{p}$$

$$st.$$

$$\sum_{i=1}^{m} v_{i} x_{ip} = 1$$

$$\sum_{r=1}^{s} u_{r} y_{j} - \sum_{i=1}^{m} v_{i} x_{ij} \leq 0 \qquad j = 1,...,n$$

$$u_{r} \geq \varepsilon \qquad r = 1,...,s$$

$$v_{i} \geq \varepsilon \qquad s = 1,...,m$$

$$(14)$$

3. Review of Ranking Models

In this subsection, we are going to review AP and MAJ and Tchebycheff norm (L_{∞}) ranking models in data envelopment analysis.

3.1. AP Model

Anderson and Peterson [1] proposed the supper efficiency model. They omitted the efficient DMU from the PPS, T_c and Ran CCR model for other units to rank them. Their proposed model is:

$$\begin{array}{ll} Min \quad \theta \\ s.t. \\ \sum_{\substack{j=1 \\ j \neq p}}^{n} \lambda_{j} x_{ij} + s_{i}^{-} = \theta x_{ip} \quad , \quad i = 1,...,m \\ \\ \sum_{\substack{j=1 \\ j \neq p}}^{n} \lambda_{j} y_{rj} - s_{r}^{+} = y_{rp} \quad , \quad r = 1,...,s \\ \lambda_{j} \ge 0 \quad , \quad j = 1,...,n \\ s_{i}^{-} \ge 0 \quad , \quad i = 1,...,m \\ s_{r}^{+} \ge 0 \quad , \quad r = 1,...,s. \end{array}$$

$$(15)$$

For efficient units, $\theta^* \ge 1$ and for inefficient units $0 < \theta^* < 1$. This model has two drawbacks. (see [15]):

- AP model may be inefficient for special data in input oriented case.
- This model is unstable for some DMUs, which one of their data components is near to zero.

3.2. MAJ Model

To solve the important drawbacks of AP models, Mehrabian et al. [12], proposed another model for ranking efficient units. Their proposed model is:

$$\begin{array}{ll}
\text{Min} & 1+w \\
\text{s.t.} \\
\sum_{\substack{j=1\\j\neq p}}^{n} \lambda_{j} x_{ij} \geq x_{ip} + w , \quad i = 1, ..., m \\
\sum_{\substack{j=1\\j\neq p}}^{n} \lambda_{j} y_{ij} \geq y_{ip} , \quad r = 1, ..., s \\
\lambda_{i} \geq 0 , \quad j = 1, ..., n.
\end{array}$$
(16)

The necessary and sufficient conditions for feasibility of MAJ model is that in evaluating of DMU_p, or $y_{rp} = 0, r = 1, ..., s$ or there exists DMU_j, $j \neq p$ such that $y_{rj} \neq o$ (see [12]).

3.3. Tchebycheff Norm Model

Tavares and Antunes [17] were suggested a model for evaluate the efficiency, by Using L1-norm. They have been used Tchebycheff norm in the objective function of ADD model. For ranking extreme efficient DMUs Balf et al. [13] used the Tchebycheff norm for ranking efficient DMUs as follows:

$$\begin{split} Min \ V_{p} \\ st. \\ V_{p} &\geq \sum_{\substack{j=1 \\ j \neq p}}^{n} \lambda_{j} x_{ij} - x_{ip} , i = 1, ..., m \\ V_{p} &\geq y_{p} - \sum_{\substack{j=1 \\ j \neq p}}^{n} \lambda_{j} y_{j} , r = 1, ..., s \\ \lambda_{j} &\geq 0 , j = 1, ..., n. \end{split}$$
(17)

Note that the model (15) is independent of oriented (input-oriented and output-oriented), therefore, it is a superiority over other existence methods.

4. Our Proposed Model

In this section, we suppose that input and output of DMUs are fuzzy.

Definition 7. Assume that there are a set of n DMUs. Each DMU_j (j = 1,...,n) has *m* inputs and *s* different output, which are denoted as \tilde{x}_{ij} (i = 1, 2, ..., m) and \tilde{y}_{rj} (r = 1, 2, ..., s), respectively. We

assume all input and output are fuzzy data. For ranking extreme efficient DMU_P , first it will be removed from PPS (T_c) and then new PPS (T'_c) is defined as follows:

$$\tilde{T}'_{C} = \left\{ \left(\tilde{X}, \tilde{Y}\right) | \tilde{X} \ge \sum_{j=1, j \neq p}^{n} \lambda_{j} \tilde{X}_{j} \quad , \quad \tilde{Y} \le \sum_{j=1, j \neq p}^{n} \lambda_{j} \tilde{Y}_{j} \quad , \quad \lambda_{j} \ge 0 \quad , \quad j = 1, \dots, n \right\}.$$

$$(18)$$

It is specifying that if DMU_P with coordinates $(\tilde{X}_P, \tilde{Y}_P)$ be inside Production Possibility Set (PPS) then we have:

$$\exists \lambda \ge 0 \qquad s.t. \quad \sum_{j=1}^{n} \lambda_j \tilde{X_j} \le \tilde{X_p} \quad \text{and} \quad \sum_{j=1}^{n} \lambda_j \tilde{Y_j} \ge \tilde{Y_p} \quad . \tag{19}$$

But if the DMU_P (under evaluation unit) lie outside PPS, then we have:

$$\left(\sum_{j=1}^{n} \lambda_j \tilde{X_j} \ge \tilde{X_p} , \sum_{j=1}^{n} \lambda_j \tilde{Y_j} \le \tilde{Y_p} , \lambda_j \ge 0, j = 1, \dots, n\right).$$

$$(20)$$

In other word

$$\exists i \ , \sum_{j=1}^{n} \lambda_j \tilde{x}_{ij} > \tilde{x}_{ip} \ or \ \exists r \ , \sum_{j=1}^{n} \lambda_j \tilde{y}_j < \tilde{y}_{ip} \ .$$

$$(21)$$

Now, suppose DMU_P is outside of PPS. Hence, we want to obtain a point of PPS which dominated by DMU_P . Thus, we have (22):

$$\exists \lambda \ge 0 \ s \ t \ . \ \sum_{j=1}^{n} \lambda_j \tilde{X_j} \ge \tilde{X_p} \ , \sum_{j=1}^{n} \lambda_j \tilde{Y_j} \le \tilde{Y_p} \ . \tag{22}$$

So, the following model is suggested for ranking DMU_P .

$$\left\| \tilde{P} - \hat{P} \right\|_{\infty}$$

s.t. $\hat{P} \in \tilde{T}'_{C}$ (23)

Where $\tilde{P} = (\tilde{x}_p, \tilde{y}_p)$ is the point under evaluation and $\hat{P} = \left(\sum_{\substack{j=1\\j\neq p}}^n \lambda_j \tilde{x}_{ij}, \sum_{\substack{j=1\\j\neq p}}^n \lambda_j \tilde{y}_{rj}\right)$ is a point in

 \tilde{T}'_{C} . Note that model (23) is written based on domination between \tilde{P} and \hat{P} . The objective function of the model (23) is nonlinear. Following, after manipulation, model (23) is converted in a linear model, which can be easily solved. By definition of infinity norm (L_{∞}) that $\|\tilde{P} - \hat{P}\|_{\infty} = Min Max\{|\tilde{P} - \hat{P}|\}$ the objective of (23) can be rewritten as follows:

$$\begin{array}{l}
\text{Min Max}\left\{ \left| \tilde{P} - \hat{P} \right| \right\} \\
\text{s.t.} \quad \hat{P} \in \tilde{T'_{C}} \quad .
\end{array}$$
(24)

With using of Definition (4) and values of \tilde{P} and \hat{P} the objective of model (24) are changed as follows:

$$Min Max \left\{ \left| \tilde{P} - \hat{P} \right| \right\} = Min Max \left\{ d\left(\tilde{P}, \hat{P} \right) \right\}.$$

$$= Min Max \left\{ d\left(\tilde{x}_{ip}, \sum_{j=1, j \neq p}^{n} \lambda_j \tilde{x}_{ij} \right)_{i=1, \dots, m}, d\left(\tilde{y}_{rp}, \sum_{j=1, j \neq p}^{n} \lambda_j \tilde{y}_{rj} \right)_{r=1, \dots, s} \right\}$$
(25)

Therefore we have:

$$\begin{aligned} \operatorname{Min}\operatorname{Max} \left\{ d \left(\tilde{x}_{ip}, \sum_{j=1, j \neq p}^{n} \lambda_j \tilde{x}_{ij} \right)_{i = 1, \dots, m}, \ d \left(\tilde{y}_{rp}, \sum_{j=1, j \neq p}^{n} \lambda_j \tilde{y}_{rj} \right)_{r = 1, \dots, s} \right\} \\ d \left(\sum_{j=1, j \neq p}^{n} \lambda_j \tilde{x}_{ij}, \tilde{x}_{ip} \right) \geq 0 \qquad i = 1, \dots, m \\ d \left(\tilde{y}_{rp}, \sum_{j=1, j \neq p}^{n} \lambda_j \tilde{y}_{rj} \right) \geq 0 \qquad r = 1, \dots, s \\ d \left(\tilde{x}_{ip}, 0 \right) \geq 0 \qquad i = 1, \dots, m \\ d \left(\tilde{y}_{rp}, 0 \right) \geq 0 \qquad r = 1, \dots, s \\ \lambda_j \geq 0 \ , \qquad j = 1, \dots, n \ , \ j \neq p. \end{aligned}$$

$$(26)$$

Also, if we use of Definition (3) then we will have crisp L_{∞} -norm model as (27).

$$\begin{aligned}
&Min \quad Max \left\{ \int_{0}^{1} w\left(\alpha\right) \left[\left(x_{ip}^{l}\left(\alpha\right) - \sum_{j=1, j \neq p}^{n} \lambda_{j} x_{ij}^{l} \right) + \left(x_{ip}^{u}\left(\alpha\right) - \sum_{j=1, j \neq p}^{n} \lambda_{j} x_{ij}^{u} \right) \right]_{i=1,\dots,m} d\alpha \\
&\int_{0}^{1} w\left(\alpha\right) \left[\left(y_{ip}^{l}\left(\alpha\right) - \sum_{j=1, j \neq p}^{n} \lambda_{j} y_{ij}^{l} \right) + \left(y_{ip}^{u}\left(\alpha\right) - \sum_{j=1, j \neq p}^{n} \lambda_{j} y_{ij}^{u} \right) \right]_{r=1,\dots,s} d\alpha \\
&\int_{0}^{1} w\left(\alpha\right) \left[\left(\sum_{j=1, j \neq p}^{n} \lambda_{j} x_{ij}^{l} - x_{ip}^{l}\left(\alpha\right) \right) + \left(\sum_{j=1, j \neq p}^{n} \lambda_{j} x_{ij}^{u} - x_{ip}^{u}\left(\alpha\right) \right) \right] d\alpha \ge 0 \qquad i = 1,\dots,m \\
&\int_{0}^{1} w\left(\alpha\right) \left[\left(y_{ip}^{l}\left(\alpha\right) - \sum_{j=1, j \neq p}^{n} \lambda_{j} y_{ij}^{l} \right) + \left(y_{ip}^{u}\left(\alpha\right) - \sum_{j=1, j \neq p}^{n} \lambda_{j} y_{ij}^{u} \right) \right] d\alpha \ge 0 \qquad r = 1,\dots,s \\
&\int_{0}^{1} w\left(\alpha\right) \left[\left(x_{ip}^{l}\left(\alpha\right) - 0 \right) + \left(x_{ip}^{u}\left(\alpha\right) - 0 \right) \right] d\alpha \ge 0 \qquad r = 1,\dots,s \\
&\int_{0}^{1} w\left(\alpha\right) \left[\left(y_{ip}^{l}\left(\alpha\right) - 0 \right) + \left(y_{ip}^{u}\left(\alpha\right) - 0 \right) \right] d\alpha \ge 0 \qquad r = 1,\dots,s \\
&\int_{0}^{1} w\left(\alpha\right) \left[\left(y_{ip}^{l}\left(\alpha\right) - 0 \right) + \left(y_{ip}^{u}\left(\alpha\right) - 0 \right) \right] d\alpha \ge 0 \qquad r = 1,\dots,s \\
&\int_{0}^{1} w\left(\alpha\right) \left[\left(y_{ip}^{l}\left(\alpha\right) - 0 \right) + \left(y_{ip}^{u}\left(\alpha\right) - 0 \right) \right] d\alpha \ge 0 \qquad r = 1,\dots,s \\
&\int_{0}^{1} y_{ip}^{l} \ge 0 \qquad j = 1,\dots,n \quad , j \neq p.
\end{aligned}$$

We can simply reformulated model (27) with using Definition (5) as model (28).

$$\begin{split} & \operatorname{Min} \ \operatorname{Max}\left[\left(\operatorname{Val}\left(\tilde{x}_{ip}\right) - \sum_{j=1, j \neq p}^{n} \lambda_{j} \operatorname{Val}\left(\tilde{x}_{ij}\right)\right), \left(\operatorname{Val}\left(\tilde{y}_{pp}\right) - \sum_{j=1, j \neq p}^{n} \lambda_{j} \operatorname{Val}\left(\tilde{y}_{rj}\right)\right)\right)\right] \\ & \text{s. t.} \\ & \left(\sum_{j=1, j \neq p}^{n} \lambda_{j} \operatorname{Val}\left(\tilde{x}_{ij}\right) - \operatorname{Val}\left(\tilde{x}_{ip}\right)\right) \geq 0 \qquad i = 1, ..., m \\ & \left(\operatorname{Val}\left(\tilde{y}_{pp}\right) - \sum_{j=1, j \neq p}^{n} \lambda_{j} \operatorname{Val}\left(\tilde{y}_{rj}\right)\right) \geq 0 \qquad r = 1, ..., s \\ & \operatorname{Val}\left(\tilde{x}_{ij}\right) \geq 0 \qquad i = 1, ..., m \\ & \operatorname{Val}\left(\tilde{y}_{rj}\right) \geq 0 \qquad r = 1, ..., s \\ & \lambda_{j} \geq 0 \quad , \qquad j = 1, ..., n \quad , \ j \neq p. \end{split}$$

If we consider

$$\gamma = Max \left\{ \left(Val\left(\tilde{x}_{ip}\right) - \sum_{j=1, j \neq p}^{n} \lambda_{j} Val\left(\tilde{x}_{ij}\right) \right), \\ \left(Val\left(\tilde{y}_{rp}\right) - \sum_{j=1, j \neq p}^{n} \lambda_{j} Val\left(\tilde{y}_{rj}\right) \right) \right\}$$

$$(29)$$

then we have

$$\gamma - \left(Val\left(\tilde{x}_{ip}\right) - \sum_{j=1, j \neq p}^{n} \lambda_{j} Val\left(\tilde{x}_{ij}\right) \right) \ge 0$$

$$\gamma - \left(Val\left(\tilde{y}_{rp}\right) - \sum_{j=1, j \neq p}^{n} \lambda_{j} Val\left(\tilde{y}_{rj}\right) \right) \ge 0.$$
(30)

As was mentioned, we propose the final model (31).

$$\begin{split} & \text{Min } \quad \gamma \\ & \gamma - \left(Val\left(\tilde{x}_{ip}\right) - \sum_{j=1, j \neq p}^{n} \lambda_j Val\left(\tilde{x}_{ij}\right) \right) \geq 0 \\ & \gamma - \left(Val\left(\tilde{y}_{ip}\right) - \sum_{j=1, j \neq p}^{n} \lambda_j Val\left(\tilde{y}_{ij}\right) \right) \geq 0 \\ & \sum_{j=1, j \neq p}^{n} \lambda_j Val\left(\tilde{x}_{ij}\right) - Val\left(\tilde{x}_{ip}\right) \geq 0 \\ & Val\left(\tilde{y}_{ip}\right) - \sum_{j=1, j \neq p}^{n} \lambda_j Val\left(\tilde{y}_{ij}\right) \geq 0 \\ & Val\left(\tilde{x}_{ij}\right) \geq 0 \\ & Val\left(\tilde{x}_{ij}\right) \geq 0 \\ & r = 1, \dots, m \\ & Val\left(\tilde{y}_{ij}\right) \geq 0 \\ & \lambda_j \geq 0 \quad , \qquad j = 1, \dots, n \quad , \ j \neq p. \end{split}$$
(31)

In a similar method, we can write the model for Trapezoidal fuzzy number.

5. Numerical Example

In this section, we rank DMUs, when inputs and outputs of DMUs are triangular fuzzy number. This study selects a small example using data given by Jahanshahloo et al. [9]. We examine the

168

proposed model for 30 branches of social Welfare bureau in Tehran which data of each of these branches was collected in different 18 periods. The conclusions obtained of these observations are explained in following tables. Table 1 introduces the input and output of DMUs.

Inputs	Outputs		
(1) Number of the personals	(1) Number of the whole insured		
(2) Number of the computers	(2) Number of the insurance policy		
(3) The area of branch	(3) Number of the whole pensioner		
(4) The amount of whole administrative	(4) The amount of income		

Table 1. Inputs and outputs.

In Tables 2–5 the triangular fuzzy data of these branches is shown.

		ĩ		•		
DMU	min(I1)	average(I1)	max(I1)	min(O1)	average(O1)	max(01)
1	90	94.9	100	55830	64411	86532
2	75	77.6	81	36216	36760.5	371798
3	75	77.1	80	24566	32588.7	39449
4	90	92.8	96	35469	36307.2	37722
5	88	90.9	93	34734	45726.9	56082
6	95	101	105	58344	68019.3	78574
7	89	93.7	100	32585	38983.9	42573
8	83	87.7	93	429	50852.4	63341
9	99	104.1	112	84531	90371.2	100220
10	102	105	111	46924	52505.7	61767
11	93	95.9	101	31554	39487.3	54521
12	76	78.5	79	26687	32757.7	39620
13	102	102.9	107	56144	60769.9	65026
14	82	87.5	91	80425	91556.4	96821
15	77	81.4	84	44305	50330.7	52856
16	87	88.8	91	39797	46576.2	49855
17	84	90.3	93	52923	70898.9	82923

Table 2. Fuzzy data of the first input and output.

DMU	min(I1)	average(I1)	max(I1)	min(O1)	average(O1)	max(01)
18	94	109.2	117	72553	85571.6	98678
19	89	96.5	103	46154	69124.8	89844
20	82	86.8	90	26927	31451.8	37990
21	68	70.6	73	27128	2805.2	29058
22	108	114.8	119	102175	111927.8	129100
23	75	79.7	86	27704	33378.3	36205
24	85	88.6	93	51345	57346	61760
25	96	98.7	103	72915	81096.7	88038
26	73	77.6	83	42887	44066.2	45396
27	100	106.9	112	78068	80831.3	83148
28	96	99.8	105	5865	69577.1	74218
29	67	71.6	76	38054	39330.97	40860
30	86	89.1	93	59846	62360	64784

Table 3. Fuzzy data of the second input and output.

DMU	min(I2)	average(I2)	max(I2)	min(O2)	average(O2)	max(O2)
1	83	85.1	87	17	39.1	71
2	88	92.3	95	0	18.5	35
3	85	87.5	89	11	21.9	47
4	93	93.8	96	10	31.2	59
5	83	85.2	87	9	33.2	50
6	97	97.3	98	0	14.7	33
7	90	92.5	97	47	97.5	130
8	92	93.1	95	11	21.8	34
9	84	92.5	101	0	57.2	111
10	95	96.6	100	9	32.2	60
11	78	79.4	82	81	201.8	268
12	89	90.7	93	11	25.6	36
13	103	105.9	111	27	44.9	77
14	92	96.7	102	23	40.1	66
15	92	93.2	95	6	17.3	29

DMU	min(I2)	average(I2)	max(I2)	min(O2)	average(O2)	max(O2)
16	85	85.4	86	13	29.4	49
17	104	104.4	106	14	20.9	38
18	91	93.7	96	13	26.2	49
19	95	98.4	102	11	20.5	34
20	100	100.4	101	20	60.1	325
21	88	90.9	95	0	18.6	36
22	120	124.1	128	31	49.7	77
23	100	100.2	101	12	29.8	49
24	91	93.3	95	35	62.2	74
25	90	90	90	40	58.7	96
26	81	84.7	88	11	25.3	40
27	101	103.2	106	26	47.3	89
28	87	95.7	99	0	69.3	130
29	77	79.8	86	13	28.7	49
30	90	92.1	94	10	28.2	47

Table 4. Fuzzy data of the third input and output.

DMU	min(I3)	average(I3)	max(I3)	min(O3)	average(O3)	max(O3)
1	4000	4000	4000	1117	1224.8	1350
2	2565	2565	2565	8385	8604.6	8919
3	1343	1343	1343	6588	6633.3	6775
4	1500	1500	1500	8080	9867.9	10821
5	1680	1680	1680	9493	9918.8	10345
6	3750	3750	3750	7434	8017.7	8752
7	3313	3313	3313	13010	14224.6	15569
8	1500	1500	1500	1490	1574.7	1661
9	1600	1600	1600	10206	11284.4	15402
10	1725	1725	1725	6608	7812.6	9868
11	1920	1920	1920	11996	12619.4	13317
12	4433	4433	4433	7422	7798.3	8303
13	2500	2500	2500	7178	7425.2	7936

DMU	min(I3)	average(I3)	max(I3)	min(O3)	average(O3)	max(O3)
14	2800	2800	2800	630	734.4	930
15	1630	1630	1630	10247	10321.7	10503
16	1127	1127	1127	7302	7824.9	8322
17	3400	3400	3400	4740	4972.1	5205
18	1304	1304	1304	4279	4918.9	5289
19	4206	4206	4206	825	1212.9	1636
20	1340	1340	1340	14144	14859.7	15907
21	1393	1393	1393	921	944.5	973
22	2191	2191	2191	252	2488.9	3577
23	2140	2140	2140	234	2123.7	2477
24	1231	1231	1231	10157	10399.9	10841
25	1960	1960	1960	4193	4837.4	5869
26	3375	3375	3375	560	609.8	658
27	2540	2540	2540	8769	9359.6	9857
28	1603	1603	1603	8762	12905.5	14155
29	2300	2300	2300	1405	1491.3	1567
30	2930	2930	2930	11143	12184.7	13100

Table 5. Fuzzy data of the fourth input and output.

DMU	min(I4)	average(I4)	max(I4)	min(O4)	average(O4)	max(O4)
1	14730450	72806300	147806940	145	340.7	933
2	38109920	71065182	139078952	65	270.2	486
3	28792550	57285753	133424069	113	362.5	604
4	24277018	237014821	2592824900	54	233.1	398
5	43355800	77979393	140338064	101	280.2	461
6	8425500	125978083	810861434	82	379.3	644
7	63947100	122.32981	225550119	154	284.6	495
8	14969393	81051611	135858469	54	283.2	634
9	61024310	135992312	329155695	179	329.2	616
10	10112577	73804835	178541011	117	228.8	394
11	29357984	92014601	153783450	37	286.7	511

DMU	min(I4)	average(I4)	max(I4)	min(O4)	average(O4)	max(O4)
12	23106000	75843333	159552000	124	178.2	245
13	17756770	209943256	766788858	185	421.7	1175
14	30082208	76319046	168961589	51	195	391
15	45601750	72848488	158581843	28	145.3	295
16	26931600	112174234	827138457	85	248.9	580
17	17927100	116156884	475649794	43	175.4	286
18	25153373	126784004	389185592	72	187.6	324
19	5504769	81625443	264454915	74	232.1	530
20	48310364	94422470	153138326	190	310.9	444
21	19453875	54336511	105553653	55	233.4	457
22	45229750	97020370	190535604	120	289.1	468
23	45992927	109259866	285338884	156	383	589
24	5099980	80768509	148103734	85	181.3	278
25	52110247	147643177	757564117	112	242	427
26	12922183	69260832	113626397	218	320.8	450
27	21300223	81704431	187012354	134	278.4	679
28	45363108	307643735	931530808	91	197.8	304
29	10617400	72823790	110697939	23	115.5	304
30	57568217	84698270	122615610	122	263.3	406

The result of solution of our proposed method and L_1 norm proposed by Jahanshahloo et al. [9] are summarized in Table 6.

DMU	Efficiency	Efficiency	DMU	Efficiency	Efficiency of L_1 norm
Divid	of Tchebycheff norm	of L_1 norm	DWIC	of Tchebycheff norm	Efficiency of D_1 norm
1	23.64645	-1×E+8	16	1.93E+02	-3×E+8
2	2.53E+04	-1×E+8	17	0.05945	-2×E+8
3	1.27E+02	-8×E+7	18	0.043462	-2×E+8
4	2.35E+03	-7×E+8	19	0.27487	-1×E+8
5	9.641513	-1×E+8	20	4.35E+03	-1×E+8
6	0.026414	-3×E+8	21	0.294917	-8×E+7
7	4.62E+02	-2×E+8	22	8.78E+02	-1×E+8
8	9.52E+02	-1×E+8	23	19.37849	-2×E+8
9	2.12E+02	-2×E+8	24	2.91E+02	-1×E+8
10	2.12E+02	-1×E+8	25	3.359514	-3×E+8
11	1.14E+02	-1×E+8	26	0.066202	-9×E+7
12	0.475155	-1×E+8	27	0	-1×E+8
13	14.26789	-3×E+8	28	1.98E+02	-5×E+8
14	0.044436	-1×E+8	29	0.125881	-9×E+7
15	0.054442	-1×E+8	30	22.24281	-1×E+8

Table 6. The result of ranking.

You can see that in this table, the 2th and 20st DMUs have the best grade (ranking score) and the 27th DMU has the worst one by our proposed method. And by using L_1 norm you see that in this table the 3rd and 21st DMUs have the best grade (ranking score) and the 4th DMU has the worst one. Although the result of tow model is different, this does not mean that one model is better or worse than other. The different results are obtained from the two models depend on the definition of each norm. Each organization or company can use each model according to needs and goals.

6. Conclusions

The existing DEA models for measuring the relative efficiencies of a set of DMUs using various inputs to produce various outputs are limited to crisp data. But in more general cases, the data for evaluation are often collected from investigation to decide the natural language such as good, medium, and bad rather than a specific case. That is, the inputs and outputs are fuzzy. Therefore, some papers were presented the theoretical development of this technique whit fuzzy data. In this paper we initially introduced the Balf et al. [13] approach for ranking of DMUs with crisp data

in DEA by using tchebycheff norm; since, inputs and outputs are fuzzy. Therefore, it may be obtained a fuzzy rank for decision making units hence we developed this method for ranking DMUs with fuzzy data. We illustrated our model by a numerical example and compared with fuzzy L_1 norm proposed by Jahanshahloo et al. [9]. We proposed our model for triangular fuzzy data but this model can develop for other fuzzy data simply.

References

- [1] Andersen, P., & Petersen, N. C. (1993). A procedure for ranking efficient units in data envelopment analysis. *Management science*, *39*(10), 1261-1264.
- [2] Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. *Management science*, 30(9), 1078-1092.
- [3] Duckstein, L. (1995). Fuzzy rule-based modeling with applications to geophysical, biological, and engineering systems (Vol. 8). CRC press.
- [4] Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. *European journal of operational research*, 2(6), 429-444.
- [5] Cooper, W. W., Park, K. S., & Yu, G. (1999). IDEA and AR-IDEA: models for dealing with imprecise data in DEA. *Management science*, *45*(4), 597-607.
- [6] Delgado, M., Vila, M. A., & Voxman, W. (1998). On a canonical representation of fuzzy numbers. *Fuzzy sets and systems*, 93(1), 125-135.
- [7] DuboisandH, D. (1988). *Prade, possibility theory: an approach to computerized processing of uncertainty*. New York, NY, USA: Plenum.
- [8] Goetschel Jr, R., & Voxman, W. (1986). Elementary fuzzy calculus. *Fuzzy sets and systems*, 18(1), 31-43.
- [9] Jahanshahloo. G. R., Hosseinzadeh Lotfi. F., Shahverdi, R., Adabitabar, M., Rostamy-Malkhalifeh, M., & Sohraiee, S. (2009) .Ranking DMUs by L₁-norm with fuzzy data in DEA. *Chaos, solitons and fractals, 39*, 2294–2302.
- [10] Jahanshahloo, G. R., Lotfi, F. H., Shoja, N., Tohidi, G., & Razavyan, S. (2004). Ranking using 11norm in data envelopment analysis. *Applied mathematics and computation*, 153(1), 215-224.
- [11] Kao, C., & Liu, S. T. (2000). Fuzzy efficiency measures in data envelopment analysis. *Fuzzy sets and systems*, *113*(3), 427-437.
- [12] Mehrabian, S., Alirezaee, M. R., & Jahanshahloo, G. R. (1999). A complete efficiency ranking of decision making units in data envelopment analysis. *Computational optimization and applications*, 14(2), 261-266.
- [13] Balf, F. R., Rezai, H. Z., Jahanshahloo, G. R., & Lotfi, F. H. (2012). Ranking efficient DMUs using the Tchebycheff norm. *Applied mathematical modelling*, 36(1), 46-56.
- [14] Seaver, B. L., & Triantis, K. P. (1992). A fuzzy clustering approach used in evaluating technical efficiency measures in manufacturing. *Journal of productivity analysis*, *3*(4), 337-363.
- [15] Seiford, L. M., & Zhu, J. (1999). Infeasibility of super-efficiency data envelopment analysis models. *INFOR: information systems and operational research*, 37(2), 174-187.
- [16] Sengupta, J. K. (1992). A fuzzy systems approach in data envelopment analysis. Computers & mathematics with applications, 24(8-9), 259-266.
- [17] Tavares, G., & Antunes, C. H. (2001). A Tchebycheff DEA model. Working Paper, Rutgers University, 640 Bartholomew Road, Piscataway, NJ 08854-8003.
- [18] Tran, L., & Duckstein, L. (2002). Comparison of fuzzy numbers using a fuzzy distance measure. *Fuzzy* sets and systems, 130(3), 331-341.
- [19] Yao, J. S., & Wu, K. (2000). Ranking fuzzy numbers based on decomposition principle and signed distance. *Fuzzy sets and systems*, 116(2), 275-288.
- [20] Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.