
 

 

 

 

Multi-Objective Linear Mathematical Programming for Solving U-Shaped 

Robotic Assembly Line Balancing 

M. Rabbani 1,, A. H. Khezri1, H. Farrokhi-Asl2, S. Aghamohamadi-Bosjin1 

1 Department of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran. 
2 Department of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran. 

 

A B S T R A C T 

In recent years, robots have been an eminent solution for manufacturers to facilitate their process 

and focus on a variety of their products. As the importance of robot usages, our paper focuses on the 

robotics assembly line. In this paper, we have considered the cycle time, robot operational costs, 

robot purchase costs, and robot energy consumptions. In the following, we add robot failure rates to 

have an efficient and high-quality assembly line. The presented model is a multi-objective problem, 

therefore, the linear programming methods as goal programming and augmented ε-constraint method 

are applied to optimize the problem. In the end, we have considered a case study to examine and 

show the applicability of the proposed model on the real situation. 
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1. Introduction 

Nowadays, the competitive market leads companies to promote their manufacturing systems by 

more flexible and effective plan. The plan should satisfy quickly and efficiently the 

manufacture’s demands. Due to the importance of the production plan, it was an important and 

controversial issue in the past decades. For the first time, Henry Ford introduced the 

manufacturing assembly line. Over the past years, Assembly Line Balancing (ALB) has had an 

eminent impact on the manufacturing systems. ALB is an ordering of a sequence stations, linked 

together by a transport system. Each station operates one or more tasks on the partially finished 

product. Based on product verity, there exist three types of assembly lines [1]: 
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   Single-Model Lines: In large quantities, only one homogeneous product is continuously 

produced.   

   Mixed-Model Lines: On the same line in an arbitrarily inter-mixed sequence, several models of 

a basic product are produced.  

   Multi-Model Lines: In separately batches family of products which present significant 

differences in processes are produced on one or more assembly lines. 

 

Figure 1. Shapes of straight, U-shaped, and multi-model lines.  

  

In fact, ALB Problem (ALBP) lies on getting an optimal sequence of tasks to stations respect to 

the precedence relations among tasks and other constraints [44]. As it consumes up to 50% of 

total production time and accounts for more than 20% of total manufacturing cost are for 

assembly process. The first ALBP mathematical formulation was introduced by [2]. ALBP 

classified in NP-hard class [3], it is often takes a long time to find optimal solutions of large-

scale problem instances by using exact solution methods. The work [4] presented a GA for 

solving ALBPs and later on, the [5] developed GA for solving ALBPs. This paper also focuses 

on the U-shaped line balancing. There are different types of assembly lines, based on the 

production system layout; ALBP divided into two main types: Straight and U-shaped assembly 

lines. In a straight line, single stations are ordered along a line, on the other hand in U-shaped 

line the stations are ordered within a narrow U and some of workers are allowed to perform tasks 

on both sides of the line (entrance of the line, exit of the line). One of the significant advantages 

of U-shaped lines is about providing more flexibility in assignment of tasks to stations. In a U-

shaped line, the unassigned predecessors or successors are allowed to be assigned, while the 

straight line allows tasks to be assigned to a station if all of its predecessors have been assigned 

until this station. For the first time, the [6] introduced the U-Shaped Assembly Line Balancing 

Problem (UALBP) with developing a dynamic programming procedure for its solution. The [7] 

developed a mathematical formulation for UALBP-I with up to 45 tasks and yielded good results. 

The [8] introduced ULINO, a branch and bound procedure for solving the different types of 

UALBP. The [9] developed a genetic algorithm-based heuristic for the mixed-model U-shaped 

lines with stochastic task times. The [10] developed a Simple Genetic Algorithm (SGA) for 

solving the UALB-II. The [11] considered fuzzy task duration times for straight and U-shaped 

lines and developed a GA to solve it. 
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Because of the advantages and extensively uses of robots in assembly line, in this paper we have 

considered the Robotic Assembly Line Balancing (RALB). In the recent years, the high 

flexibility of robots, high productivity, and ability for production of high quality products, made 

robots the most prominent tools to develop the production plan. The RALB problem is the way 

of getting an optimal assignment to the robotic stations and selecting the best-fit robots to operate 

the tasks [12], and was first described by [13]. Three major objective functions are considered in 

RALB problem including the minimizing number of workstations (RALB-I), minimizing cycle 

time (RALB-II), minimizing energy consumption, and maximizing efficiency. The [14] 

formulated the problem for minimizing the number of workstations for a given cycle time subject 

to allocating of tasks to work stations. Later, the [15] extended that problem used an exact branch 

and bound algorithm. Also, the [16] developed an exact branch and bound algorithm. 

 To gain more profit and product verity of products, manufacture needs to have more flexibility 

with today’s demanding market. In this case, the mixed-model assembly lines designed, and 

allowed manufacture to product a group of similar model items and provide more flexibility in 

producing according to market demand. Many articles have worked on the mixed-model ALBP 

[17- 22]. On the other hand, a few researches have focused on Robotic Mixed-Model Assembly 

Line Balancing (RMALB) problem. The [23] developed a mathematical model for two-sided 

RMALBP to minimize the cycle time respect to robot set-up and sequence-dependent set-up 

times. The [24] present a mathematical model for U-shaped line with considering minimizing 

cycle times, robot purchasing, robot set-up, sequence-dependent set-up costs. In this model, they 

considered two assumptions: Two or more robots can operate the work at the same station. In 

addition, tasks in line were handled by two groups: 1) the special tasks can be performed in one 

model, 2) the common tasks can be performed in several models. The [25] developed a new 

efficient heuristic algorithm based on beam search in order to minimize the sum of cycle times 

over all models. 

 

 

   

 

 

 

 

Figure 2. U-shaped robotics assembly line form. 
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2. Problem Description 

The problem is a multi-objective type II Robotic Mixed-Model Assembly Line Balancing 

(RMALB-II). Based on the previous researches by [24], we have developed a new model consists 

of robotic operational costs and energy consumptions. In this model, we are into finding an 

optimal or near optimal configuration of task, workstations, and robot by considering the goals 

including minimization of the cycle time, robot's operational energy consumption, robots 

operational, and purchasing costs. Because of flexibility and adaptability of the U-shaped line, 

we consider it as our production line. This system allows forward and backward assignment to 

be performed, so the robot can move less between workstations and logically the cycle time, 

energy consumption, and other cost could be decreased [24, 33, 34]. To product M types of 

product, the U-line of assembly has J workstations with a robot in each and it has I tasks of 

invisible assembly task [28]. Before introducing the model, based on [28], [27], and [35] some 

basic assumptions considered in this paper are provided as follows: 

 Power consumption of each robot is assumed and energy consumption is computed with the power 

consumption of each robot. 

 Assembly tasks cannot be subdivided. The precedence relations among the activities are 

distinctive and constant. Precedence graph represented this precedence.  

 The processing time of an assembly task relies on the assigned robot type that the duration of an 

activity by a robot is deterministic. 

 Setup times between tasks are deterministic, depend on the assigned robot, and are independent 

of the assigned workstation. 

 The line is balanced for multiple products. 

 Products are models in U-shaped line. 

 The purchase cost of each type robots is considered. 

 The time of setup for task and robot setup times are considered. 

 There are 𝑟 types of robot available (𝑟 ≥ 1) that there is no restriction on the number of robots 

available. 

 The travel times of operators are ignored.  

 Material handling, loading and unloading times are insignificant, so they are contained in 

processing times. 

 Multiple robots are allocated to each workstation. 
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2.1 Mathematical Modeling 

 

Indices 
 

𝑖 Number of assembly tasks; 𝑖 = 1, 2, … , 𝐼. 

𝑗 Number of workstations; 𝑗 = 1, 2, … , 𝐽. 

𝑚 Number of product model; 𝑚 = 1, 2, … , 𝑀. 

𝑟 Number of robot types; 𝑟 = 1, 2, … , 𝑅. 

Parameters 
 

𝑝𝑟𝑡(𝑖) Set of immediate predecessors of task 𝑖. 

𝑃𝐶𝑟  Cost of a robot type 𝑟,to be purchased. 

𝑆𝑒𝐶𝑟𝑖 Setup cost of a robot of type 𝑟, for processing task 𝑖. 

𝑆𝑑𝐶𝑖 Sequence dependent setup cost for processing task 𝑖. 

𝑆𝑒𝑇𝑖𝑟   Setup time of a robot of type 𝑟, for processing task 𝑖. 

𝑆𝑑𝑇𝑖  Sequence dependent setup time for processing task 𝑖. 

𝑃𝑇𝑖𝑚𝑟  Processing time of task 𝑖 for model 𝑚 by robot 𝑟. 

𝑂𝐸𝐶𝑟 Operation energy consumption of the robot 𝑟 per time unit. 

𝑆𝐸𝐶𝑟 Standby energy consumption of the robot 𝑟 per time unit. 

𝐿𝑅𝑟 Maximum length of a robot of type 𝑟. 

𝑊𝑅𝑟 Maximum width of a robot of type 𝑟.  

𝐿𝑊𝑗 Minimum length of a workstation  . 

𝑊𝑊𝑗 Minimum width of a workstation 𝑗. 

𝐶𝑇𝑚𝑎𝑥 Maximum station time among all stations. 

𝐸𝐶𝑚𝑎𝑥 Maximum station energy among all stations. 
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Considered objective functions are given as below: 

𝑀𝑖𝑛  𝐶𝑇 = ∑ 𝐶𝑇𝑚

𝑀

𝑚=1

 (1) 

𝑀𝑖𝑛  𝑅𝑂𝐶 = (∑ ∑ ∑ ∑ 𝑆𝑒𝐶𝑟𝑖

𝑅

𝑟=1

𝑀

𝑚=1

𝐽

𝑗=1

𝐼

𝑖=1

+ ∑ ∑ ∑ ∑ 𝑆𝑑𝐶𝑖

𝑅

𝑟=1

𝑀

𝑚=1

𝐽

𝑗=1

𝐼

𝑖=1

) ∗ (𝑋𝑖𝑗𝑚𝑟 + 𝑋𝑖𝑗𝑟) (2) 

𝑀𝑖𝑛  𝑅𝑃𝐶 = ∑ ∑ 𝑃𝐶𝑟 ∗ 𝑌𝑗𝑟

𝐽

𝑗=1

𝐼

𝑖=1

 (3) 

𝑀𝑖𝑛  𝑇𝐸𝐶 = ∑ 𝐸𝐶𝑗

𝐽

𝑗=1

 (4) 

𝐸𝐶𝑗 = ∑ ∑ ∑ 𝑂𝐸𝐶𝑟 ∗ 𝑃𝑇𝑖𝑚𝑟 ∗ 𝑋𝑖𝑗𝑚𝑟 + (∑ 𝑆𝐸𝐶𝑟 ∗ 𝑌𝑗𝑟

𝑅

𝑟=1

𝑀

𝑚=1

𝐼

𝑖=1

𝑅

𝑟=1

) ∗ ( ∑ 𝐶𝑇𝑚

𝑀

𝑚=1

− ∑ ∑ ∑ 𝑃𝑇𝑖𝑚𝑟 ∗ 𝑋𝑖𝑗𝑚𝑟

𝑅

𝑟=1

)

𝐽

𝑗=1

𝐼

𝑖=1

 

(5) 

 

 

 

Decision 

Variables 

 

𝐶𝑇 Total cycle time. 

𝑅𝑂𝐶 Robots operational costs. 

𝑅𝑃𝐶 Robots purchasing costs. 

𝑇𝐸𝐶 Total energy consumption. 

𝑋𝑖𝑗𝑚𝑟  1, if the special task 𝑖 is assigned to the workstation 𝑗 and the robot type 𝑟 is allocated to the 

workstation 𝑗 for model 𝑚 of product, 0, otherwise. 

𝑋𝑖𝑗𝑟  1, if the common task 𝑖 is assigned to workstation 𝑗 and robot 𝑟 is assigned, 0, otherwise. 

𝑌𝑗𝑟  1, if the robot type 𝑟 is allocated to the workstation 𝑗, 0, otherwise. 

𝐸𝐶𝑗 Energy consumption of workstation 𝑗. 

𝐶𝑇𝑚 Cycle time for product model 𝑚. 



 

Table 1. Comparison table of the literature on the robotic assembly line balancing problem. 

 

Article 

No. of 

models 
Line types Objectives 

Solution 

Procedure 
Single Mixed Straight 

U-

shaped 

Two-

Sided 

Min. Energy 

Consumption 

Min. 

Cycle 

Time 

Min. no. 

of 

Stations 

Min. 

the 

Sequence 

Dependen

t 

Set Up 

Time 

Min. 

no. 

of 

Robot 

Cell 

Min. 

the 

Setup 

Robo

t 

Max. Line 

Efficiency 

[13]             
A branch and 

bound 

[16]             
Cutting plane 

algorithm 

[26]             GA 

[27]             
Hybrid genetic 

algorithm 

[28]             
Evaluation 

algorithm 

[22]             SA 

[29]             ACO, PSO, GA 

[30]             PSO 

[31]             
Cuckoo search, 

PSO 

[32]             PSO 

[24]             
NSGA II and 

MOPSO 

[14]             DE 

[12]             DE 

This 

study 
            

Goal programming 

and augmented ε-

contraint method 
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Eq. (1) is to minimize the cycle time; Eq. (2) is to minimize the robot setup and sequence 

dependent setup cost of the task; Eq. (3) is to minimize robot purchasing cost; Eq. (4) is to 

minimize energy consumption; Eq. (5) calculates the energy consumption of each workstation 

consists of each stations operation energy consumption and standby energy consumption, and the 

considered constraints are as blow: 

∑ ∑(𝑃𝑇𝑖𝑚𝑟 + 𝑆𝑒𝑇𝑖𝑟 + 𝑆𝑑𝑇𝑖) ∗ (𝑋𝑖𝑗𝑚𝑟 + 𝑋𝑖𝑗𝑟)

𝑅

𝑟=1

𝐼

𝑖=1

≤ 𝐶𝑇𝑚 , ∀𝑗 ∈ 𝐽, 𝑚 ∈ 𝑀 (6) 

∑ ∑ 𝑗 ∗ 𝑋ℎ𝑔𝑚𝑟

𝑅

𝑟=1

𝐽

𝑔=1

− ∑ ∑ 𝑗 ∗ 𝑋𝑖𝑗𝑚𝑟

𝑅

𝑟=1

𝐽

𝑗=1

≤ 0 
, ∀ℎ ∈ 𝑝𝑟𝑡(𝑖), 𝑚
∈ 𝑀 

(7) 

∑ 𝑌𝑗𝑟

𝑅

𝑟=1

≥ 2 , ∀𝑗 ∈ 𝐽 (8) 

∑ ∑ 𝑋𝑖𝑗𝑚𝑟 ≥ 2

𝑅

𝑟=1

𝐽

𝑗=1

 , ∀𝑖 ∈ 𝐼, 𝑚 ∈ 𝑀 (9) 

∑ 𝐿𝑅𝑟

𝑅

𝑟=1

∗ 𝑌𝑗𝑟 ≤ 𝐿𝑊𝑗 , ∀𝑗 ∈ 𝐽 (10) 

∑ 𝑊𝑅𝑟

𝑅

𝑟=1

∗ 𝑌𝑗𝑟 ≤ 𝑊𝑊𝑗 , ∀𝑗 ∈ 𝐽 (11) 

∑ ∑ 𝑌𝑗𝑟

𝑅

𝑟=1

≥ 1

𝐽

𝑗=1

  (12) 

𝑋𝑖𝑗𝑚𝑟  ∈ {0,1} 

, 𝑖 = 1, 2, … , 𝐼; 𝑗
= 1, 2, … , 𝐽 

𝑚 = 1, 2, … , 𝑀; 𝑟
= 1, 2, … , 𝑅 

(13) 

𝑋𝑖𝑗𝑟  ∈ {0,1} 
, 𝑖 = 1, 2, … , 𝐼; 𝑗
= 1, 2, … , 𝐽 

𝑟 = 1, 2, … , 𝑅 
(14) 

𝑌𝑗𝑟 ∈ {0,1} 
, 𝑗 = 1, 2, … , 𝐽; 𝑟
= 1, 2, … , 𝑅 

(15) 

Eq. (6) calculates the cycle time; Eq. (7) is the precedence constraint that ensures all precedence 

relations among tasks between workstations; Eq. (8) shows equal or more than two robots that 

can be assigned to workstations. Eq. (9) indicates equal or more than two tasks that can be 

assigned to workstations; Eq. (10) ensures no length overlapping of robot and at each 

workstations, and Eq. (11) ensures no width overlapping of robot and at each workstation. Eq. 

(12) shows that the total number of robots used, could be more than the number of workstations. 

Eqs. (13-15) indicate the binary variables. 
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2.2 Failure Rate Constraint for Each Robot 

 In real time, by increasing in robots’ processing time there would be a decreasing going in robot 

performances. Hence, we have considered a constraint, which limits the accepted failure ratio in 

each selected robot. The [36] has introduced the model as follows: 

Where 𝜆𝑟 indicates the initial failure in robot 𝑟; 𝑡𝑟 represents the processing time of each robot 

if purchase robot 𝑟 and assigne job 𝑖 in station 𝑗 from product 𝑚 to it.  

3. Multi-Objective Mathematical Programming 

In Multi-Objective Mathematical Programming (MMP), more than one objective exist to 

optimize and there is no single optimal solution to optimize all objectives. In these cases, finding 

the “most preferred” solution that would cover most of the objectives and optimize them is the 

solution. A multiple objective can be given in the following form [37]: 

𝑀𝑖𝑛 𝐹(𝑥) = [𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑚(𝑥)] 
 

                                   𝑆. 𝑡.    
𝑥 ∈ 𝑋 ⊂ 𝐼𝑅𝑛 

(17) 

In this article, two different methods are used to find the most preferred solution: Goal 

Programming method and Augmented 𝜀-Constraint method. 

3.1 The Goal Programming Method 

The Goal Programming (GP) is an important technique to solve Multi-Objective Decision-

Making (MODM) problems in finding a set of most preferred solutions. It was first presented by 

[37] and later on developed by other researchers [38-41]. The main purpose of GP is to minimize 

the deviations between the optimal solution of each objective and their aspiration levels. It can 

be expressed as given model: 

𝑀𝑖𝑛 ∑ 𝑤𝑗 ∗ (𝑑𝑗
+ + 𝑑𝑗

−)

𝑚

𝑗=1

 

𝑆. 𝑡.       𝑓𝑗(𝑥) − 𝑑𝑗
+ + 𝑑𝑗

− = 𝑔𝑗 ,        𝑗 = 1, … , 𝑚 

𝑑𝑗
+ ∗ 𝑑𝑗

− = 0, 𝑑𝑗
+, 𝑑𝑗

− ≥ 0,    𝑗 = 1, … , 𝑚   

𝑥 ∈ 𝑋. 

(18) 

Where 𝑔𝑗 indicates the goal for objective function 𝑓𝑗; 𝑑𝑗
+ and 𝑑𝑗

− represent the deviation variables 

under and over achievement of the 𝑗th goal. Based on Section 0, this article model in 

programming model is as given: 

𝐹𝑅(𝑡)𝑟 = 1 − 𝑒−λ𝑟𝑡𝑟 
𝑆. 𝑡. 

𝑡𝑟 = ∑ ∑ ∑ (𝑃𝑇𝑖𝑚𝑟) ∗ (𝑋𝑖𝑗𝑚𝑟 + 𝑋𝑖𝑗𝑟) ∗ 𝑌𝑗𝑟

𝑀

𝑚=1

𝐽

𝑗=1

𝐼

𝑖=1

 
, ∀𝑟 = 1, 2, … , 𝑅 (16) 
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𝑀𝑖𝑛 ∑ 𝑤𝑗 ∗ (𝑑𝑗
+ + 𝑑𝑗

−)

5

𝑗=1

 

                                                    𝑆. 𝑡.     
𝐶𝑇 − 𝑑1

+ + 𝑑1
− = 𝐶𝑇𝑚𝑖𝑛   

𝑅𝑂𝐶 − 𝑑2
+ + 𝑑2

− = 𝑅𝑂𝐶𝑚𝑖𝑛   
𝑅𝑃𝐶 − 𝑑3

+ + 𝑑3
− = 𝑅𝑃𝐶𝑚𝑖𝑛  

𝑇𝐸𝐶 − 𝑑2
+ + 𝑑2

− = 𝑇𝐸𝐶𝑚𝑖𝑛  
𝑑𝑗

+ ∗ 𝑑𝑗
− = 0, 𝑑𝑗

+, 𝑑𝑗
− ≥ 0,    𝑗 = 1, … , 4   

𝑥 ∈ 𝑋. 

(19) 

3.2 The Augmented 𝜺-Constraint Method 

The augmented 𝜀-constraint method is a developed version of 𝜀-constraint method and has it's 

own advantages. In this method, for all 𝑝 − 1 objective functions except the main one, payoff 

table is calculated leading to better results. To calculate the payoff table, the maximum and 

minimum solutions for each objective function would be calculated. Next, the range of each 

function is given and due to the given range, the augmented 𝜀-constraint program is calculated 

as follows: 

𝑀𝑖𝑛  𝑓1(𝑥) − 𝛿 ∗ (
𝑆2

𝑟2
+

𝑆3

𝑟3
+ ⋯ +

𝑆𝑝

𝑟𝑝
) 

                                           𝑆. 𝑡. 
𝑓2 + 𝑆2 = 𝜀2 

𝑓3 + 𝑆3 = 𝜀3 

… 

𝑓𝑝 + 𝑆𝑝 = 𝜀𝑝 

𝑟𝑝 = 𝑓𝑝
𝑚𝑎𝑥 − 𝑓𝑝

𝑚𝑖𝑛 , 𝑗 = 2, … , 𝑝 

𝜀𝑝 = 𝑓𝑝
𝑚𝑎𝑥 −

𝑟𝑝

𝑝
∗ 𝑗, 𝑗 = 2, … , 𝑝 . 

(20) 

Where 𝛿 is a small number and usually between 10−3 and 10−6; 𝜀𝑝 is the decision makers 

accepted tolerance in 𝑝th objective function; and 𝑗 is total objective function interval grids points. 

As the presented model, therefore, the article problem in this model is as follows: 

Min  𝐶𝑇 − δ ∗ (
S2

r2
+

S3

r3
+

S4

r4
) 

                                        𝑆. 𝑡. 
𝑅𝑂𝐶 + 𝑆2 = 𝜀2 
𝑅𝑃𝐶 + 𝑆3 = 𝜀3 
𝑇𝐸𝐶 + 𝑆4 = 𝜀4 

𝑟𝑝 = 𝑓𝑝
𝑚𝑎𝑥 − 𝑓𝑝

𝑚𝑖𝑛  , 𝑝 = 2, 3, 4 

𝜀𝑝 = 𝑓𝑝
𝑚𝑎𝑥 −

𝑟𝑝

𝑝
∗ 𝑗, 𝑝, 𝑗 = 2, 3, 4 . 

(21) 
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4. Illustrative Example and Results Analysis 

4.1 Test Problems 

This section presents a case study of illustrated model. Consider a manufacture which has 8 kind 

of robots (𝑟 = 8) that can be purchased, producing 2 kinds of products (𝑚 = 2) and need to be 

assigned to 2 available workstations (𝑗 = 2) where exists 8 assembly tasks (𝑖 = 8) with respect to 

precedence processes that should be assigned to the available workstations and purchase robots. 

The following table represents the payoff table of objectives: 

Table 2. Payoff table of the objectives. 

𝐶𝑇 (𝑆𝑒𝑐) 𝑅𝑂𝐶 ($) 𝑅𝑃𝐶 ($) 𝑇𝐸𝐶 (𝐾𝑊) 

1714 20000 1400000 208000 

1718 8000 1400000 210660 

1717 20000 1400000 207960 

1722 30000 2000000 106260 

 

In the following, we have used goal programming and augmented ε-constraint method to find the 

Pareto optimal solutions for each method and the results are given in following tables: 

Table 3. Goal programming method optimal Pareto solutions. 

Solution Number 𝐶𝑇 𝑅𝑂𝐶 𝑅𝑃𝐶 𝑇𝐸𝐶 

1 1715 8000 1410000 106260 

2 1717 20000 2000000 106380 

3 1718.9659 22703.1 2000000 106260 

4 1720 23000 2000000 106350 

5 1722 30000 2000000 106260 
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Table 4. Augmented ε-constraint method optimal Pareto solutions. 

Solution Number 𝐶𝑇 𝑅𝑂𝐶 𝑅𝑃𝐶 𝑇𝐸𝐶 

1 1714 20000 1400000 208000 

2 1714 20000 1450000 199575 

3 1715 18000 1400000 210640 

4 1715 18000 1500000 185240 

5 1715 19000 1400000 209480 

6 1716 14000 1400000 209640 

7 1716 17000 1450000 200175 

8 1717 12000 1450000 203480 

9 1717 12000 1500000 187145 

10 1717 13000 1400000 210400 

11 1718 8000 1400000 210660 

12 1718 8000 1500000 185580 

13 1718 10000 1450000 202755 

14 1718 11000 1400000 210500 

 

 

 

Figure 3. Operational optimal solutions of ε-augmented 

constraint. 

Figure 4.  Operational optimal solutions of goal 

programming. 
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4.2 Comparison Metrics  

In order to compare the efficiency of augmented ε-constraint method and goal programming 

method, the various performance metrics are reported and we have used generational number of 

Pareto solutions (N), distance (GD), spacing (S), and spread (Δ) in our work and explained briefly 

as follows: 

Generational distance: to find a solution of Q belongs to the set of P or not, the Generational 

Distance (GD) evaluates an average distance of the solutions of Q from P, as follows: 

 

The parameter 𝑑𝑖  is the Euclidean distance (in the objective space) between the solution 𝑖 ∈ 𝑄 

and the nearest member of 𝑃∗: 

𝑑𝑖 = min
𝑘∈|𝑃∗|

√ ∑ (𝑓𝑚
(𝑖)

− 𝑓𝑚
∗(𝑖)

)2

𝑀

𝑚=1

 . (23) 

Where 𝑓𝑚
∗(𝑖)

 is the thm objective function of the thK member of 𝑃∗. Intuitively, an algorithm 

hasing a small value of GD is better. 

Spacing. The spacing metric (𝑆𝑝) [42] is calculated with a relative distance measure between 

consecutive solutions in the obtained non-dominated set as follows: 

𝑆𝑝 = √
1

|𝑄|
∑(𝑑𝑖 − 𝑑̅)2

|𝑄|

𝑖=1

 . (24) 

Where 𝑑𝑖 = min
𝑘⊆𝑄∧𝑘≠𝑖

{∑ |𝑓𝑚
(𝑖)

− 𝑓𝑚
(𝑘)

|𝑀
𝑚=1 } and 𝑑̅ is the mean value of the above distance 

measure 𝑑̅ = ∑ 𝑑𝑖
|𝑄|⁄

|𝑄|
𝑖=1 . The above metric measures the standard deviations of different 𝑑𝑖 

values. When the solutions are nearly spaced, the corresponding distance measure will be small. 

Thus, an algorithm finding a set of non-dominated solutions has the smaller spacing (S) is better. 

Spread. The spread metric (Δ) [43] measures the extent of spread achieved among the obtained 

solutions. Then, the following metric is to calculate the non-uniformity in the distribution: 

 

GD =
(∑ di

p|Q|
i=1 )1/p

|Q|
 . (22) 
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Δ =
∑ dm

eM
m=1 + ∑ |di − d̅|

|Q|
i=1

∑ dm
e + |Q|d̅M

m=1

 . (25) 

Where 𝑑𝑖 is Euclidean distance between neighboring solutions that having the mean value 𝑑̅. The 

parameter 𝑑𝑚
𝑒  is the distance between the extreme solutions of 𝑃∗ and 𝑄 corresponding to thm  

objective function. An algorithm finding a smaller value of Δ is able to find a better diverse set 

of non-dominated solutions. 

Table 5. Comparison of algorithms with respect to illustrative example. 

 𝑁 𝐺𝐷 𝑆𝑝 Δ 

Augmented ε-constraint method  14 29568.07245 0.218498741 0.281403455 

Goal programming 5 240097.4139 0.489938335 0.444503484 

 

5. Conclusion 

Most of the companies that have U-shaped robotic mixed assembly line generally come across 

with URMALB-II in practice. Although there are many studies about assembly line balancing 

problems, the papers on URMALB-II are very few. Our model tries to determine the optimal or 

near optimal configurations with respect to considered objectives as minimizing the cycle time, 

robot purchasing costs, robot operational costs, and energy consumption. In this paper, we used 

two different multi-objective algorithms to solve the presented model. The first algorithm was 

weighted goal programming and the second algorithm was augmented ε-constraint method. To 

solve the problem, we coded the methods in GAMS. In continue, the performance of algorithms 

had compared with each other. As shown in Table 5, the augmented ε-constraint produced more 

number of Pareto points than GP. In Generational Distance (GD), GP had a better solution but in 

other parameters (spacing and spread), better solutions come from augmented ε-constraint. There 

are several interesting points for future work, developing meta-heuristic algorithms to solve the 

problem and considering the real life situations such as zoning constrain and proposing a dynamic 

model base on the online data.  
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