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A B S T R A C T 

This paper deals with the number theoretic properties of non-unit elements of the ring 𝑍𝑛. Let 𝐷 be 

the set of all non-trivial divisors of a positive integer 𝑛. Let 𝐷1 and 𝐷2 be the subsets of 𝐷 having the 

least common multiple which are incongruent to zero modulo 𝑛 with every other element of 𝐷 and 

congruent to zero modulo 𝑛 with at least one another element of 𝐷, respectively. Then 𝐷 can be 

written as the disjoint union of 𝐷1 and 𝐷2 in 𝑍𝑛. We explore the results on these sets based on all the 

characterizations of 𝑛. We obtain a formula for enumerating the cardinality of the set of all non-unit 

elements in 𝑍𝑛 whose principal ideals are equal. Further, we present an algorithm for enumerating 

these sets of all non-unit elements. 
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1. Introduction 

Number theory is a branch of mathematics and it is devoted primarily to the study of integers and 

the properties of counting numbers. The positive integers are undoubtedly man’s first 

mathematical creation. In 17th century Fermat was the first to discover the deep properties of 

integers. Nathanson [1] introduced some specific arithmetical concepts of number theory, in 

particular the notion of congruence of numbers in graph theory and motivated the special way 

for emerging of a new class of undirected simple graphs, namely arithmetic graphs. 

The set 𝑈𝑛 contains all the positive integers which are not exceeding 𝑛 and relatively prime to 𝑛, 

called the unit elements and cardinality of the set 𝑈𝑛 is 𝜑(𝑛), the Euler totient function [2]. The 

set of all elements in the ring 𝑍𝑛, the ring of integers modulo 𝑛 can be written as the disjoint 
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union of the sets, the set of all unit elements, 𝑈𝑛 , and the set of all zero divisors, 𝑍(𝑍𝑛) of 𝑍𝑛 [3-

4]. The non-zero elements 𝑎 and 𝑏 in a ring 𝑅 are said to be zero divisors, if 𝑎. 𝑏 = 0. The set of 

all non-zero zero divisors in 𝑅 is denoted by 𝑍(𝑅)∗ = 𝑍(𝑅) \ {0} and we called 𝑍(𝑅) as the set of 

non-unit elements.  

Let 𝑑 be an element in 𝑍𝑛, then the principal ideal of 𝑑 in 𝑍𝑛 is (𝑑) = {0, 𝑑, 2𝑑, … , 𝑛 − 𝑑} and 

cardinality of (𝑑) is the number elements in (𝑑), denoted by |(𝑑)|. In this paper, we mainly 

derived a formula for enumerating the cardinality of the set of all non-unit elements in 𝑍𝑛 whose 

principal ideals are equal and also we present an algorithm for enumerating these sets of all non-

unit elements.   

2. Basic Properties of the Non-Trivial Divisors of 𝒏 in 𝒁𝒏 

Definition 1. Every positive integer 𝑛 > 1 can be written as 𝑛 = 𝑝1
𝛼1𝑝2

𝛼2 … 𝑝𝑚
𝛼𝑚, where 𝑝1 < 𝑝2 <

⋯ < 𝑝𝑚 are primes, 𝛼𝑖 is a positive integer for every 𝑖 = 1, 2, … , 𝑚 and 𝑚 ≥ 1, which is called 

the canonical representation of a positive integer 𝑛. 

Definition 2. Let 𝑎, 𝑏, and 𝑚 be any positive integers. If 𝑛 divides the difference 𝑎 − 𝑏, then we 

said that 𝑎 is congruent to 𝑏 modulo 𝑛 and we write 𝑎 ≡ 𝑏 (mod 𝑛). In other words, it is equivalent 

to the divisibility relation  𝑛|(𝑎 − 𝑏). If 𝑛 does not divide the difference 𝑎 − 𝑏, then we say that 

𝑎 is incongruent to 𝑏 modulo 𝑛 and we write 𝑎 ≢ 𝑏 (mod 𝑛). 

Definition 3. If a positive integer 𝑛 can be written as 𝑛 = 𝑐𝑑, for some positive integers 𝑐 and 𝑑. 

Then we say that 𝑑 divides 𝑛 or 𝑑 is a divisor of 𝑛 and written as 𝑑|𝑛. Otherwise, we say that 𝑑 

does not divide 𝑛 or 𝑑 is not a divisor of  𝑛 and written as 𝑑 ∤ 𝑛. A divisor 𝑑 of 𝑛 is called trivial 

if 𝑑 ∈ {1, 𝑛}, otherwise 𝑑 is called non-trivial divisor of 𝑛.  

Let the set 𝐷 denotes the set of all non-trivial divisors of 𝑛, i.e., 𝐷 = {𝑑 ∶ 𝑑|𝑛 , 𝑑 ∈ 𝑍𝑛 and  𝑑 ≠ 1,

𝑛}. The following theorem represents partition of the set 𝐷 in 𝑍𝑛.   

Theorem 1. Let 𝐷1 and 𝐷2 be the sets of all elements in 𝐷 having the least common multiple 

which is incongruent to zero modulo 𝑛 with every other element of 𝐷 and congruent to zero 

modulo 𝑛 with at least one another element of 𝐷, respectively. Then 𝐷 can be written as the 

disjoint union of 𝐷1 and 𝐷2 in 𝑍𝑛. 

Proof. Let 𝑛 > 1 be any positive integer. Then for any 𝑑1 ≠ 𝑑2 in 𝐷, we have 

  𝐷1 = {𝑑1 ∈ 𝐷 ∶ [𝑑1, 𝑑′] ≢ 0 (mod 𝑛), for all 𝑑′ ≠ 𝑑1 ∈ 𝐷} and 

  𝐷2 = {𝑑2 ∈ 𝐷 ∶ [𝑑2, 𝑑′] ≡ 0 (mod 𝑛),   for some  𝑑′ ≠ 𝑑2 ∈ 𝐷}.   

Clearly 𝐷 is the union of 𝐷1 and 𝐷2, i.e., 𝐷 = 𝐷1 ∪ 𝐷2. Now, we have to show that 𝐷1 and 𝐷2 are 

disjoint. Suppose 𝐷1 ∩ 𝐷2 ≠ ∅, let 𝑞 ∈ 𝐷1 ∩ 𝐷2. Then 𝑞 ∈ 𝐷1 and 𝑞 ∈ 𝐷2. If 𝑞 ∈ 𝐷1, then 𝑞 can be 

written as 𝑞 = 𝑝1
𝛼1−1𝑝2

𝛼2−1 … 𝑝𝑚
𝛼𝑚−1. Similarly, if 𝑞 ∈ 𝐷2, then 𝑞 can be written as 𝑞 =
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𝑝1𝑝2 … 𝑝𝑚. Therefore, 𝑝1
𝛼1−1𝑝2

𝛼2−1 … 𝑝𝑚
𝛼𝑚−1 = 𝑝1𝑝2 … 𝑝𝑚. This implies that 𝛼𝑖 − 1 = 1, ∀  1 ≤

𝑖 ≤ 𝑚. Therefore 𝛼𝑖 = 2, ∀ 1 ≤ 𝑖 ≤ 𝑚 and hence 𝑛 = 𝑝1
2𝑝2

2 … 𝑝𝑚
2, which shows that 𝑞 in 𝐷1 but 

not in 𝐷2 from the definitions of 𝐷1 and 𝐷2. This is a contradiction to the fact that 𝑞 ∈ 𝐷2. Hence 

the proof.             

Example 1. In the ring 𝑍12, the set of all non-trivial divisors of 12 is 𝐷 = {2, 3, 4, 6}. The sets 

𝐷1 and 𝐷2 are 𝐷1 = {2} and 𝐷2 = { 3, 4, 6}, which clearly shows that 𝐷 is the disjoint union of 𝐷1 

and 𝐷2.     

Lemma 1. In the ring 𝑍𝑛, for every positive integer 𝑛 and every prime 𝑝, we have 

 𝐷 = ∅, if 𝑛 = 𝑝. 

 𝐷1 = 𝐷 and 𝐷2 = ∅, if  𝑛 = 𝑝𝛼 with 𝛼 > 1. 

 𝐷1 = ∅ and 𝐷2 = 𝐷, if  𝑛 = 𝑝1𝑝2 … 𝑝𝑚 with 𝑚 > 1. 

 𝐷 = 𝐷1 ∪ 𝐷2, both 𝐷1 and 𝐷2 are non-empty, if 𝑛 = 𝑝1
𝛼1𝑝2

𝛼2 . . . 𝑝𝑚
𝛼𝑚, where 𝛼𝑖 is a positive integer, 

for all 1 ≤ 𝑖 ≤ 𝑚 and 𝛼1 + 𝛼2 + ⋯ + 𝛼𝑚 > 𝑚 with 𝑚 ≥ 2. 

Proof. 

 If 𝑛 = 𝑝, then there does not exist non-trivial divisors of 𝑛 in the ring 𝑍𝑛. Clearly 𝐷 = ∅. 

 If 𝑛 = 𝑝𝛼 with 𝛼 > 1, then the set of all non-trivial divisors of 𝑛 in the ring 𝑍𝑛 is    𝐷 = {𝑝, 𝑝2,

… , 𝑝𝛼−1}. Let 𝑥 and 𝑦 be any two distinct arbitrary elements in 𝐷. Then there exist two distinct 

positive integers 𝑟 and 𝑠, 1 ≤ 𝑟, 𝑠 < 𝛼 such that 𝑥 = 𝑝𝑟 and 𝑦 = 𝑝𝑠. Now, the least common 

multiple of 𝑥 and 𝑦 is [𝑥, 𝑦] = [𝑝𝑟, 𝑝𝑠] = 𝑝𝑡 ≢ 0 (mod  𝑛) , where 𝑡 = max {𝑟, 𝑠}. This shows 

that 𝐷 = 𝐷1. 

 If 𝑛 = 𝑝1𝑝2 … 𝑝𝑚 with 𝑚 > 1, then the set of all non-trivial divisors 𝐷 of 𝑛 in the ring 𝑍𝑛 is, 𝐷 =

{𝑝1, 𝑝2, … , 𝑝𝑚, 𝑝1𝑝2, 𝑝1𝑝3, … , 𝑝𝑚−1𝑝𝑚, … , 𝑝1𝑝2 … 𝑝𝑚−1, … , 𝑝2𝑝3 … 𝑝𝑚}. Suppose that 𝐷1 ≠

∅, we assume  𝑞 ∈ 𝐷1. By the definition of 𝐷1, element 𝑞 can be written as 𝑞 =

𝑝1
1−1𝑝2

1−1 … 𝑝𝑚
1−1, which contradicts to the fact that 𝐷 contains non-trivial divisors of 𝑛 in the 

ring 𝑍𝑛. This completes the proof. 

 If 𝑛 = 𝑝1
𝛼1𝑝2

𝛼2 . . . 𝑝𝑚
𝛼𝑚 with 𝛼1 + 𝛼2 + ⋯ + 𝛼𝑚 > 𝑚 and 𝑚 ≥ 2. Now, we have to show that 𝐷1 and 

𝐷2 are non-empty. 

Subcase 1. Suppose that both  𝐷1 and  𝐷2 are empty. Then by the Theorem 1, 𝐷 is empty. But, 

we know that the total number of non-trivial divisors of 𝑛 are(𝛼1 + 1)(𝛼2 + 1) … 

(𝛼𝑚 + 1) − 2 > 4, which contradicts to the fact that 𝐷 is empty.  

Subcase 2. Suppose that 𝐷1 is non-empty and 𝐷2 is empty. Without loss of generality, assume 

that 𝑛 = 𝑝2𝑞. Then the set  𝐷 of non-trivial divisors of 𝑛 in the ring 𝑍𝑛 is 𝐷 = {𝑝, 𝑝2, 𝑞, 𝑝𝑞}. 

So, there exists  𝑝2 ∈ 𝐷 such that whose the least common multiple is congruent to zero modulo  

𝑛 with 𝑞 ∈ 𝐷, i.e., [𝑝2, 𝑞] ≡ 0 (mod 𝑛). This shows that 𝑝2 ∈ 𝐷2, which contradicts to the 

hypothesis that 𝐷2 is empty.  
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Subcase 3. Suppose that 𝐷1 is empty and 𝐷2 is non-empty. Similarly in subcase 2, assume 𝑛 =

𝑝2𝑞. Then the set 𝐷 of non-trivial divisors of 𝑛 in the ring 𝑍𝑛 is 𝐷 = {𝑝, 𝑝2, 𝑞, 𝑝𝑞}. We have, 

there exists 𝑝 ∈ 𝐷 such that whose least common multiple is incongruent to zero modulo 𝑛 with 

every element in 𝐷, i.e., [𝑝, 𝑑] ≢ 0 (mod 𝑛), ∀ 𝑑 ≠ 𝑝 ∈ 𝐷. This shows that 𝑝 ∈ 𝐷1, which 

contradicts to the hypothesis that 𝐷1 is empty.    

Hence the proof follows from the above three subcases.                                               

Theorem 2. The cardinality of the set of all non-zero zero divisors 𝑍(𝑍𝑛)∗ in the ring 𝑍𝑛 is 

|𝑍(𝑍𝑛)∗| = 𝑛 − 𝜑(𝑛) − 1. 

Proof. For each 𝑛 > 1, we have 𝑍𝑛 = 𝑈𝑛 ∪ 𝑍(𝑍𝑛) and 𝑈𝑛 ∩ 𝑍(𝑍𝑛) = ∅. Therefore, |𝑍𝑛| =

|𝑈𝑛 ∪ 𝑍(𝑍𝑛)| and |𝑍(𝑍𝑛)| =  𝑛 − 𝜑(𝑛). 

But 𝑍(𝑍𝑛)∗ = 𝑍(𝑍𝑛)\{0} and hence |𝑍(𝑍𝑛)∗| = 𝑛 − 𝜑(𝑛) − 1.                                                                             

Lemma 2. Let 𝑥 be any element in 𝑃(𝐷1) = {𝑥 ∈ 𝑍𝑛 ∶  (𝑥) = (𝑑), for some 𝑑 ∈ 𝐷1}. Then [𝑥, 𝑦] ≢

0(mod 𝑛), for every 𝑦 ≠ 𝑥 in 𝑍(𝑍𝑛)∗. 

Proof. From the definition of 𝐷1, we have 𝐷1 = {𝑑1 ∈ 𝐷 ∶ [𝑑1, 𝑑′] ≢ 0 (mod 𝑛), for all 𝑑′ ≠ 𝑑1 ∈

𝐷}, where 𝐷 is the set of all non-trivial divisors of a positive integer 𝑛. This implies that the proof 

follows.                                                                                                                                                                

Theorem 3. Let 𝑃(𝐷1) = {𝑥 ∈ 𝑍𝑛 ∶  (𝑥) = (𝑑), for some 𝑑 ∈ 𝐷1} and 𝑃(𝐷2) = {𝑥 ∈ 𝑍𝑛 ∶  (𝑥) =

(𝑑), for some 𝑑 ∈ 𝐷2}. Then the set of all non-zero zero divisors 𝑍(𝑍𝑛)∗ of the ring 𝑍𝑛 can be 

partitioned into the sets 𝑃(𝐷1) and 𝑃(𝐷2). 

Proof. The set 𝐷 of all non-trivial divisors of a positive integer 𝑛 can be written as the disjoint 

union of the sets 𝐷1 and 𝐷2. This implies the set 𝑍(𝑍𝑛)∗ can be partitioned into the sets 𝑃(𝐷1) and 

𝑃(𝐷2) in the ring 𝑍𝑛. (By the Theorem 1). 

Example 2. In the ring 𝑍12, the set of all non-zero zero divisors is 𝑍(𝑍12)∗ = {2, 3, 4, 6, 8, 9,

10}. The sets 𝑃(𝐷1) = {2, 10} and 𝑃(𝐷2) = {3, 4, 6, 8, 9}, which clearly shows that 𝑍(𝑍12)∗ is the 

disjoint union of 𝑃(𝐷1) and 𝑃(𝐷2), because 𝐷 = {2, 3, 4, 6}, 𝐷1 = {2} and 𝐷2 = {3, 4, 6}.                                                                                                                          

Corollary 1. In the ring 𝑍𝑛, for every positive integer 𝑛 and every prime 𝑝, we have 

 𝑍(𝑍𝑛)∗ = ∅, if  𝑛 = 𝑝. 

 𝑍(𝑍𝑛)∗ = 𝑃(𝐷1), if  𝑛 = 𝑝𝛼 with  𝛼 > 1. 

 𝑍(𝑍𝑛)∗ = 𝑃(𝐷2), if  𝑛 = 𝑝1𝑝2 … 𝑝𝑚, with  𝑚 > 1. 

 𝑍(𝑍𝑛)∗ = 𝑃(𝐷1) ∪ 𝑃(𝐷2), both 𝑃(𝐷1) and 𝑃(𝐷2) are non-empty, if  𝑛 = 𝑝1
𝛼1𝑝2

𝛼2 . . . 𝑝𝑚
𝛼𝑚, where 𝛼𝑖 

is a positive integer, for all 1 ≤ 𝑖 ≤ 𝑚 and 𝛼1 + 𝛼2 + ⋯ + 𝛼𝑚 > 𝑚 with 𝑚 ≥ 2. 

Proof. The proof directly follows from Lemma 1.                                                             
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Lemma 3. For every non-trivial divisor 𝑑 of 𝑛, the cardinality of the set (𝑑), principal ideal of 𝑑 

in the ring 𝑍𝑛 is |(𝑑)| =
𝑛

𝑑
. 

Proof. We have, the principal ideal of 𝑑 in the ring 𝑍𝑛 is (𝑑) = {0, 𝑑, 2𝑑, … , 𝑛 − 𝑑}. It can be 

written as (𝑑) = {0, 1𝑑, 2𝑑, … , (
𝑛

𝑑
− 1) 𝑑}. Clearly, there is a one-to-one correspondence 

between (𝑑) and {0, 1, 2, … ,
𝑛

𝑑
− 1}. So, the cardinality of the set (𝑑) is 

𝑛

𝑑
.                                                                                          

3. Enumeration of Non-Unit Elements in 𝒁𝒏 Whose Principal Ideals Are Equal 

In this section, we partition the set (𝑑) principal ideal of 𝑑, which is the union of the sets 𝑆𝑑 and 

𝑇𝑑 for every non-trivial divisor 𝑑 of 𝑛, where 𝑆𝑑 = {𝑟𝑑 ∈ 𝑍𝑛: (𝑟𝑑) = (𝑑), 1 ≤ 𝑟 <
𝑛

𝑑
} and 𝑇𝑑 =

{𝑟𝑑 ∈ 𝑍𝑛: (𝑟𝑑) ≠ (𝑑), 1 ≤ 𝑟 <
𝑛

𝑑
 }. Also, we define the set 𝑆𝑑

′ = {𝑟𝑑 ∈ 𝑍𝑛:  ( 𝑟𝑑,   𝑛) = 𝑑, 1 ≤ 𝑟 <
𝑛

𝑑
} and proved that 𝑆𝑑 = 𝑆𝑑

′ for every non-trivial divisor 𝑑 of 𝑛. Next we obtained a formula for 

enumerating the cardinality of the set 𝑆𝑑 for all  𝑑 in 𝐷.  

Theorem 4. Let 𝑆𝑑 = {𝑟𝑑 ∈ 𝑍𝑛: (𝑟𝑑) = (𝑑), 1 ≤ 𝑟 <
𝑛

𝑑
} and 𝑇𝑑 = {𝑟𝑑 ∈ 𝑍𝑛: (𝑟𝑑) ≠ (𝑑), 1 ≤ 𝑟 <

𝑛

𝑑
 }, for all 𝑑 in 𝐷. Then (𝑑) = 𝑆𝑑 ∪ 𝑇𝑑, where 𝑆𝑑 ∩ 𝑇𝑑 = ∅. 

Proof. Since (𝑑) in the ring  𝑍𝑛 consists of all the multiples of 𝑑 in 𝑍𝑛 and (𝑑) = (𝑛 − 𝑑), where 

𝑛 − 𝑑 ∈ (𝑑) in 𝑍𝑛, for all 𝑑 in 𝐷. The total number of elements in (𝑑) in the ring 𝑍𝑛 can be written 

as the disjoint union of two sets such that one of sets is consisting of all elements in 𝑍𝑛, whose 

principal ideals are equal to (𝑑) and the another set is consisting of all elements in 𝑍𝑛, whose 

principal ideals are not equal to (𝑑) in the ring 𝑍𝑛, that is 

(𝑑) = {𝑟𝑑 ∈ 𝑍𝑛: (𝑟𝑑) = (𝑑), 1 ≤ 𝑟 <
𝑛

𝑑
} ∪ {𝑟𝑑 ∈ 𝑍𝑛: (𝑟𝑑) ≠ (𝑑), 1 ≤ 𝑟 <

𝑛

𝑑
}. 

Setting  𝑆𝑑 = {𝑟𝑑 ∈ 𝑍𝑛: (𝑟𝑑) = (𝑑), 1 ≤ 𝑟 <
𝑛

𝑑
} and 𝑇𝑑 = {𝑟𝑑 ∈ 𝑍𝑛: (𝑟𝑑) ≠ (𝑑), 1 ≤ 𝑟 <

𝑛

𝑑
}. 

Hence (𝑑) = 𝑆𝑑 ∪ 𝑇𝑑.                                                                                                      

Notations 1. For every non-trivial divisor 𝑑 of  𝑛 in the ring 𝑍𝑛, we define the set 𝑆𝑑
′ as 𝑆𝑑

′ =

{𝑟𝑑 ∈ 𝑍𝑛:  ( 𝑟𝑑,   𝑛) = 𝑑, 1 ≤ 𝑟 <
𝑛

𝑑
} = {𝑟𝑑 ∈ 𝑍𝑛 : (𝑟,

𝑛

𝑑
) = 1, 1 ≤ 𝑟 <

𝑛

𝑑
}.                                                                                                                       

Theorem 5. [5]. Let 𝐴 and 𝐵 be any two non-empty sets. Then 𝐴 = 𝐵 if and only if |𝐴| = |𝐵| and 

𝐴 ⊂ 𝐵.                                                                                                                                        

Theorem 6. Let 𝑑 in 𝑆𝑑
′ of the ring 𝑍𝑛. For any 𝑟𝑑 in 𝑆𝑑

′ with (𝑟,
𝑛

𝑑
) = 1, 1 < 𝑟 <

𝑛

𝑑
, we have 

(𝑑) = (𝑟𝑑), where 𝑑 is a non-trivial divisor of 𝑛. 

Proof. We define a function 𝑔: (𝑑) ⟶ (𝑟𝑑) by the relation  𝑔(𝑑) = 𝑟𝑑, ∀ 𝑑 ∈ (𝑑). 
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 For 𝑥, 𝑦 ∈ (𝑑), we have  𝑔(𝑥) = 𝑔(𝑦). This implies that  𝑟𝑥 = 𝑟𝑦, where  𝑟 is a unit in  𝑍𝑛

𝑑
, 

because (𝑟,
𝑛

𝑑
) = 1. So there exists  𝑟−1 ∈ 𝑍𝑛

𝑑
 such that  𝑟𝑟−1 = 1.     

Now,  𝑟−1(𝑟𝑥) = 𝑟−1(𝑟𝑦)   

 ⇒ (𝑟−1𝑟)𝑥 = (𝑟−1𝑟)𝑦   

⇒ 1. 𝑥 = 1. 𝑦 

⇒  𝑥 = 𝑦. 

This shows that 𝑔 is one-to-one function. 

 For each unit element 𝑟 in 𝑍𝑛

𝑑
, there exists  𝑟−1 in  𝑍𝑛

𝑑
. For each  𝑟−1(𝑟𝑑) ∈ (𝑟𝑑), there exists  𝑟−1𝑑 ∈

(𝑑) such that 𝑔(𝑟−1𝑑) = 𝑟(𝑟−1𝑑) = (𝑟𝑟−1)𝑑  = 𝑑. 

This shows that 𝑔 is onto function. 

Thus there exists a bijection between (𝑑) and (𝑟𝑑), when (𝑟,
𝑛

𝑑
) = 1. This implies that |(𝑑)| =

|(𝑟𝑑)|, we have (𝑟𝑑) ⊂ (𝑑) in the ring 𝑍𝑛 and hence by the Theorem 5, (𝑑) = (𝑟𝑑).                                                                                                       

Corollary 2. For any non-trivial divisor 𝑑 of  𝑛 and for two distinct elements 𝑥 and 𝑦 in 𝑆𝑑
′ of  

𝑍𝑛, we have (𝑥) = (𝑦). 

Proof. From the definition of 𝑆𝑑
′, 𝑆𝑑

′ = {𝑟𝑑 ∈ 𝑍𝑛 : (𝑟,
𝑛

𝑑
) = 1, 1 ≤ 𝑟 <

𝑛

𝑑
} and from Theorem 5, 

(𝑑) = (𝑟𝑑), for all 𝑟𝑑 in 𝑆𝑑
′ and for any non-trivial divisor 𝑑 of 𝑛. This implies that the proof 

follows.                                                           

Theorem 7. For any non-trivial divisor 𝑑 of  𝑛, we have 𝑆𝑑 = 𝑆𝑑
′. 

Proof. We know that 𝑆𝑑  = {𝑟𝑑 ∈ 𝑍𝑛: (𝑟𝑑) = (𝑑), 1 ≤ 𝑟 <
𝑛

𝑑
} and               

𝑆𝑑
′ = {𝑟𝑑 ∈ 𝑍𝑛 : (𝑟,

𝑛

𝑑
) = 1, 1 ≤ 𝑟 <

𝑛

𝑑
}. 

Clearly, from the Corollary 2, we have 𝑆𝑑
′ ⊆ 𝑆𝑑. Now we prove that the another inclusion 𝑆𝑑 ⊆

𝑆𝑑
′. For this let 𝑥 ∈ 𝑆𝑑, then there exists 𝑟, 1 < 𝑟 <

𝑛

𝑑
 such that 𝑥 = 𝑟𝑑. Now, it is enough to show 

that 𝑥 ∈ 𝑆𝑑
′. If possible, assume that 𝑥 ∉ 𝑆𝑑

′.  

⇒     (𝑟,
𝑛

𝑑
) ≠ 1.          

⇒  (𝑟𝑑, 𝑛) ≠ 𝑑.  

⇒       (𝑟𝑑) ⊂ (𝑑),    

which contradicts to the fact that (𝑟𝑑) = (𝑑). This implies that our assumption is not true. Hence 

𝑆𝑑 = 𝑆𝑑
′.                                                                                                                



83                  Number theoretic properties of the commutative ring 𝒁𝒏 

Theorem 8. For any non-trivial divisor 𝑑 of 𝑛, the cardinality of the set 𝑆𝑑 in the ring 𝑍𝑛 is |𝑆𝑑| =

𝜑 (
𝑛

𝑑
). 

Proof. By the definition, 𝑆𝑑 and 𝑆𝑑
′
 are two non-empty subsets of 𝑍𝑛 and by the Theorem 7, 𝑆𝑑 

and 𝑆𝑑
′ are equivalent. So, each element 𝑟𝑑 ∈ {0, 1, 2, … , 𝑛 − 1} has a unique highest common 

factor with 𝑛 and therefore belongs to one and only one of the sets 𝑆𝑑. This means that the subsets  

𝑆𝑑’s forms a partition of 𝑍(𝑍𝑛)∗.      

Now, by the definition of 𝑆𝑑, we have 𝑠 ∈ 𝑆𝑑
′ if and only if (𝑠, 𝑛) = 𝑑 if and only if (𝑟𝑑, 𝑛) = 𝑑, 

where 𝑠 = 𝑟𝑑 if and only if  (𝑟,
𝑛

𝑑
) = 1, 1 ≤ 𝑟 <

𝑛

𝑑
. Therefore, the number of elements in 𝑆𝑑 is 

equal to the number of elements to 𝑟, which is relatively prime to 
𝑛

𝑑
 and this is equal to 𝜑 (

𝑛

𝑑
).                                                                     

Example 3. In the ring 𝑍8, 𝐷 = {2, 4}.       

 For 𝑑 = 2, we have |𝑆2| = 𝜑 (
8

2
) = 2, because 2 and 6 are two elements in 𝑆2 such that (2) = (6). 

 For 𝑑 = 4, we have |𝑆4| = 𝜑 (
8

4
) = 1, because 4 is the only element in 𝑆4.                     

Example 4. In the ring 𝑍24,  𝐷 = {2, 3, 4, 6, 8, 12}.      

 For 𝑑 = 2, we have |𝑆2| = 𝜑 (
24

2
) = 4, because 2, 10, 14 and 22 are four elements in 𝑆2 such that 

(2) = (10) = (14) = (22). 

 For 𝑑 = 3, we have |𝑆3| = 𝜑 (
24

3
) = 4, because 3, 9, 15 and 21 are four elements in 𝑆3 such that 

(3) = (9) = (15) = (21). 

  For 𝑑 = 4, we have |𝑆4| = 𝜑 (
24

4
) = 2, because 4 and 20 are two elements in 𝑆4 such that (4) =

(20). 

 For 𝑑 = 6, we have |𝑆6| = 𝜑 (
24

6
) = 2, because 6 and 18 are two elements in 𝑆6 such that (6) =

(18). 

 For 𝑑 = 8, we have |𝑆8| = 𝜑 (
24

8
) = 2, because 8 and 16 are two elements in 𝑆8 such that (8) =

(16). 

 For 𝑑 = 12, we have |𝑆12| = 𝜑 (
24

12
) = 1, because 12 is the only element in 𝑆12.           

4. Algorithm 

In this section, we present an algorithm for enumerating the sets of all non-unit elements in 𝑍𝑛 

whose principal ideals are equal.  
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4.1 Algorithm                         

Step 1. Start 

Step 2. Read input n 

Step 3. Initialize i, j, k, s, s1, r, t, super [500] [500] 

Step 4. i ← 2 

Step 5. j ← 1 

Step 6. r ← i * j 

Step 7. s ← r (mod n) 

Step 8. If (s=0) then goto step 9 else step 18 

Step 9. Super [j] [n] ← j 

Step 10. k ← 1 

Step 11. t ← j*k 

Step 12. s1 ← t (mod n) 

Step 13. If (s1=0) then goto step 15 else goto step 14 

Step 14. Super [j] [s1] ← s1 

Step 15. If (k < n) then goto step 16 else goto step 18 

Step 16. k ← k+1 

Step 17. Goto step 11 

Step 18. If (j < n) then goto step 19 else goto step 21 

Step 19. j ← j+1 

Step 20. Goto step 6 

Step 21. If (i <  n) then goto step 22 else goto step 24 

Step 22. i ← i+1 

Step 23. Goto step 5 

Step 24. Print principal ideals 

Step 25. End. 

 

Subroutine algorithm 

Step 1. Start 

Step 2. j ← 0 

Step 3. If (super [j] [n]=0) then goto step 11 else goto step 4 

Step 4. Print super [j] [n] 

Step 5. i ← 0 

Step 6. If (super [j] [i]=0) then goto step 8 else goto step 7 

Step 7. Print super [j] [i] 

Step 8. If (i < 0) then goto step 9 else goto step 11 

Step 9. i ← i+1 

Step 10. Goto step 6 

Step 11. If (j < n) then goto step 12 else goto step 14 

Step 12. j ← j+1 

Step 13. Goto step 3 

Step 14. End.                                                                                                                                                                                                                                                   

4.2 Outputs 

In this section, we gave the outcome results when we run the program in C-language for various 

values of 𝑛, which is based on the above Algorithm. 
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 For given number 𝑛 = 10, then the outcomes are 

 (5), 

(2)=(4)=(6)=(8), 

Principal ideal(2)={0,2,4,6,8}, 

Principal ideal(4)={0,2,4,6,8}, 

Principal ideal(5)={0,5}, 

Principal ideal(6)={0,2,4,6,8}, 

Principal ideal(8)={0,2,4,6,8}. 

That is, in the ring 𝑍10,  2, 4, 5, 6 and 8 are non-unit elements such that (2) = (4) = (6) = (8) 

and (5) is a different set.                                                                                           

 For given number 𝑛 = 16, then the outcomes are 

(8), 

(4)=(12), 

(2)=(6)=(10)=(14). 

Principal ideal(2)={0,2,4,6,8,10,12,14}, 

Principal ideal(4)={0,4,8,12}, 

Principal ideal(6)={0,2,4,6,8,10,12,14}, 

Principal ideal(8)={0,8}, 

Principal ideal(10)={0,2,4,6,8,10,12,14}, 

Principal ideal(12)={0,4,8,12}, 

Principal ideal(14)={0,2,4,6,8,10,12,14}. 

That is, in the ring 𝑍16,  2, 4, 6, 8, 10, 12 and 14 are non-unit elements such that (2) = (6) =

(10) = (14), (4) = (12) but (8) is only a different set.                                     

Similarly, we found the sets of non-unit elements whose principal ideals are equal for large values 

of 𝑛 also.   

5. Conclusions  

In this paper, we discussed the number theoretic properties of non-unit elements of a finite ring 

𝑍𝑛 in different forms of 𝑛. The set of non-trivial divisors of 𝑛 were divided into two disjoint sets 

(𝑖. 𝑒. 𝐷 = 𝐷1 ∪ 𝐷2 and 𝐷1 ∩ 𝐷2 = ∅ ). The results were obtained by using these two sets for 

different characterizations of 𝑛. Also, the cardinality of non-unit elements of 𝑍𝑛 were enumerated 

whenever their corresponding principle ideals were equal. Finally, the results were verified with 

suitable examples by using algorithm of C-program. 
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Appendix 

Here, we present a program in C-language for finding the sets of all non-unit elements in 𝑍𝑛 

whose principal ideals are equally generated in 𝑍𝑛 along with their corresponding principal 

ideals, for various values of  𝑛. 

#include <dirent.h>  

#include <stdio.h>  

#include <errno.h> 

#include <string.h> 

main ( int argc, char *argv[] ) 

{           get_zero_div(atoi(argv[1])); 

} 

get_zero_div( int p ) 

{ char zdiv[1000], pidl[1000], super[1000][1000], test; 

 int i, j, k, r, s, t, c, m=0, n=2, cnt=0, key; 

 for (  i=0; i<1000; i++ ) 

 zdiv[i]='N'; 

 for ( i=0; i<1000; i++) 

 pidl[i] = 'N'; 

 for ( i=2; i<p; i++ ) 

        { 

        for ( j=2; j<p; j++ ) 

  { 

        r = I * j ; 

        s = ( r % p ); 

        if ( s==0 ) 
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        {       zdiv[i] = 'Y'; 

    zdiv[j] = 'Y'; 

   } 

  } 

                     } 

for ( i=0; i<1000; i++ )  

{ 

 super [i][0] = -1; 

 super [i][1] = -1; 

} 

For ( i=0; i<p; i++ ) 

{ 

 If ( zdiv[i] == 'Y' ) 

{ 

 super [m][n] = i; 

 n++; 

       { 

     for ( j=1; j<p; j++ ) 

                    { t = I * j; 

                      s = (t % p); 

                      if ( s == 0 ) 

                          { 

                            break; 

                          } 

                      pidl[s] = 'Y'; 

                    } 

       } 

for ( k=0; k<p; k++ )  

{ 

       if ( pidl [k] == 'Y' ) 

           { 

 super[m][n] = k; 

 super[m][1]++; 

 n++; 

 } 

} 

 super[m][1]++; 

 

 for ( k=0; k<1000; k++ ) 

 pidl[k] = 'N'; 

m++; 

n=2; 

}  

} 

for (i=0; i<1000; i++ ) 

if ( super[i][1] == -1 ) 

    break; 

    cnt = i; 

for ( i=0; i<=cnt; i++ ) 

       { super[i][0] = (i+1); 

         key = super[i][1]; 



Sajana and Bharathi / Int. J. Res. Ind. Eng 8(1) (2019) 77-88                 88 

  

 
         for ( j=0; j<=cnt; j++ ) 

   { test = 'N'; 

     If ( super[j][1] == key ) 

         { 

              for ( k=2; k<=key+2; k++ ) 

     if ( super[i][k] == super[j][k] ) 

     test = 'Y'; 

     else 

     test = 'N'; 

         } 

                     If ( test == 'Y' )   

                     super[j][0] = i+1; 

 } 

        } 

for ( i=0; i<=cnt; i++ ) 

{ test = 'N'; 

   { for ( j=0; j<=cnt; j++ ) 

     if ( super[j][0] == I ) 

        { 

          printf( "(%d) = ", super[j][2]); 

          test='Y'; 

        } 

     If ( test == 'Y' ) 

     printf ( "\n" ); 

   } 

} 

printf ( "\n" ); 

for ( i=0; i<1000; i++) 

      { 

          for ( j=2; j<1000; j++ ) 

    { 

      if ( (super[i][j])! = 0 ) 

         { 

           if ( j == 2 ) 

           printf ( "Principal ideal(%d) = {0,",super[i][j] );   

           else 

           printf ( "%d,", super[i][j] );   

 } 

 if ( super[i][j] == 0 ) 

          { 

             printf ( "}\n" ); 

             break;  

          } 

      } 

 if ( super[i][2] == 0 ) 

  { printf ( "\n" ); 

    break;  

  } 

        } 

} 
 


