Document Type : Review Paper


Department of Mathematics, S.V. University, Tirupati-517502, A.P, India.


This paper aimed to model and analyze the unsteady hydromagnetic boundary layer stagnation point nanofluid flow over a non-linear stretching surface through porous medium with variable wall thickness. The effects of radiation, dissipation, and slip velocity are taken into account. The formulation of the problem is made through Buongiorno’s model, which involves the aspects of thermophoresis and Brownian motion. The set of governing non-linear Ordinary Differential Equations (ODE’s) are solved numerically by using boundary value problem default solver in MATLAB bvp4c package. The impact of different flow quantities on fluid velocity, temperature, and nanoparticle concentration are analyzed and examined through graphs. The physical parameters like friction factor coefficient , rates of heat transfer , and nanoparticle friction are derived and presented through tables. It is found that the wall thickness parameter  depreciates the nanofluid velocity for  and accelerates when . Also, the unsteadiness parameter shows a significant effect on the stagnation point flow. 


Main Subjects

[1]      Hiemenz, K. (1911). Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden kreiszylinder. Gottingen dissertation. Dingler's polytech. J326, 311.
[2]      Crane, L. J. (1970). Flow past a stretching plate. Zeitschrift für angewandte mathematik und physik zamp21(4), 645-647.
[3]      Wang, C. Y. (1984). The three‐dimensional flow due to a stretching flat surface. The physics of fluids27(8), 1915-1917.
[4]      Suali, M., Nik Long, N. M. A., & Ariffin, N. M. (2012). Unsteady stagnation point flow and heat transfer over a stretching/shrinking sheet with suction or injection. Journal of applied mathematics2012.
[5]      Zhong, Y., & Fang, T. (2011). Unsteady stagnation-point flow over a plate moving along the direction of flow impingement. International journal of heat and mass transfer54(15-16), 3103-3108.
[6]      Ishak, A., Jafar, K., Nazar, R., & Pop, I. (2009). MHD stagnation point flow towards a stretching sheet. Physica A: Statistical mechanics and its applications388(17), 3377-3383.
[7]      Hayat, T., Qayyum, S., Alsaedi, A., & Waqas, M. (2016). Simultaneous influences of mixed convection and nonlinear thermal radiation in stagnation point flow of Oldroyd-B fluid towards an unsteady convectively heated stretched surface. Journal of molecular liquids224, 811-817.
[8]      Hayat, T., Khan, M. I., Tamoor, M., Waqas, M., & Alsaedi, A. (2017). Numerical simulation of heat transfer in MHD stagnation point flow of Cross fluid model towards a stretched surface. Results in physics7, 1824-1827.
[9]      Choi, S. U., & Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles. Proceedings of the ASME international mechanical engineering congress and Exposition, 66. Argonne National Lab., IL (United States).
[10]  Khanafer, K., Vafai, K., & Lightstone, M. (2003). Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. International journal of heat and mass transfer46(19), 3639-3653.
[11]  Buongiorno, J. (2006). Convective transport in nanofluids. Journal of heat transfer128(3), 240-250.
[12]  Khalili, S., Dinarvand, S., Hosseini, R., Tamim, H., & Pop, I. (2014). Unsteady MHD flow and heat transfer near stagnation point over a stretching/shrinking sheet in porous medium filled with a nanofluid. Chinese physics B23(4), 048203.
[13]  Hayat, T., Khan, M. I., Waqas, M., Alsaedi, A., & Farooq, M. (2017). Numerical simulation for melting heat transfer and radiation effects in stagnation point flow of carbon–water nanofluid. Computer methods in applied mechanics and engineering315, 1011-1024.
[14]  Hady, F. M., Eid, M. R., & Ahmed, M. A. (2014). Slip effects on unsteady MHD stagnation point flow of a nanofluid over stretching sheet in a porous medium with thermal radiation. Journal of pure and applied mathematics: Advances and applications12(2), 181-206.
[15]  Salem, A. M., Ismail, G., & Fathy, R. (2015). Unsteady MHD boundary layer stagnation point flow with heat and mass transfer in nanofluid in the presence of mass fluid suction and thermal radiation. The European physical journal plus130(6), 113.
[16]  Das, K., Duari, P. R., & Kundu, P. K. (2014). Nanofluid flow over an unsteady stretching surface in presence of thermal radiation. Alexandria engineering journal53(3), 737-745.
[17]  Haq, R. U., Nadeem, S., Khan, Z. H., & Akbar, N. S. (2015). Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet. Physica E: Low-dimensional systems and nanostructures65, 17-23.
[18]  Akbar, N. S., Nadeem, S., Haq, R. U., & Khan, Z. H. (2013). Radiation effects on MHD stagnation point flow of nano fluid towards a stretching surface with convective boundary condition. Chinese journal of aeronautics26(6), 1389-1397.
[19]  Nagendramma, V., Kumar, R. K., Prasad, P. D., Leelaratnam, A., & Varma, S. V. K. (2016). Multiple slips and radiation effects on Maxwell nanofluid flow over a permeable stretching surface with dissipation. Journal of nanofluids5(6), 817-825.
[20]  Hayat, T., Qayyum, S., Waqas, M., & Alsaedi, A. (2016). Thermally radiative stagnation point flow of Maxwell nanofluid due to unsteady convectively heated stretched surface. Journal of molecular liquids224, 801-810.
[21]  Farooq, M., Khan, M. I., Waqas, M., Hayat, T., Alsaedi, A., & Khan, M. I. (2016). MHD stagnation point flow of viscoelastic nanofluid with non-linear radiation effects. Journal of molecular liquids221, 1097-1103.
[22]  Kumar, R. K., & Varma, S. V. K. (2017). Multiple Slips and Thermal Radiation Effects on MHD Boundary Layer Flow of a Nanofluid Through Porous Medium Over a Nonlinear Permeable Sheet with Heat Source and Chemical Reaction. Journal of nanofluids6(1), 48-58.
[23]  Das, K. (2015). Nanofluid flow over a non-linear permeable stretching sheet with partial slip. Journal of the Egyptian mathematical society23(2), 451-456.
[24]  Lee, L. L. (1967). Boundary layer over a thin needle. The physics of fluids10(4), 820-822.
[25]  Fang, T., Zhang, J., & Zhong, Y. (2012). Boundary layer flow over a stretching sheet with variable thickness. Applied mathematics and computation218(13), 7241-7252.
[26]  Acharya, N., Das, K., & Kundu, P. K. (2016). Ramification of variable thickness on MHD TiO2 and Ag nanofluid flow over a slendering stretching sheet using NDM. The European physical journal plus131(9), 303.
[27]  Prasad, K. V., Vajravelu, K., Vaidya, H., & Van Gorder, R. A. (2017). MHD flow and heat transfer in a nanofluid over a slender elastic sheet with variable thickness. Results in physics7, 1462-1474.
[28]  KiranKumar, R. V. M. S. S., & Varma, S. V. K. (2017). Hydromagnetic Boundary Layer Slip Flow of Nanofluid Through Porous Medium Over a Slendering Stretching Sheet. Journal of nanofluids6, 1-10.
[29]  Hayat, T., Waqas, M., Alsaedi, A., Bashir, G., & Alzahrani, F. (2017). Magnetohydrodynamic (MHD) stretched flow of tangent hyperbolic nanoliquid with variable thickness. Journal of molecular liquids229, 178-184.
[30]  Hayat, T., Zubair, M., Waqas, M., Alsaedi, A., & Ayub, M. (2017). Application of non-Fourier heat flux theory in thermally stratified flow of second grade liquid with variable properties. Chinese journal of physics55(2), 230-241.
[31]  Khader, M. M., & Megahed, A. M. (2013). Numerical solution for boundary layer flow due to a nonlinearly stretching sheet with variable thickness and slip velocity. The European physical journal plus128(9), 100.
[32]  Devi, S. A., & Prakash, M. (2016). Thermal radiation effects on hydromagnetic flow over a slendering stretching sheet. Journal of the brazilian society of mechanical sciences and engineering38(2), 423-431.
[33]  Ascher, U. M., Mattheij, R. M., & Russell, R. D. (1994). Numerical solution of boundary value problems for ordinary differential equations (Vol. 13). Siam.
[34]  Ibrahim, W., Shankar, B., & Nandeppanavar, M. M. (2013). MHD stagnation point flow and heat transfer due to nanofluid towards a stretching sheet. International journal of heat and mass transfer56(1-2), 1-9.
[35]  Mahapatra, T. R., & Gupta, A. S. (2002). Heat transfer in stagnation-point flow towards a stretching sheet. Heat and mass transfer38(6), 517-521.
[36]  Bhattacharyya, K. (2013). MHD stagnation-point flow of Casson fluid and heat transfer over a stretching sheet with thermal radiation. Journal of thermodynamics.