[1] Zimmermann, H. J. (2011). Fuzzy set theory—and its applications. Springer Science & Business Media.
[2] Baykasoğlu, A., & Subulan, K. (2015). An analysis of fully fuzzy linear programming with fuzzy decision variables through logistics network design problem. Knowledge-Based systems, 90, 165-184.
[3] Dehghan, M., Hashemi, B., & Ghatee, M. (2006). Computational methods for solving fully fuzzy linear systems. Applied mathematics and computation, 179(1), 328-343.
[4] Ebrahimnejad, A., & Tavana, M. (2014). A novel method for solving linear programming problems with symmetric trapezoidal fuzzy numbers. Applied mathematical modelling, 38(17), 4388-4395.
[5] Khan, I. U., Ahmad, T., & Maan, N. (2013). A simplified novel technique for solving fully fuzzy linear programming problems. Journal of optimization theory and applications, 159(2), 536-546.
[6] Khan, I. U., Ahmad, T., & Maan, N. (2013). A simplified novel technique for solving fully fuzzy linear programming problems. Journal of optimization theory and applications, 159(2), 536-546.
[7] Lotfi, F. H., Allahviranloo, T., Jondabeh, M. A., & Alizadeh, L. (2009). Solving a full fuzzy linear programming using lexicography method and fuzzy approximate solution. Applied mathematical modelling, 33(7), 3151-3156.
[8] Kumar, A., Kaur, J., & Singh, P. (2011). A new method for solving fully fuzzy linear programming problems. Applied mathematical modelling, 35(2), 817-823.
[9] Shamooshaki, M. M., Hosseinzadeh, A., & Edalatpanah, S. A. (2014). A new method for solving fully fuzzy linear programming with lr-type fuzzy numbers. International journal of data envelopment analysis and* Operations Research*, 1(3), 53-55.
[10] Veeramani, C., & Duraisamy, C. (2012). Solving fuzzy linear programming problem using symmetric fuzzy number approximation. International journal of operational research, 15(3), 321-336.
[11] Wu, H. C. (2008). Using the technique of scalarization to solve the multiobjective programming problems with fuzzy coefficients. Mathematical and computer modelling, 48(1), 232-248.
[12] Iskander, M. G. (2003). Using different dominance criteria in stochastic fuzzy linear multiobjective programming: A case of fuzzy weighted objective function. Mathematical and computer modelling, 37(1-2), 167-176.
[13] Mahdavi-Amiri, N., & Nasseri, S. H. (2006). Duality in fuzzy number linear programming by use of a certain linear ranking function. Applied mathematics and computation, 180(1), 206-216.
[14] Ezzati, R., Khorram, E., & Enayati, R. (2015). A new algorithm to solve fully fuzzy linear programming problems using the MOLP problem. Applied mathematical modelling, 39(12), 3183-3193.
[15] Dubois, D. J. (1980). Fuzzy sets and systems: theory and applications (Vol. 144). Academic press.
[16] Kauffman, A., & Gupta, M. M. (1991). Introduction to fuzzy arithmetic: Theory and application. Mathematics of Computation.
[17] Liou, T. S., & Wang, M. J. J. (1992). Ranking fuzzy numbers with integral value. Fuzzy sets and systems, 50(3), 247-255.
[18] Das, S. K., Mandal, T., & Edalatpanah, S. A. (2017). A new approach for solving fully fuzzy linear fractional programming problems using the multi-objective linear programming. RAIRO-operations research, 51(1), 285-297.
[19] Das, S. K., Mandal, T., & Edalatpanah, S. A. (2017). A mathematical model for solving fully fuzzy linear programming problem with trapezoidal fuzzy numbers. Applied intelligence, 46(3), 509-519.
[20] Das, S. K., & Mandal, T. (2015). A single stage single constraints linear fractional programming problem: An approach. Operations research and applications: An international journal (ORAJ), 2(1), 9-14.