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A B S T R A C T 

In this paper, we introduce a new adaptive trust-region approach to solve systems of nonlinear 

equations. In order to improve the efficiency of adaptive radius strategy proposed by Esmaeili and 

Kimiaei [8], Barzilai Borwein technique (BB) [3] with low memory is used which can truly control 

the trust-region radius. In addition, the global convergence of the new approach is proved. 

Computational experience suggests that the new approach is more effective in practice in comparison 

with other adaptive trust-region algorithms. 
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1. Introduction 

Consider the nonlinear system 

𝐹(𝑥) = 0,   𝑥 ∈ 𝑅𝑛 (1) 

which 𝐹: 𝑅𝑛 → 𝑅𝑛 is a continuously differentiable mapping in the following form: 

1 2 n( ) ( ( ), ( ), , ( )) .TF x F x F x F x  The nonlinear system (1), in which ( )F x  has a zero, can be 

written as the following problem:  

min 𝑓(𝑥) =
1

2
‖𝐹(𝑥)‖2

s. t   𝑥 ∈ 𝑅𝑛,                     
 

(2) 

which   denotes the Euclidean norm. 

An efficient class of global approaches is presented, called the trust-region method. This method 

first defines a region around the current iterate 𝑥𝑘 as follows: 

 : | ,k k kx x x    
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which 0k   is the trust-region radius and then the quadratic model is presented by 

min 𝑚𝑘(𝑥𝑘 + 𝑑) ≔
1

2
‖𝐹𝑘 + 𝐽𝑘𝑑‖2 = 𝑓𝑘 + 𝑑𝑇𝐽𝑘

𝑇𝐹𝑘 +
1

2
𝑑𝑇𝐽𝑘

𝑇𝐽𝑘𝑑

s. t   𝑑 ∈ 𝑅𝑛  and  ‖𝑑‖ ≤  Δ𝑘,                                                        
 

(3) 

where : ( )k kf f x , : ( )k kF F x , and : ( )k kJ F x , Jacobian of  ( )F x . In the region k , the 

approximate minimizer of the quadratic model is found by the step kd , called the trust-region 

step. The goal of trust-region method is that the quadratic model implies to be an adequate 

representation of the objective function f . Let us now define the ratio 

( )
: ,

( ) ( )

k k k
k

k k k k

f f x d
r

m x m x d

 


 
 

(4) 

which has a key role in selecting new iterate 1kx   and in updating the trust-region radius 1.k 

Whenever kr  is near 1, a good agreement can be obtained which leads to expand the trust-region 

radius for the next iteration. If 0kr  , then we can shrink the trust-region radius, otherwise, the 

radius of trust-region will be fixed. 

One of globalization technique is the traditional trust-region framework (TTR), (see [6, 18]). 

The updating radius of such method is very sensitive and has some disadvantages, cf. [8-11]. 

Some researchers [8-11, 23] to overcome these disadvantages, have tried to control the trust-

region radius. Recently, in order to produce smaller (larger) radii whenever iterates are near (far 

away from) the optimizer, Esmaeili and Kimiaei [8] presented an efficient adaptive trust-region 

to solve Eq. (1) as follows: 

 1

, if 0,

max , , if 1,

k

k

p

k

k p

k k

c R k

c R k

 
  

   

(5) 

where  0 1c  , kp  is the smallest nonnegative integer p ensuring the trust-region ratio is greater 

than a real-valued parameter (0,1) , 

                        ( ): (1 ) ,k k k k kR F F   
 

(6) 

   for which  min max,k   ,  min 0,1  ,  max min ,1  , and 

𝐹{𝑙(𝑘)} = max
0≤𝑗≤𝑚(𝑘)

{‖𝐹𝑘−𝑗‖} ,   𝑘 ∈ 𝑁0 ≔ 𝑁 ∪ {0}, (7) 

with (0) 0m   and  0 ( ) min ( 1) 1,m k m k M     in which 0M  . But this method does not 

use the information of kJ , which can be effective on numerical results. 

In this paper, the algorithm described to solve nonlinear systems takes advantages of two-point 

gradient technique using low memory to produce a new adaptive radius strategy. The global 

convergence and q-quadratic convergence rate are established. The efficiency of the new method 

is confirmed to solve systems of nonlinear equations. This paper is organized as follows: Before 

describing the structure of new algorithm, we introduce a trust-region method for which BB 

method is used to produce the new adaptive radius in Section 2. In Section 3, the global 

convergence and the q-quadratic convergence rate of the new algorithm under some suitable 
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assumptions are investigated. Numerical results are reported in Section 4. Finally, some 

conclusive remarks are given in Section 5. 

2. Motivation and Algorithmic Structure 

In order to obtain the smaller (bigger) radii near (far away from) the optimizer, we first 

introduce the Barzilai-Borwein (BB) technique and then by using its advantages a new adaptive 

radius strategy is produced. 

It is well known that one of methods for which computational cost is trivial is the steepest 

descent method to solve Eq. (2) whose exact step-length is presented by  

0

: argmin ( ),


 k k kf x g


   

where : T

k k kg J F . The steepest descent direction kg  for which the speed convergence is slow 

cannot produce the smaller step-lengths near the optimizer. An efficient technique to overcome 

this drawback, using few storage locations and inexpensive computations is the BB method 

whose step-lengths k  are computed by 

1 21 1 1 1

1 1 1 1

: and : ,
T T

k k k k
k kT T

k k k k

s y y y

s s s y
    

   

   
(8) 

where 1 1:k k ky g g    and 1 1:k k ks x x   , for more details see [3]. 

At each iteration, in order to take advantages of both 1

k  and 2

k , we introduce the new adaptive 

radius strategy by 

 1

, if 0,
:

max , , if 1,

k

k

p

k

k p

k k k

c R k

c R k 

 
  

 

 
(9) 

in which 0 1c  , kp  is the smallest nonnegative integer p ensuring the trust-region ratio is 

greater than a real-valued parameter (0,1) , and 

   1 2 1 2

min maxmax ,min max , , , if 0, 0,
:

, else,

  
 


k k k k

k

     



 

(10) 

where min max0      and max0    . 

Based on BB strategy, the new method tries to produce the bigger (smaller) trust-region radius 

for cases where iterations are far away from (near) the optimizer by using 𝜃̃𝑘. This can truly 

control the radius of trust-region and hence it will decrease the total number of iterates.  

Here, we add the new adaptive radius term into the trust-region algorithm as follows: 

Algorithm 1. BBATR (Barzilai Borwein Adaptive Trust-Region Algorithm) 

Input: An initial point 𝑥0 ∈ 𝑅𝑛, 𝑐, 𝜇 ∈ (0,1), 𝑀 > 0, 𝜀 > 0 𝑎𝑛𝑑 𝑘max.  
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Output: , ;b bx f  

  begin 

      0 0 (0) 0 0 (0): ; : ; ; (0) : 0; : 0;F F F R F m k       

       while max& k kkF     do 

              : 0; : 0;kp r   

               while kr    do 

                      specify the trial point kd by solving the subproblem (3); 

                      compute ( );k kF x d  

                     
2

f( ) : 1/ 2 ( ) ;k k k kx d F x d    

                      determine kr using (4); 

                     if kr   then 

                          set : 1p p  and determine k by (9); 

                     end 

             end 

             1 1 1 1 1 1 1: ; : ( ); : ( ); : ( );k k k k k k k k kx x d F F x f f x J J x            

             let  ( 1) : min ( ) 1, ;m k m k M    

             calculate ( 1)kF   by (7) and kR  by (6); 

             compute 
1

1k   and 
2

1k   by (8) and then 1k   obtain by (10); 

             determine 1k   by (9); 

            1;k k   

      end 

    : ; : ;b k b kx x f f   

end 

To prove the global convergence of new method, we present the following assumptions: 

(A1) The level set 𝐿(𝑥0) ≔ {𝑥 ∈ 𝑅𝑛 ∣ 𝑓(𝑥) ≤ 𝑓(𝑥0)} is bounded for any given 𝑥0 ∈ 𝑅𝑛 and 

( )F x  is continuously differentiable on compact convex set   containing the level set 0( )L x . 

(A2) The matrix  
0k k

J


 is bounded and uniformly nonsingular on  , i.e. there exist constants 

0 10 1M M    such that 

            ‖𝐽𝑘‖ ≤ 𝑀1   𝑎𝑛𝑑  𝑀0‖𝐹𝑘‖ ≤ ‖𝑔𝑘‖    ∀ 𝑘 ∈ 𝑁0 (11) 

(A3) The decrease on the model km  is at least as much as a fraction of the one obtained by the 

Cauchy point, i.e. there exists a constant (0,1)   such that 

( ) ( ) min , ,
k

k k k k k k k T

k k

g
m x m x d g

J J


 
    

  

 
(12) 

for all 𝑘 ∈ 𝑁0, see [6,8]. 

(A4) The matrix ( )J x  is Lipschitz continuous in 0( )L x , with Lipschitz constant L , i.e. 

‖𝐽(𝑥) − 𝐽(𝑦)‖ ≤ 𝛾𝐿‖𝑥 − 𝑦‖   ∀ 𝑥, 𝑦 ∈ 𝐿(𝑥0). 
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Lemma 1. Assume that (A4) holds and the sequence  
0k k

x


 is generated by Algorithm 1. Let 

kd  be a solution of the sub problem (3) such that ( ) ( ) ( )k k k kF x J x d F x  . Then, we have 

 2
( ) ( ) .k k k k k kf x d m x d O d     (13) 

Proof. See [8].  

The following lemma indicates that BBATR has infinitely many successful iterations. 

Lemma 2. Suppose that (A2)-(A4) hold and the sequence  
0k k

x


is generated by BBATR. Then, 

there exist infinitely many successful iterations in BBATR. 

Proof. Assume that there are only finitely many successful iterations. Let us denote 
pkx  as the 

last successful iterate, and 0
pk   as the corresponding trust-region radius. In all subsequent 

iterations k, we have 
pk kx x , whereas the corresponding trust-region radius gets reduced and 

converges to zero; in particular, we therefore have 
pk k   , so that all approximate solutions 

kd  of the corresponding trust-region sub problem (3)  satisfy 
pk kd   for all pk k .  

Since kx  is not the optimum point of Eq. (2), that there exists a constant 0   such that .kF 

Then, for all pk k  sufficiently large, we have from (A2) and (A3) 

0
0 2

1

0

( ) ( ) min ,

min ,

.

p

p

p

k

k k k k k k k T

k k

k k

k

g
m x m x d g

J J

M
M F

M

M






 

  
    

  

 
  

 

 

 

(14) 

By Lemma 1 and  Eq. (14), for all 𝑘 ∈ 𝑁0 sufficiently large, we get 

    22

0 0

( ) ( ) ( )
1

( ) ( ) ( ) ( )

0,

    
 

   


  

 

p

p p

k k k k k k k k

k k k k k k k k k k

kk

k k

f f x d f x d m x d

m x m x d m x m x d

OO d

M M   

 

 

yielding to 

( )
,

( ) ( )

k k k
k

k k k k k

f f x d
r

m x m x d


 
 

 
 

this means that there exists eventually an another successful iteration, a contradiction to our 

assumption.  
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3. Convergence Theory                                                                                                        

We now investigate the global convergence and q-quadratic rate of results of the proposed 

algorithm. The following lemma helps us to establish the global convergence. 

Lemma 3. Supposes that Assumptions (A2) and (A3) hold and the sequence  
0k k

x


is generated 

by BBATR. Let kd be a solution of the sub problem (3). Then we have 

2
( ) ( ) L ,k k k k k k km x m x d F    (15) 

where 0
0 min 2

1

: min ,kp

k

M
L M c

M
 

 
  

 
. 

Proof. Assumptions (A2) and (A3) and Eq. (10) along with Eq. (12) lead to 

𝑚𝑘(𝑥𝑘) − 𝑚𝑘(𝑥𝑘 + 𝑑𝑘)  ≥ 𝛽‖𝑔𝑘‖ min {Δ𝑘,
‖𝑔𝑘‖

‖𝐽𝑘
𝑇𝐽𝑘‖

} 
 

≥ 𝛽‖𝑔𝑘‖ min {Δ𝑘,
‖𝑔𝑘‖

‖𝐽𝑘
𝑇𝐽𝑘‖

} 
 

≥ 𝛽‖𝑔𝑘‖ min {𝑐𝑝𝑘 max{𝜃̃𝑘𝑅𝑘, Δ𝑘−1} ,
‖𝑔𝑘‖

‖𝐽𝑘
𝑇𝐽𝑘‖

} 
 

≥ 𝛽‖𝑔𝑘‖ min {𝑐𝑝𝑘𝜃̃𝑘𝑅𝑘,
‖𝑔𝑘‖

‖𝐽𝑘
𝑇𝐽𝑘‖

} 
 

≥ 𝛽‖𝑔𝑘‖ min {𝑐𝑝𝑘𝜃min𝑅𝑘,
‖𝑔𝑘‖

‖𝐽𝑘
𝑇𝐽𝑘‖

} 
 

≥ 𝛽‖𝑔𝑘‖ min {𝑐𝑝𝑘𝜃min𝐹𝑙(𝑘),
‖𝑔𝑘‖

‖𝐽𝑘
𝑇𝐽𝑘‖

} 
 

≥ 𝛽𝑀0‖𝐹𝑘‖ min {𝑐𝑝𝑘𝜃min‖𝐹𝑘‖,
𝑀0‖𝐹𝑘‖

𝑀1
2 } 

 

≥ 𝛽𝑀0‖𝐹𝑘‖2 min {𝑐𝑝𝑘𝜃min,
𝑀0

𝑀1
2} 

 

= 𝐿𝑘‖𝐹𝑘‖2  

where 0
0 min 2

1

: min ,kp
k

M
L M c

M
 

 
  

 
. Therefore, the proof is complete. 

The main global convergence result of BBATR can be established according to Assumptions 

(A1)-(A4) by the following theorem. 

Theorem 1. Supposes that Assumptions (A1)-(A4) hold. Then BBATR either stops at a 

stationary point of ( )f x  or generates an infinite sequence  
0k k

x


 such that 

lim 0.k
k

F


  (16) 

Proof. By contradiction, let 0   be a constant and K be an infinite subset of 𝑁 such that 
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, .kF k K    (17) 

This fact along with  Eq. (15) implies 

 
2 2( ) ( ) ( ) .k k k k k k k k k k kf f x d m x m x d F L L          

By taking a limit of both sides in this expression, k   we get 0kL  , leading kp  . This 

fact clearly is a contradiction with Lemma 3. Therefore, the hypothesis (17) is not true and the 

proof is complete.  

Note that the q-quadratic convergence rate of the sequence generated by BBATR, under some 

standard assumptions, can be established similar to Theorem 3.8 in [8]. 

4. Numerical Experiments 

In this section, we compare our algorithm (BBATR) with the following four algorithms: 

TTR: The traditional trust-region algorithm from Conn et al. in [6]. 

ATRZ: The adaptive trust-region algorithm from Zhang et al. in [23]. 

ATRF: The adaptive trust-region algorithm of Fan and Pan in [11]. 

ATRE: The adaptive trust-region algorithm of Esmaeili and Kimiaei in [8]. 

It is suggested that all algorithms be tested on a set of nonlinear systems of equations with the 

dimension from 2 to 1000. In addition, problems 1-28, problems 29-55, and problems 56-62 are 

chosen from [15], [13], and [16], respectively. Table 1 provides the name and dimension of each 

test problem. All codes are written in MATLAB 2015 programming environment with double 

precision format in the same subroutine. We utilize the test 
610kF n as the main termination 

criterion, in which 𝑛 is dimension. In other case, we count the corresponding test run as a failure 

if the total number of iterates exceeded 1000. The trust-region subproblems of the proposed 

algorithms are solved by Steihaug-Toint procedure (see [6]) which terminates at kx d  if 

1

2
1

( ) min , ( ) ( ) .
10

k k k k k km x d m x d m x d
 

       
 

 

The Jacobian matrix kJ  evaluated with finite-differences formula, as follows: 

[𝐽𝑘].𝑗 ≈
1

ℎ𝑗
(𝐹(𝑥𝑘 + ℎ𝑗𝑒𝑗) − 𝐹𝑘), 

where [𝐽𝑘].𝑗 denotes the j-th column of kJ , je is the j-th vector of the canonic basis and 

ℎ𝑗 ≔  {

√𝜀𝑚                                                   if 𝑥𝑘𝑗
= 0,

√𝜀𝑚sign(𝑥𝑘)max {|𝑥𝑘𝑗
| ,

‖𝑥𝑘‖1

𝑛
} else,
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where m denotes the machine epsilon provided by the Matlab function eps. 

Table 1. List of test functions. 

Problem name Dim Problem name Dim 

Five-Diagonal System 5  Chandrasekhar's h-equation 500 

Flow in a channel 10 Singular 500 

Convection-diffusion 16 Logarithmic  500 

Swirling flow 20 Variable band 1  500 

Extended powell badly scaled 100 Variable band 2 500 

Thorech 100 Function 15 500 

Tridiagnal system 100 Strictly convex 1 500 

Seven-Diagonal System 140 Strictly convex 2 100 

Tridiagnal exponential 200 Function 18 90 

Brent 200 Zero Jacobian 500 

Bratu 200 Geometric programming 10 

Poisson 2 200 Function 21 501 

Nonlinear biharmonic 200 Linear function-full rank 1 500 

Driven cavity 200 Linear function-full rank 2 500 

Countercurrent reactors 1 400 Penalty 10 

Countercurrent reactors 2 400 Brown almost linear 500 

Trigonometric 400 Variable dimensioned 500 

Trigonometric exponential system 1 400 Function 27 500 

Singular Broyden 400 Tridimensioal valley 501 

Structured Jacobian 400 Complementary 500 

Extended Powell Singular 400 Hanbook 500 

Extended Cragg and Levy 400 Extended Freudentein and Roth 500 

Broyden tridiagonal 400 Broyden banded 200 

Generalized Broyden banded 400 Geometric  20 

Extended Wood 400 Rosenbrock 2 

Discrete boundary value 400 Powell singular 4 

Poisson 400 Powell badley scaled 2 

Porous medium 400 Helical valley 3 

Exponential 1 500 Watson 31 

Exponential 2 1000 Chebyquad 2 

Extended Rosenbrock 500 Discrete integral equation 100 

The initial radius 0( 1)   is chosen for all algorithms similar to [19]. ATRZ, ATRP and 

BBATR takes advantages of the parameters 
610  , 0.5c  , 𝜃min = 10−10 and 𝜃max = 1010. 

On the other hand, TTR employs the parameters 1 0.1  , 2 0.9  , 1 0.25c   and 2 0.3c   and 

updates its radius like [6] by the following formula: 

1 1

1 1 2

2 2

, if ,

, if ,

, if ,

k k

k k k

k k

c d r

r

c r



 





 


    


 
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Figure 1. Iterates performance profile for the presented algorithms. 

The performance profiles for all of the algorithms are given for the number of (successful) 

iterations ( )iN , number of function evaluations (which is equal to the number of total iterations 

plus one) ( )fN  and CPU-times (C )t  by Figures 1-3, respectively. In the figures, P  designates 

the percentage of problems, which are solved within a factor   of the best solver, cf. [7]. 

In Figure 1, it can be seen that BBATR is the best solver, in terms of number of iterations, on 

68% of the problems while ATRE is the best in more or less 64% of the cases. Figure 2 shows 

that BBATR is the faster on approximately 54% of the test problems. Figure 3 shows that 

BBATR is significant about 25% in terms of CPU time. These results show that the proposed 

algorithm is an efficient and robust approach for solving systems of nonlinear equations. 

 
Figure 2. Function evaluations performance profile for the presented algorithms. 
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Figure 3. CPU time performance profile for the presented algorithm. 

5. Concluding Remarks 

This paper introduced a new adaptive trust-region strategy for system of nonlinear equations. 

Having taken Barzilai and Borwein strategy to produce an efficient algorithm, the updating rule 

for the trust-region radius leads to produce the smaller (bigger) of trust-region radius close to (far 

away from) the optimizer. The global and q-quadratic convergence rate properties of BBATR 

are established. Numerical results on a set of nonlinear systems indicate that BBATR is the best 

solver for solving nonlinear systems. 
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