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A B S T R A C T 

   This paper attempts to solve a benchmark money in utility model by first order Taylor 

approximation to the policy function. After a brief summary of recent development in first order 

Taylor approximation in solving dynamic stochastic general equilibrium models, we choose 

Sidrauski’s Money in utility model as a standard model and follow the approach proposed by Uhlig 

[1] to solve for the recursive law of motion at first order. 
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1. Introduction  

In this paper I will present another method to solve monetary models or dynamic stochastic 

general equilibrium models, called the method of undetermined coefficients. The method is 

proposed by [1]. He has many papers on this method and nice codes to implement the method 

easily. Please visit his web page for more information on the method. This paper is basically 

the summary of [1]. The method is similar to the method by [2] in the sense that the method 

crucially depends on linearizing the equations that characterize the solution. In this sense, 

both methods are categorized as the linearizing Euler equation method. Moreover, both 

methods are local method. The (potentially) non-linear equations that characterize the 

solution of the model are linearized around some state, most likely the steady state of the 

model. Remember that the approximation is valid only around the steady state. Besides, the 

methods necessarily imply certainty equivalence. We are going to use the monetary model 

with [3]. We apply these methods to the Sidrauski model. But rather than assuming that 
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utility depends just on consumption and money holdings, we also allow utility to depend on 

the representative agent’s consumption of leisure. This introduces a labor supply decision 

into the analysis, an important and necessary extension for studying business-cycle 

fluctuations since employment variation is an important characteristic of cycles. For the 

production function, we can develop approximations around the steady state that can be 

solved numerically. We also need to add a source, or sources, of exogenous shocks that 

disturb the system from its steady-state equilibrium. The two types of shocks we will 

consider will be productivity shocks, the driving force in real-business-cycle models, and 

shocks to the growth rate of the nominal stock of money. First, we solve the model using the 

baby version of the solution method. The model is used to show the basic concept of the 

solution method. Then we show the general formulation of the method.

 

2. A Money-in-the-Utility (MIU) Model 

Let's start by describing the social planner's problem in the economy of [3]. We follow the 

standard specification in dynamic general equilibrium models by assuming that output is 

produced using capital and labor according to a Cobb-Douglas, constant returns to scale 

production function. Consistent with the real business cycle literature, we incorporate a 

stochastic disturbance to total factor productivity, so that 

𝑦𝑡 = 𝑒𝑧𝑡𝑘𝑡−1
𝛼 𝑛𝑡

1−𝛼    0 ≤ 𝛼 ≤ 1  and   𝑧𝑡 = 𝜌𝑧t−1 + et 

is the process followed by the productivity shock. 

For the utility function, assume a nested CES specification given by 

 𝑢(𝐶𝑡, 𝑚𝑡, 1 − 𝑛𝑡) =
[𝑎𝐶𝑡

1−𝑏 + (1 − 𝑎)𝑚𝑡
1−b]

1−Φ

1−b

1 − Φ
+ 𝜓

(1 − 𝑛𝑡)
1−η

1 − η
           

Where the maximization is subject to the budget constraint  

𝑦𝑡 + 𝜏𝑡+(1 − 𝛿)𝑘𝑡−1 +
(1 + 𝑖𝑡−1)𝑏𝑡−1 + 𝑚𝑡−1

(1 + 𝜋𝑡)
= 𝑐𝑡 + 𝑘𝑡 + 𝑚𝑡 + 𝑏𝑡 

 

 

 

 



S.F.Fakhrehosseini, M. Kaviani / Int. J. Res. Ind. Eng 6(2) (2017) 172-183         174 

 

 

3. The Procedure 

You need to take the following steps to solve a model using linearized Euler equations and 

matrix decomposition. The remaining part of the note explains the procedure to the details step 

by step [4]. 

A. Find the system of (potentially non-linear) equations that characterize the solution of the 

model. 

B. Find the steady state of the model. 

C. Approximate the non-linear equations in the system around the steady state, using 1st order 

Taylor approximation. 

D. Fit the system of equations into some matrix representation. Since the representation is 

closely related to the solution method, the representation differs for each solution method. 

E. Derive the optimal decision rules (linear functions from the state variables to the control 

variables) and the laws of motion for endogenous state variables (linear function from the 

state variables to the state variables in the next period). Once the system of equations is fit 

into the matrix representation associated with the method of undetermined coefficients, the 

solution is automatically obtained (solution method doesn't depend on the characteristics of 

the model). 

 

4. Characterizing the Solution 

The solution of the social planner's problem can include, most importantly, the first order 

conditions (including the Euler equation), and laws of motion for state variables. Other 

equations might be included depending on the state and control variables chosen. In general, if 

we have k exogenous state variables, m endogenous state variables, and n control (jump) 

variables, we have k + n + m equations or more [5].  

In the current example, we choose k = 2(Z , G), m = 2 (K , M), and n = 8 (C, N, Y ,𝜋 ,𝜆,X,R, and 

I). Obviously, there is a degree of freedom in how to choose the control variables. 

For our current examples, the following system of equations characterize the solution to the 

social planner's problem: 

 max
{Ct,nt,mt,bt,kt}

𝔼0 [∑βt [ 
[𝑎𝐶𝑡

1−𝑏 + (1 − 𝑎)𝑚𝑡
1−b]

1−Φ

1−b

1 − Φ
+ 𝜓

(1 − 𝑛𝑡)
1−η

1 − η
 ] 

∞

t=0

] 

s. t.        𝑦𝑡 + 𝜏𝑡+(1 − 𝛿)𝑘𝑡−1 +
(1 + 𝑖𝑡−1)𝑏𝑡−1 + 𝑚𝑡−1

(1 + 𝜋𝑡)
= 𝑐𝑡 + 𝑘𝑡 + 𝑚𝑡 + 𝑏𝑡  

𝑦𝑡 = 𝑒𝑧𝑡𝑘𝑡−1
𝛼 𝑛𝑡

1−𝛼 

Using the assumed functional forms, and letting 𝑋𝑡 = 𝑎𝐶𝑡
1−𝑏 + (1 − 𝑎)𝑚𝑡

1−b,with the 

maximization problem now an unconstrained one over Ct, nt, mt, bt and kt. The first order 

necessary conditions for this problem are 
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(X𝑡)
𝑏−Φ

1−𝑏 𝑎(c𝑡)
−𝑏 = λt                                                        (1) 

                
𝜓(1 − 𝑛𝑡)

−𝜂

𝜆𝑡
= (1 − 𝛼)

𝑦𝑡

𝑛𝑡
                                         (2) 

(X𝑡)
𝑏−Φ

1−𝑏 (1 − 𝑎)(m𝑡)
−𝑏 = λt − βΕ (λt+1

1

(1 + 𝜋𝑡+1)
)               (3) 

λt = βΕ (λt+1

1 + 𝑖𝑡
(1 + 𝜋𝑡+1)

)                                                            (4) 

λt = βΕ(λt+1 (𝛼
𝑦𝑡+1

𝑘𝑡
+ (1 − 𝛿)))                                                              (5) 

Then 

𝑢𝑚

𝑢𝑐
 = (

1 − 𝑎

𝑎
) (

𝑚𝑡

𝑐𝑡
)

−𝑏

=
𝑖𝑡

1 + 𝑖𝑡
                                                         (6) 

𝑢𝑙

𝑢𝑐
 =

𝜓(1 − 𝑛𝑡)
−𝜂

𝑎𝑋𝑡

𝑏−Φ

1−𝑏𝑐𝑡
−𝑏

= (1 − 𝛼)
𝑦𝑡

𝑛𝑡
                                                        (7) 

𝑎𝑋𝑡

𝑏−Φ

1−𝑏 𝑐𝑡
−𝑏  = 𝛽𝐸𝑡 (𝑎𝑅𝑡𝑋𝑡+1

𝑏−Φ

1−𝑏𝑐𝑡+1
−𝑏 )                                                       (8) 

𝑅𝑡 = 𝛼
𝐸𝑡𝑦𝑡+1

𝑘𝑡
+ (1 − 𝛿)                                                           (9) 

5. Finding Steady State 

I will skip the details. For more details, please see the lecture note for [2] method. The key of 

this step is to assume that Z stays at its unconditional mean (𝑍 = 𝑍′ = �̅�). With this assumption, 

we can solve for the steady state values of all the other variables (𝐾, �̅�, �̅�, 𝐶̅, �̅�, �̅� 𝑎𝑛𝑑 𝐼)̅ 

In the steady state foe equation (8), �̅�  = 𝛽−1. This condition together with (9) implies that the 

steady-state output-capital ratio is equal to (
y̅

k̅
)  =

1

𝛼
(

1

𝛽
− 1 + 𝛿). From the production function, 

(
y̅

k̅
)  = (

n̅

k̅
)
1−𝛼

, or 

(
n̅

k̅
) = (

y̅

k̅
)

1

1−𝛼

 = [
1

𝛼
(
1

𝛽
− 1 + 𝛿)]

1

1−𝛼
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It follows from the aggregate resource constraint that 

(
c̅

k̅
) = (

y̅

k̅
) − 𝛿 =

1

𝛼
(
1 − 𝛽

𝛽
) + (

1 − 𝛼

𝛼
)𝛿 

Since (1 + 𝑖)̅ = �̅�(1 + �̅�) and 1 + �̅� = Θ , 
𝑖̅

1 + 𝑖̅
=

Θ − β

Θ
 

Therefore, using the utility function to evaluate (6) in the steady state yields 

(
m̅

c̅
) = (

a

1 − a
)

−
1

𝑏
(
Θ − β

Θ
)

−
1

𝑏

 

and 

(
m̅

k̅
) = (

a

1 − a
)

−
1

𝑏
(
Θ − β

Θ
)

−
1

𝑏

(
c̅

k̅
) 

6. Calibration 

Thirteen parameters appear in the equations that characterize behavior around the steady state: 

α, 𝛿, 𝜌𝑀 , 𝜎𝑀
2 , 𝛽, 𝑎, 𝑏, 𝜂, Φ, Θ, 𝜌𝑧 , 𝜎𝑍

2 
 

Table 1. Baseline Parameter Values 
Source  Value Definition Parameters 

[13] 0.412 the share of capital income in total income α 
[14] 0.042 the rate of depreciation of physical capital 𝛿 
[3] 0.98 the subjective rate of time discount in the utility function 𝛽 

[5] 2.17 leisure parameter 𝜂 

[3] 0.95 weight on consumption in composite good definition 𝑎 

[9] 1.32 interest elasticity 𝑏 

[8] 1.23 1 plus quarterly rate of nominal money growth 𝛩 
[12] 1.5 coefficient of relative risk aversion 𝛷 
[8] 0.562 Autocorrelation of money shock 𝜌𝑀 
[8] 0.72 the autoregressive coefficient in the productivity process 𝜌𝑧 
[8] 0.062 the standard deviation of innovations to the money growth 𝜎𝑀 

[8] 0.045 the standard deviation of productivity innovations 𝜎𝑧 
[11] 

 
0.33 Steady state employment �̅� 

 
Table 2. Steady-State Values at Baseline Parameter Values 

Value 

 
Definition Value 

R̅ Steady state real interest rate   0.072 
y̅

k̅
 Steady state output to capital 0.084 

c̅

k̅
 Steady state consumption to capital 0.065 

m̅

k̅
 Steady state money to capital 0.089 

n̅

k̅
 Steady state employment to capital 0.021 
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7. Log-linearization 

Next, we need to linearize the model around the steady state. With the exception of interest rates 

and inflation, variables will be expressed as percentage deviations around the steady state. 

Percentage deviations of a variable X around its steady-state value will be denoted by �̂�, 

𝑋𝑡 = 𝑋𝑎  (1 + 𝑎�̂�𝑡) 

  𝑋𝑡
𝑎 = �̅�𝑎 (1 + 𝑎�̂�𝑡) 

𝑋𝑡
𝑎𝑌𝑡

𝛽
= �̅�𝑎�̅�𝛽  (1 + 𝑎�̂�𝑡 + 𝛽�̂�𝑡)   

 𝑓(𝑋𝑡) = 𝑓(𝑋) (1 + 𝜂�̂�𝑡) 

Where 𝜂 =
𝜕𝑓(𝑋𝑡)

𝜕𝑋
.

𝑋

𝑓(𝑋)
 

If we apply the rules to log-linearize to the system of equations for our current model, we obtain 

the following system of log-linearized equations: 

(
�̅�

�̅�
) �̂�𝑡 = (

𝑐̅

�̅�
) 𝑐�̂� + �̂�𝑡 − (1 − 𝛿)�̂�𝑡−1                                               (10) 

�̂�𝑡 = 𝛼 (
�̅�

�̅�
) (𝐸𝑡�̂�𝑡+1 − �̂�𝑡)                                               (11) 

0 = 𝐸𝑡[Ω1(𝑐�̂�+1 − 𝑐�̂�) + Ω2(�̂�𝑡+1−�̂�𝑡)] − �̂�𝑡                                              (12) 

�̂�𝑡 − Ω1𝑐�̂� + Ω2�̂�𝑡 = (1 + 𝜂
�̅�

1 − �̅�
) �̂�𝑡                                              (13) 

𝑖̂𝑡 = 𝐸𝑡�̂�𝑡+1 + �̂�𝑡                                              (14) 

�̂�𝑡 = �̂�𝑡 − �̂�𝑡 = 𝑐�̂� − (
1

𝑏
) 𝑖̂𝑡                                           (15) 

�̂�𝑡 = �̂�𝑡−1 − �̂�𝑡 + 𝑢𝑡                                           (16) 

𝑧𝑡 = 𝜌𝑧𝑧𝑡−1 + 𝑒𝑡                                                  (17) 

𝑢𝑡 ≡ 𝜌𝑀𝑢𝑡−1 + 𝜑𝑡                                                 (18) 

 

Where  γΦ + (1 − γ)b = Ω1  , (b − Φ)(1 − γ) = Ω2   

𝛾 = [1 + 𝑎−1(1 − 𝑎) × (�̅� 𝑐̅⁄ )1−𝑏]−1 
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Equations (11)–(18) constitute a linearized version of Sidrauski’s MIU model. These equations 

represent a linear system of difference equations involving expectational variables. The 

endogenous state variables are k and m; the endogenous jump variables are y; c; n; p; i; r, and l; 

the exogenous variables are z and u. 

8. Solving Linear Rational Expectations Models with Forward-Looking Variables 

This sections provides a brief overview of the approach used to solve linear rational 

expectations models. This discussion follows [1], to which the reader is referred for more 

details. General discussions can be found in Farmer (1993, chapter 3) or the user’s guide in [6]. 

See also [7]. 

Let 𝑥𝑡 = (𝑘𝑡, 𝑚𝑡)
′  be the vector of endogenous state variables, and let 𝑦𝑡 =

(𝑦𝑡 , 𝑐𝑡 , 𝑛𝑡 , 𝑖𝑡 , 𝜋𝑡 , 𝑟𝑡, 𝜆𝑡)
′  be the vector of other endogenous variables. The equilibrium conditions 

of the MIU model can be written in the form 

0 = 𝐴𝑥𝑡 + 𝐵𝑥𝑡−1 + 𝐶𝑦𝑡 + 𝐷𝑧𝑡                              (19) 

0 = 𝐸𝑡[𝐹𝑥𝑡+1 + 𝐺𝑥𝑡 + 𝐻𝑥𝑡−1 + 𝐽𝑦𝑡+1 + 𝐾𝑦𝑡 + 𝐿𝑧𝑡+1 + 𝑀𝑧𝑡]        (20) 

𝑧𝑡+1 = 𝑁𝑧𝑡 + 휀𝑡+1;   𝐸𝑡[휀𝑡+1] = 0                   (21) 

Where x is a vector of endogenous state variables (size m* 1), y is a vector of control variables 

(size n * 1), z is a vector of exogenous state variables (size k * 1). 휀𝑡+1 is a vector of shocks (size 

k * 1). C is of size n * n. F is of size m * n, and N has only stable eigenvalues. It is assumed that 

C is of full column rank and that the eigenvalues of N are all within the unit circle. For this 

paper  

𝐴 =

[
 
 
 
 
 
 

1   0
0  0
0   1
0    1
0    0

0 − 𝛺2

𝜅   0
1    0 ]

 
 
 
 
 
 

  , 𝐵 =

[
 
 
 
 
 
 
𝛿 − 1     0
𝛼           0
0       0
0     −1
0        0
0      0
0        0
𝛿 − 1 0]

 
 
 
 
 
 

 𝐷 =

[
 
 
 
 
 
 
 
0  0
1  0
0 0
0 −1
0 0
0 0
𝜉  0
0 0 ]

 
 
 
 
 
 
 

  

𝜅 = 𝛼(𝛼 − 1) (
�̅�

�̅�
) 𝜂 (

�̅�

1 − �̅�
)  , 𝜉 = 𝛼 (

�̅�

�̅�
)(1 + 𝜂 (

�̅�

1 − �̅�
)) 𝜌𝑧 , 𝛺2 = (𝑏 − 𝛷)(1 − 𝛾) 

C is 8*8 then,  

𝑐11 = −
�̅�

�̅�
 , 𝑐12 =

𝑐̅

�̅�
, 𝑐21 = −1, 𝑐23 = 1 − 𝛼, 𝑐32 = −1, 𝑐35 =

1

𝑏
, 𝑐47 = 1, 𝑐51 = 1, 𝑐53

= −(1 + 𝜂 (
�̅�

1 − �̅�
)) ,     𝑐54 = 1,   𝑐62 = 𝛺1, 𝑐64 = 1, 𝑐74 = 𝛼(1 − 𝛼) (

�̅�

�̅�
)), 𝑐76

= −(𝛿 + 𝜂 (
�̅�

1 − �̅�
) + 𝛼(1 − 𝛼) (

�̅�

�̅�
)), 𝑐88 = −𝛿 
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𝛺1 = 𝛾𝛷 + (1 − 𝛾)𝑏  ,𝛾 = [1 + 𝑎−1(1 − 𝑎) × (�̅� 𝑐̅⁄ )1−𝑏]−1 

𝐹 = [
0 0
0 0

] , 𝐺 = [
0 0
0 0

] , 𝐻 = [
0 0
0 0

] , 𝐽 = [
0 0 0
0 0 0

    
0 0 0
1 0 0

    
1 0
0 0

] ,  

𝐾 = [
0 0 0
0 0 0

    
0 −1 1

−1 0 1
    

0 0
0 0

] , 𝐿 = [
0 0
0 0

] ,𝑀 = [
0 0
0 0

] , 𝑁 = [
𝜌𝑧 0
0 𝜌𝑚

] 

Then if an equilibrium solution to this system of equations exists, it takes the form of stable laws 

of motion: 

𝑥𝑡 = 𝑃𝑥𝑡−1 + 𝑄𝑧𝑡                                                                (21) 

𝑦𝑡 = 𝑅𝑦𝑡−1 + 𝑆𝑧𝑡                                                                (22) 

9. General Solution Method: Solving the Matrix Equations 

As we did for the simple case, let's substitute out 𝑥𝑡, 𝑥𝑡+1, 𝑦𝑡+1, 𝑦𝑡𝑎𝑛𝑑 𝑧𝑡+1 using (20), (21), and 

(22). Then the equations (19) and (20) become the followings: 

0 = 𝐴(𝑃𝑥𝑡−1 + 𝑄𝑧𝑡) + 𝐵𝑥𝑡−1 + 𝐶(𝑅𝑥𝑡−1 + 𝑆𝑧𝑡) + 𝐷𝑧𝑡                                              

0 = (𝐴𝑃 + 𝐵 + 𝐶𝑅)𝑥𝑡−1 + (𝐴𝑄 + 𝐶𝑆 + 𝐷)𝑧𝑡                                                       (23) 

 

0 = 𝐸𝑡[𝐹(𝑃𝑥𝑡 + 𝑄𝑧𝑡+1) + 𝐺(𝑃𝑥𝑡−1 + 𝑄𝑧𝑡) + 𝐻𝑥𝑡−1 + 𝐽(𝑅𝑥𝑡 + 𝑆𝑧𝑡+1) + 𝐾(𝑅𝑥𝑡−1 + 𝑆𝑧𝑡)
+ 𝐿(𝑁𝑧𝑡 + 휀𝑡+1) + 𝑀𝑧𝑡]      

=  𝐹(𝑃(𝑃𝑥𝑡−1 + 𝑄𝑧𝑡) + 𝑄𝑁𝑧𝑡) + 𝐺(𝑃𝑥𝑡−1 + 𝑄𝑧𝑡) + 𝐻𝑥𝑡−1 + 𝐽(𝑅(𝑃𝑥𝑡−1 + 𝑄𝑧𝑡) + 𝑆𝑁𝑧𝑡)
+ 𝐾(𝑅𝑥𝑡−1 + 𝑆𝑧𝑡) + 𝐿𝑁𝑧𝑡 + 𝑀𝑧𝑡  

= [(𝐹𝑃 + 𝐺 + 𝐽𝑅)𝑃 + 𝐻 + 𝐾𝑅]𝑥𝑡−1

+ [(𝐹𝑄 + 𝐽𝑆 + 𝐿)𝑁 + (𝐹𝑃 + 𝐺 + 𝐽𝑅)𝑄 + 𝐾𝑆 + 𝑀]𝑧𝑡   (24) 

Collecting terms and using 𝐸𝑡[휀𝑡+1] = 0. Since the two equations have to be satisfied for any 

𝑥𝑡−1and 𝑧𝑡: 

0 = 𝐴𝑃 + 𝐵 + 𝐶𝑅                                                 (25) 

0 = 𝐴𝑄 + 𝐶𝑆 + 𝐷                                                 (26) 

0 =  𝐹𝑃2 + 𝐺𝑃 + 𝐽𝑅𝑃 + 𝐻 + 𝐾𝑅                    (27) 

0 = 𝐹𝑃𝑄 + 𝐹𝑄𝑁 + 𝐺𝑄 + 𝐽𝑅𝑄 + 𝐽𝑆𝑁 + 𝐾𝑆 + 𝐿𝑁 + 𝑀                 (28) 

Notice (25) and (26) contain only P and R. Solve (25) for R and substitute into (27) and we 

obtain: 
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𝐹𝑃2 + 𝐺𝑃 + 𝐽(−𝐶−1𝐴𝑃 − 𝐶−1𝐵)𝑃 + 𝐻 + 𝐾(−𝐶−1𝐴𝑃 − 𝐶−1𝐵) = 0 

Collecting terms: 

(𝐹 − 𝐽𝐶−1𝐴)𝑃2 − (𝐽𝐶−1𝐵 − 𝐺 + 𝐾𝐶−1𝐴)𝑃 − 𝐾𝐶−1𝐵 + 𝐻 = 0                   (29) 

To simplify the notation, let's express (29) as follows: 

Ψ𝑃2 − Γ𝑃 − Θ = 0                                                                                                  (30) 

This is a matrix quadratic equation of P. There are many ways to solve the equation in general, 

but an often-used method is to use the generalized eigenvalue problem (also called the QZ 

decomposition). One of the attractive features for the method is that the method does not require 

invertibility of Ψ matrix. 

In general, suppose we have two matrices of the same size X and Y. The generalized eigenvalue 

problem is to find the generalize eigenvalues λi and generalized eigenvectors di satisfying: 

Xdi = λiYdi 

If we use Y = I, we go back to the standard eigenvalue problem. 

How do we apply the generalized eigenvalue problem to our matrix quadratic equation? Let's 

define the following two matrices: 

Ξ = [
Γ Θ

𝐼𝑚,𝑚 0𝑚.𝑚
]            ,         Δ = [

Ψ 0𝑚.𝑚

0𝑚.𝑚 𝐼𝑚,𝑚
] 

Where 𝐼𝑚,𝑚 represents the identity matrix of size m×m and 0𝑚.𝑚 represents the m×m matrix 

with only zero entries. Since both Γ and Ψ  are m × n matrices, both Ξ  and Δ are 2m × 2m 

matrices. Now, apply the generalized eigenvalue problem to the pair of matrices. 

[
Γ Θ

𝐼𝑚,𝑚 0𝑚.𝑚
] [

𝑑𝑖,1

𝑑𝑖,2
 ] = 𝜆𝑖 [

Ψ 0𝑚.𝑚

0𝑚.𝑚 𝐼𝑚,𝑚
] [

𝑑𝑖,1

𝑑𝑖,2
 ] 

If we separate the top and bottom half of the equation, we get: 

Γ𝑑𝑖,1 + Θ𝑑𝑖,2 = 𝜆𝑖Ψ𝑑𝑖,1 

𝑑𝑖,1 = 𝜆𝑖𝑑𝑖,2 

The second equation can be used to substitute out 𝑑𝑖,1. Now we have only one equation (To 

clean up the notation, let's redefine𝑑𝑖 = 𝜆𝑖𝑑𝑖,2): 

Γ𝜆𝑖𝑑𝑖 + Θ𝑑𝑖 = 𝜆𝑖Ψ𝜆𝑖𝑑𝑖                                                      (31) 

Suppose we can find m eigenvalues corresponding m linearly independent eigenvectors. Then 

we have the counterpart of [2] condition. 
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Proposition 1 

If all of the m eigenvalues are inside the unit circle (i.e., maxi  |𝜆𝑖| < 1), the solution is stable 

[9]. 

Suppose the condition is satisfied. We can combine (30) for all i as follows: 

ΨΩΛ2 − ΓΩΛ − Θ = 0                                                                                                  (32) 

Where Ω is m*m matrix which contains all the eigenvectors in each column, and Λ is m*m 

diagonal matrix with m eigenvalues. Specifically: 

Ω = [d1   d2  …  dm]                                                         (33) 

Λ = [
𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝑚

]                                                                                                  (34) 

Multiply (32) by Ω−1 from the right, and we get: 

ΨΩΛ2Ω−1 − ΓΩΛΩ−1 − Θ = 0                                                                                   (35) 

Compare (35) with (35). The equation (35) implies that 𝑃 = ΩΛΩ−1. In sum, once we 

implement the generalized eigenvalue decomposition with respect to Ξ  and Δ, we basically got 

P. 

𝑃 = [0.95578 7.57𝐸 − 15
0.56194 4.40𝐸 − 15

] 

Once P is obtained, (25) is used to obtain R as 

𝑅 = −𝐶−1(𝐴𝑃 + 𝐵)                                                                                                   (36) 

𝑅 =

[
 
 
 
 
 
 
 

0.38499  9.2117𝐸 − 016
0.55298  4.607𝐸 − 015

−0.045928 −6.0761𝐸 − 016
−0.82958 −6.88𝐸 − 015
−0.011835 1.3448𝐸 − 015
−0.036684 −2.9164𝐸 − 016
−0.56194  1
−0.052865 1.8014𝐸 − 013 ]

 
 
 
 
 
 
 

 

 

The remaining two equations, (26) and (28), contains Q and S. Solve (26) for S and we get: 

𝑆 = −𝐶−1(𝐴𝑄 + 𝐷)                                             (37) 
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Plugging into (28), and we get: 

(𝐹𝑃 + 𝐽𝑅 + 𝐺 − 𝐾𝐶−1𝐴)𝑄 + (𝐹 − 𝐽𝐶−1𝐴)𝑄𝑁 − 𝐽𝐶−1𝐷𝑁 + 𝐿𝑁 − 𝐾𝐶−1𝐷 + 𝑀 = 0   (38) 

The equation contains only Q as unknown, but it's not trivial as Q is sandwiched in some terms. 

In this case, we can use the vectorization. The following is useful: 

𝑣𝑒𝑐(𝐴𝑋𝐵) = (𝐵𝑇 ⊗ 𝐴)𝑣𝑒𝑐(𝑋) 

Where ⊗ denotes the Kronecker product of the two matrices. Apply vectorization to (38) and 

we get: 

(𝑁𝑇 ⊗ (𝐹 − 𝐽𝐶−1𝐴) + 𝐼 ⊗ (𝐹𝑃 + 𝐽𝑅 + 𝐺 − 𝐾𝐶−1𝐴))𝑣𝑒𝑐(𝑄) = 𝑣𝑒𝑐((𝐽𝐶−1𝐷 − 𝐿)𝑁 + 𝐾𝐶−1𝐷 − 𝑀) (39) 

Once Q is obtained, we can use (37) to compute S. 

(𝑁′ ⊗ (𝐹 − 𝐽𝐶−1𝐴) + 𝐼𝑘 ⊗ (𝐹𝑃 + 𝐽𝑅 + 𝐺 − 𝐾𝐶−1𝐴))𝑣𝑒𝑐(𝑄)

= 𝑣𝑒𝑐((𝐽𝐶−1𝐷 − 𝐿)𝑁 + 𝐾𝐶−1𝐷 − 𝑀)                                       (40) 

𝑄 = [0.13941 −0.000245
0.16816 −0.31805

] 

 

𝑆 = −𝐶−1(𝐴𝑄 + 𝐷)    

𝑠 =

[
 
 
 
 
 
 
 

1.0476  3.1683𝐸 − 005
0.1760  0.0022904

0.08094 5.388𝐸 − 005
−0.264 0.0004899

0.010466 0.42284
0.0417722 1.055𝐸 − 005

−0.16816  1.318
3.3193 0.0058558 ]

 
 
 
 
 
 
 

 

10. Conclusion 

In this paper, we have practiced the approach of first order approximation to the policy function 

in a Money in utility model. We have theoretically solving the approach of approximation to the 

policy function with the usual approach at the first order.  
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