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A B S T R A C T  A R T I C L E   I N F O 

Index tracking is one of the most important passive strategies which 
describes the process of attempting to track the performance of some 
specified benchmark indexes. Most recent studies determined security 
returns in conventional models by the precise historical data. 
However, such precise data are not always available and it is hard to 
forecast security returns with stochastic values. Therefore, to handle 
such imprecise uncertainty, considering security returns as variables 
with imprecise distributions, i.e., fuzzy variables are recommended. In 
these studies, researchers have studied and experimented with various 
risk-measure methods for index tracking portfolio selection. Models 
which were extended based on Markowitz portfolio selection model 
have used the single period variance of returns as a risk measure. 
Since forecasting future returns of portfolio is uncertain, we consider 
these returns as fuzzy variables in this study. We also apply Value-at-
Risk as the risk measure whichhas not yet been established as risk 
measure in index tracking portfolio selection problems. The model is 
tested, using Tehran Price Index (TEPIX) and computational results 
are presented at the end. 
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1. Introduction 

For many years, fund managers were finding the best strategies to provide a combination of 
capital growth and income. They dividedthese strategies in two classes: (a) Active 
management: in this strategy, investors carry out securities exchange actively so that they can 
find profit opportunity constantly. The assumption underlying this strategy is that fund 
managers can, through their expertise and judgment, add value more than passive strategy 
though choosing high performing stocks and/or by the timing of their buy and sell decisions. 
(b) Passive management: in this strategy, investors consider that the securities market is 
efficient. Therefore they cannot go beyond the average level of market permanently. Hence, 
obtaining approximately the same return as market return can satisfy them. This strategy 
emphasizesto minimize transaction costs. 
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Index tracking is one of the most important passive strategies which describe the process of 
attempting to track the performance of some specified benchmark indexes. A simple way to 
track an index is to design a portfolio which holds all stocks in the market with the same 
relative quantities. But this method increases transaction costs and needs frequent revisions. 
So, index tracking portfolio selection models were extended in 1970s to track the 
performance of an index with specified number of stocks.  
In recent years, researchers have studied and experimented with various risk-measure 
methods for index tracking portfolio selection. Models which were extended based on 
Markowitz portfolio selection model have used the single period variance of returns as a risk 
measure. From then on, various risk methods have been proposed. One of these methods is 
the “value-at-risk” (VaR). Nevertheless, index tracking portfolio selection model with VaR 
have not yet been established. This is because conventional stochastic VaR theory is not 
applicable to the portfolio selection problems in fuzzy environments. Wang et al. [1] 
proposed a proper definition of the fuzzy VaR.Since considering a specific number for a 
portfolio as its future return is uncertain, we used fuzzy variables. 
The rest of the paper is organized as follows.  In the next section, we review the literature of 
the problem. We represent index tracking portfolio selection model in section three. In 
section four, some concepts about fuzzy variables and a survey of fuzzy distance will be 
introduced. In addition, inthis section, fuzzy Value-at-Risk in some theorems will be 
represented and fuzzy index tracking portfolio selection model based on Value-at-Risk is 
illustrated. In section five,we test this model by TSE (Tehran Stock Exchange) market data 
(TEPIX) and make TSE index tracking portfolio based on fuzzy returns. Finally, the 
concluding remarks come in section six. 

2.  Literature review 

Many researches have been studied on the Index tracking. These researches can be classified 
in three classes. Consist of Markowitz models, factor based models and other models. 

2.1. Markowitz models 

These models use Markowitz standard mean-variance model. In fact the objective of these 
models is to minimize tracking error variance. Holdges[2] was the first who used this model 
to compare the tradeoff curve relating variance to return in excess of the index with the 
tradeoff curve for the standard Markowitz portfolio optimization model. Roll [3] combined 
Markowitz and factor models. Rohweder[4] included transaction costs in his model. Wang 
[5]presented a model in which the objective function tracks more than one index. Beasley et 
al. [6] used Markowitz model which include transaction cost and presented an evolutionary 
heuristic method to solve this model.  

2.2. Factor based models 

These models relate the stock returns to one or more economic factors. In fact, these models 
regresses stock return on one or more factors like market return, GDP, inflation, etc. Rudd [7] 
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presented a single factor model. He also included transaction costs in his model and solved it 
with a heuristic method and finally, the application was tested on portfolios tracking S&P 500 
index.Corielli and Marcellino [8]represented index components with a dynamic factor model. 
They developed a procedure which in first step, builds a portfolio that is driven by the same 
persistent factors as the index. In the second step, it is also possible to refine the portfolio in 
order to minimize a specific loss function. 

2.3. Some other works 

Since solution space is extensive, methods which determine exact optimum solution, lose 
their efficiency. To cover this problem, researchers applied heuristics and metaheuristic 
methods to solve models. Recent studies show that applying these methods have been 
common to solve complex models.Okay [9] used constraint aggregation approach to solve his 
model. This method changes constraints of a large problem to one or less, in order to 
miniaturize the dimension of the problem. He showed that both common optimization 
method and constraint aggregation approach bring same solution. Constraint aggregation 
method reduced solution time. Oh et al. [10] applied genetic algorithm to solve the problem 
of South Korea stock market index tracking portfolio selection.Frino et al. [11] focused on 
improving index tracking. For this purpose, they used Australia stock market data. Krink et 
al. [12] compared some metaheuristic approach in solving index tacking problem. They 
compared the results of differentialevolution, genetic algorithm, simulated annealing and 
partial swarm optimization approaches and expressed that in complex problems, differential 
evolution method shows the best performance. Torrubiano and Alberto [13] introduced the 
combination of evolution algorithms and quadratic programming in his study as a hybrid 
strategy to solve index tracking problems. He asserted that his approach decreases solution 
time. 
All the above studies determined security returns in conventional models by the precise 
historical data. However, such precise data are not always availableand it is hard to forecast 
security returns with stochastic values. Therefore, to handle such imprecise 
uncertainty,considering security returns as variables with imprecise distributions, i.e., fuzzy 
variables are recommended [14].Watada [15]applied fuzzy set theory inportfolio selection 
models. He extended Markowitz’s mean-variance idea to the fuzzy environment. Ghazanfar-
Ahari et al. [16] had applied a fuzzy AHP method to allocate a limited fund among 
Pharmaceutical industry in Tehran Stock Exchange. Alimi et al. [17] applied a multi-
objective fuzzy mean-semivariance model to determine the optimum portfolio. 

3. Index Tracking model 

In this section we define the problem of index tracking more precisely. It will be shown that 
this problem leads to a family of optimization problems which are defined by a particular 
choice of the distance or risk measures. 
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3.1. Notation 
• n : is the total number of stocks in which we can invest 
• K : is the desired number of stocks in the tracking portfolio 

• ix : is the proportion of stock i in the tracking portfolio 

• lx : is the minimum proportion of portfolio which must be held in stock i  

• ux :is the maximum proportion of portfolio which must be held in stock i  

• t
iP : is the price of stock i at time t  

• t
ir : is the return of stock i at time t  

Where 1
ln

t
t i

i t
i

P
r

P −
=  

 
(1) 

• pR : is the return of tracking portfolio 

Where 
1

p i

n
t t

i
i

R x r
=

=∑  

 
(2) 

• tµ : is the index value at time t  

• I : is the return of index 

Where 
1

ln
t

t
t

I
µ
µ −

=  
 
(3) 

• iz : is a binary variable and it takes 1 if any of stock i is held in the tracking portfolio; 

otherwise it takes 0.  
3.2.Model specification 

As mentioned before, index tracking problem describes the process of attempting to track the 
performance of some specified benchmark indexes. To reduce transaction costs, only special 
number of stocks which constitute index, should be held in portfolio. In other words, we're 
going to construct a portfolio with K stock to track the index precisely. So, the objective 
function will be minimizing the tracking error which is the difference between portfolio 
return and index return. Hence, we can formulate this problem as below: 

),( IRFZMinimize p=  
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{ } i  ,  0,1i ∀∈z  (9) 
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Eq. (4) is the objective function and represents that the model is going to minimum function

F( , )pR I , where this functionis some probabilistic measure of distance between the returns of 

portfoliox and index I  and can be interpreted as the measure of risk of the portfolio relative 
to index. AsGiavoronski et al. [18] mentioned this function can take different risk measures.  
Constraint (5) ensures that the maximum and minimum proportion level of chosen stocks in 
the portfolio satisfy proportion limit. Eq. (6) ensures that there are precisely K stocks in the 
tracking portfolio.Constraint (7) specified that all capital must be invested.  Finally, 
constraints (8) and (9) denote the domain of the decision variables. 
In this paper, we use VaR concept as risk measure in the objective function. Then, the model 
can be shown as follow: 

{ }

1

1

1

min

:

1

0

0,1

l u
i i i

n

i
i

n

i
i

i

i
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=

 ≤ ≤ = = ≥ ∈
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∑

 

 

 

 

 

 

(10) 

 

4. Fuzzy Index Tracking Model Based on Value-at-Risk 

In this section, we propose fuzzy Index Tracking model based on Value-at-Risk. At first, 
some concepts about fuzzy variables and a survey of fuzzy distance is introduced. Then, 
fuzzy Value-at-Risk in some theorems is represented and by proving these theorems, fuzzy 
index tracking portfolio selection model based on Value-at-Risk is illustrated.   

4.1. Some concepts about fuzzy variables 

In this section, we have a brief review on credibility theory which was founded by Liu [19].  

4.1.1. Credibility function 

Let ξ  be a fuzzy variable with membership function ( )xξµ  and r  be a real number. Then 

the credibility function of rξ ≥  will be: 

{ } { } { }1
Cr Pos Nec .

2
r r rξ ξ ξ≤ = ≤ + ≤    

 
(11) 

where {}Pos .  and {}Nec .  are the possibility and necessity measures which are defined as 

follows: 
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{ }Pos sup ( )

x r

r xξξ µ
≤

≤ =  (12) 

{ }Nec 1 sup ( )
x r

r xξξ µ
>

≤ = −
 

(13) 

From Eq. (13) we have: 

{ } 1
Cr sup ( ) 1 sup ( )

2 x r x r

r x xξ ξξ µ µ
≤ >

 ≤ = + −    
(14) 

{ } 1
Cr sup ( ) 1 sup ( )

2 x r x r

r x xξ ξξ µ µ
≥ <

 ≥ = + −    
(15) 

4.1.2. Graded mean integration representation 

In 1998, Chen and Hsieh [20] proposed graded mean integration representation (GMIR) for 

representing generalized fuzzy number. They supposed 1L−  and 1R − as inverse functions for a 
LR fuzzy number. They calculate GMIR of generalized fuzzy number A  based on integral 
value of graded mean h-levels as follow: 

1 1

0 0

( ) ( )
( ) /

2

w wL h R h
P A h dh h dh

− − +=   ∫ ∫  
 
(16) 

where h is between 0 andw , and0 1w< ≤ . 
They have already found GMIR formula for a generalized trapezoidal fuzzy number 

( , , , )A a b c d= and a generalized triangular fuzzy number ( , , )B a b c= as follows: 

2 2
( )

6

a b c d
P A

+ + +
=  

(17) 

4
( )

6

a b c
P B

+ +
=  

(18) 

4.1.3. The fuzzy distance 

Chen and Wang [1] represented a new fuzzy distance method by using the fuzzy absolute 

value of the difference of two trapezoidal fuzzy numbers. They supposed 1 2 3 4( , , , )A a a a a=  

and 1 2 3 4( , , , )B b b b b= as two trapezoidal fuzzy numbers with their GMIR ( )P A and ( )P B . 

They assume: 

( )( ) ( )
, 1,2,3,4

2
i i

i

a P A b P B
s i

− + −= =  
 
(19) 

Then they computed the fuzzy distance of A, B as follow: 

( , ) ( ) ( ) , 1, 2,3,4i iC d A B A B P A P B s i= = − = − + =  (20) 

4.2. Fuzzy Value-at-Risk 

Suppose = −pL R I represents the difference between portfolio and index returns. So, the 

VaR of L is the largest value by which the portfolio return can miss the index target in 1 α−  
fraction of cases(Giavoronski et al [18]) and can be written as follow: 
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{ }1VaR inf Cr( )
w

w L wα α
−
= ≤ ≥  (21) 

 

Using certain kinds of fuzzy variables, following theorems help us to solve model. 

Theorem 1: Let ( , , )i i i ia b cξ = be triangular fuzzy numbers for security returns with the 

membership function: 

( )

0

i

i i
i i i

i i

i i
i i i

i i

x a
a x b

b a

x c
x b x c

b c

otherwise

ξµ

− ≤ ≤ − −= ≤ ≤ −

 

 
 
(22) 

So the 1VaR α−  can be computed as follow: 

( ) ( )
( )1

2 1 2 2 0 0.5

2 1 2 0.5 1

a b
VaR

b c
α

α α α
α α α−

− + − < ≤=  + − < ≤
 

 
(23) 

Proof: in first step, we compute credibility function of fuzzy variable ξ  which represents 

security returns. According to equations (12), (13) and (22), we have: 

{ }Pos sup ( )
1

ξξ µ
≤

− ≤≤ = = − >x r

x a
x b

r x b a
x b

 

 
(24) 

{ }
0

Nec 1 sup ( )
1ξξ µ

>

≤≤ = − = − − > −x r

x b
r x x c

x b
b c

 

 
(25) 

So according to Eq. (14), the credibility function will be: 

{ }
1

21
Cr sup ( ) 1 sup ( )

2 1
1

2

ξ ξξ µ µ
≤ >

 −  ≤  −   ≤ = + − =    −  − >  − 
x r x r

x a
x b

b a
r x x

x c
x b

b c

 

 
 
(26) 

Then,based on Eq. (21) we can calculate 1VaR α−  for this variable as follow: 

( ) ( )
( )1

2 1 2 2 0 0.5

2 1 2 0.5 1

a b
VaR

b c
α

α α α
α α α−

− + − < ≤=  + − < ≤
 

 
(27) 

Theorem 2: Let ( , , , )i i i i ia b c dξ = be trapezoidal fuzzy numbers for security returns, and then 

similarly to theorem 1, 1VaR α−  can be computed as follow: 

( ) ( )
( )1

2 1 2 2 0 0.5

2 1 2 0.5 1

a b
VaR

c d
α

α α α
α α α−

− + − < ≤=  + − < ≤
 

 
(28) 
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Since ( , , , )i i i i ia b c dξ = represents trapezoidal fuzzy numbers for security returns and ix

shows proportion of security i  in portfolio, according to Eq. (2), we can calculate portfolio's 
fuzzy return as follow: 

1 1 1 1 1

, , ,
n n n n n

p i i i i i i i i i i
i i i i i

R x x a x b x c x dξ
= = = = =

 = =   ∑ ∑ ∑ ∑ ∑  (29) 

Let ( , , , )I a b c d′ ′ ′ ′=  be a trapezoidal fuzzy number for index return, then according to 

equations (17) and (19), we have: 

1 1 1 1

2 2

P( )
6

n n n n

i i i i i i i i
i i i i

p

x a x b x c x d

R = = = =

 + + +  =
∑ ∑ ∑ ∑

 

 
(30) 

( )2 2
P( )

6

a b c d
I

′ ′ ′ ′+ + +
=  (31) 

1 1 1 1

1 1 1 1

1 1 1 1

5 2 2 5 2 2

,
12

4 2 4 2

,
12

2 4 2 4

,
12

n n n n

i i i i i i i i
i i i i

n n n n

i i i i i i i i
i i i i

n n n n

i i i i i i i i
i i i i

x a x b x c x d a b c d

x a x b x c x d a b c d

s

x a x b x c x d a b c d

x

= = = =

= = = =

= = = =

 ′ ′ ′ ′− − − + − − −  

 ′ ′ ′ ′− + − − − + − −  
=  ′ ′ ′ ′− − + − − − + −  

−

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

1 1 1 1

2 2 5 2 2 5

12

n n n n

i i i i i i i i
i i i i

a x b x c x d a b c d
= = = =

               ′ ′ ′ ′− − + − − − +      
∑ ∑ ∑ ∑

 

 
 
 
 
 
 
(32) 

FromEq. (20) the loss function ( )L which is the absolute difference between portfolio and 

index returns can be calculated as follow: 
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( )
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(33) 

So, according to Eq. (28), we can compute 1VaR α−  for L  as below:  

( ) ( )
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(34) 

The index tracking portfolio selection model for trapezoidal fuzzy numbers can be formulated 
as follows based on mentioned equations: 
For  0.5α ≤  model (10) becomes: 
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And for 0.5α >  we have: 
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(36) 

5. Numerical example 

In order to illustrate the proposed method, we consider the following numerical 
examplebased on Tehran Stock Exchange (TSE) market data. For this mean, we consider 80 
stocks datafrom March 26, 2011 to June 20, 2012which hadthe most transaction day.In order 
to construct an index tracking portfolio with fuzzy returns based on VaR, we apply model 
(36). For this purpose, we used the data set from March 26, 2011 to December 21, 2011 as 
learning data set. We consider these stocks returns as trapezoidal fuzzy number 

( , , , )i i i i ia b c dξ =  where: 
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ia is stock thi  return at 5th  percentile, ib is stock thi  return at 40th  percentile, ic is stock thi  

return at 60th  percentile and id is stock thi  return at 95th  percentile. 

According to the above explanation, stocks fuzzy returns were determined as follows:  
Table 1. Stocks Fuzzy Returns 

Security No. Fuzzy Return Security No. Fuzzy Return 
1 (-0.0143,-0.0012,-0.0003,0.0171) 41 (-0.0353,-0.0024,0.0004,0.0341) 
2 (-0.0404,-0.0068,0.0018,0.0391) 42 (-0.0369,-0.007,-0.0007,0.0336) 
3 (-0.0378,-0.0063,0.0042,0.0389) 43 (-0.0393,-0.0076,0.0022,0.0389) 
4 (-0.0179,-0.0012,0,0.0185) 44 (-0.0222,-0.0018,-0.0003,0.0361) 
5 (-0.0231,-0.0021,0,0.0204) 45 (-0.0366,0,0.0023,0.0384) 
6 (-0.02104,-0.0013,0,0.02846) 46 (-0.0203,-0.0016,0.0009,0.0381) 
7 (-0.0321,-0.0048,0.0012,0.0352) 47 (-0.0274,-0.0005,0.0001,0.0375) 
8 (-0.0267,-0.0019,0.0012,0.0328) 48 (-0.0388,-0.0016,0.0016,0.0384) 
9 (-0.04,-0.0085,0.0038,0.0389) 49 (-0.0103,-0.001,0,0.0168) 
10 (-0.0367,-0.0062,0.0066,0.0381) 50 (-0.0135,-0.0014,0,0.0195) 
11 (-0.0393,-0.0103,0.0073,0.0388) 51 (-0.0148,-0.0009,0,0.0318) 
12 (-0.0398,-0.0058,0.0077,0.0389) 52 (-0.0293,-0.0016,0,0.0388) 
13 (-0.0327,-0.0034,0,0.0348) 53 (-0.0378,-0.0079,0,0.0379) 
14 (-0.0385,-0.0048,0.0008,0.039) 54 ()-0.0285,-0.0008,0.0006,0.0389 
15 (-0.0363,-0.0047,0.0004,0.037) 55 (-0.029,-0.0021,-0.0002,0.039) 
16 (-0.0236,-0.001,0,0.0122) 56 (-0.0319,-0.0039,-0.0005,0.0372) 
17 (-0.0321,-0.003,-0.0003,0.0289) 57 (-0.0322,-0.0021,0,0.0377) 
18 (-0.0388,-0.0034,0.003,0.0392) 58 (-0.034,-0.003,0,0.0357) 
19 (-0.0391,-0.0071,0.0148,0.0392) 59 (-0.0247,-0.0024,-0.0004,0.0367) 
20 (-0.0269,-0.002,0.0002,0.0363) 60 (-0.0379,-0.0036,0,0.0377) 
21 (-0.0367,-0.001,0.0023,0.0386) 61 (-0.0343,-0.0048,0.0033,0.0372) 
22 (-0.034,-0.0011,0.0018,0.0388) 62 (-0.0348,-0.0022,0.0044,0.0368) 
23 (-0.0386,-0.0036,0.008,0.0388) 63 (-0.0297,-0.0027,0.0004,0.0282) 
24 (-0.0385,-0.0055,0.0052,0.391) 64 (-0.0092,-0.0008,0,0.0159) 
25 (-0.0362,-0.0096,0.0009,0.0374) 65 (-0.0332,-0.0035,0.0004,0.0345) 
26 (-0.0361,-0.0066,0.0011,0.0385) 66 (-0.0362,-0.0022,0.0017,0.0375) 
27 (-0.0371,-0.0075,0.0015,0.0375) 67 (-0.0336,-0.009,0.003,0.0369) 
28 (-0.0367,-0.0061,0.0036,0.0371) 68 (-0.0242,-0.0025,-0.0006,0.0356) 
29 (-0.0392,-0.0054,0.0021,0.0373) 69 (-0.0178,-0.0013,0,0.0006) 
30 (-0.0261,-0.00025,0,0.0245) 70 (-0.0367,-0.0051,-0.0001,0.0369) 
31 (-0.0369,-0.0057,0.0009,0.0377) 71 (-0.0374,-0.003,0.0023,0.0377) 
32 (-0.0297,-0.0019,0.0008,0.0271) 72 (-0.0237,-0.0018,0,0.0325) 
33 (-0.0328,-0.0018,0.0003,0.0376) 73 (-0.033,-0.0051,0.0025,0.0339) 
34 (-0.0388,-0.0106,0.0007,0.0375) 74 (-0.0335,-0.0022,0.008,0.0367) 
35 (-0.0349,-0.0034,0.0003,0.033) 75 (-0.0246,-0.0013,0.0003,0.0311) 
36 (-0.0356,-0.0026,0.0008,0.0376) 76 (-0.0117,-0.0016,0,0.02) 
37 (-0.0313,-0.0041,0,0.0349) 77 (-0.0389,-0.0058,0.074,0.0389) 
38 (-0.0353,-0.0043,0.0003,0.0371) 78 (-0.025,-0.0023,-0.0009,0.0305) 
39 (-0.0376,-0.0101,0.0038,0.0375) 79 (-0.0343,-0.0021,0,0.0377) 
40 (-0.0388,-0.0078,0.0056,0.0388) 80 (-0.0246,-0.0029,0,0.0302) 

 
In order to test the portfolio's efficiency, we used the test data sets from  December 22, 2011 

to June 20, 2012 and solve this model with different K , lx and ux . Results are illustrated in 



        52                      S.A. Hosseini Imeni and A.A. Najafi 

 
table 2.These different index tracking portfoliosˈ return paths are illustrated in figures 2, 3, 4, 
5, 6, 7 and 8.  
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Figure 1. Index Tracking Portfolio with 5=k , 0.05=
lx , 0.5=

ux  
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Figure 2. Index Tracking Portfolio with 5=k , 0.1=
lx , 0.5=

ux  

 

 

 

Figure  3. Index Tracking Portfolio with 10=k , 0.01=
lx , 0.5=

ux  
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Figure  4. Index Tracking Portfolio with 10=k , 0.05=
lx , 0.5=

ux  

 

 

 

Figure  5. Index Tracking Portfolio with 15=k , 0.01=
lx , 0.5=

ux  
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Figure 6. Index Tracking Portfolio with 15=k , 0.03=
lx , 0.5=

ux  

 

 

 

Figure 7. Index Tracking Portfolio with 15=k , 0.05=
lx , 0.5=

ux  

These result shows that the index tracking portfolio with 15=k , 0.05=
lx , 0.5=

ux  has the 
lowest RMSE criteria and shows better fitness to the Tehran Price Index (TEPIX). 
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6.  Conclusion 

Most recent studies determined security returns in conventional models by the precise 
historical data. However, such precise data are not always available. Therefore, to handle 
such imprecise uncertainty,considering security returns as variables with imprecise 
distributions, i.e., fuzzy variables are recommended.In order to make a portfolio which tracks 
a specific index performance, researchers have studied and experimented various risk-
measure methods. Nevertheless, index tracking portfolio selection model with VaR have not 
been yet established.In this research, we applied index tracking portfolio selection model with 
fuzzy VaR.To solve the model by using certain kinds of fuzzy variables, we have proved 
some theorems. Finally the model was tested by TSE market data (TEPIX). Results show that 
the model has low RMSE criteria and can be applicable to various investment problems when 
the future returns are uncertain. 
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