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1. Introduction

therefore they are rented and used in other psjeantd are not
available in all project periods. In other word$ere exists a
predefined ready-date as well as a due date foh eanewable
resource type. In this way, no resource is utilietbre its ready date.
Nevertheless, resources are allowed to be usedthéie due date by
paying penalty costs depending on the resource fpe objective is
to minimize the costs of renewable resource usagsformulated

and mathematically modeled this problem as an ertégqear

programming model. Since our problem is NP-hard alsth exact
methods are only applicable in small scale, theeefmetaheuristic
methods are practical approaches for this probléns; means that
metaheuristics are better for this problem. In otdeauthenticate the
model and solution algorithm in small scale, we sider a network
with low activity, and then solve the model of thistwork with both

exact algorithms and SA-GA-TS metaheuristic algpons. For more
activities, as well as getting closer to the realrld; we present a
Simulated Annealing Algorithm to solve this problein order to

examine the performance of this algorithm, data laa been derived
from studied literature were used, and their answegre compared
with Genetic Algorithm (GA) and Tabu Search Algbnt (TS).

Results show that in average, quality of SA answeas better than
those of the GA and TS algorithms. In addition, uge relaxation
method to achieve an even higher validation for $i#e algorithm.

Finally all results in this paper indicate that bbobhodel and solution
algorithm have high validity.

Resource Constrained Project Scheduling ProblemP@®) is one of the most important
issues in the areas of project scheduling and auaidmial optimization. RCPSP includes a
project that has a number of specific activitieshwdertain durations. RCPSP includes two
constraints, precedence constraints in which teethprecedence relation between activities
is finish to start, and the other, resource comdgsaThe objective here is to minimize project
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makespan. In RCPSP, While an activity is being etext; preemption is not permitted (i.e.
once started, an activity should be continued utnid completed). It is shown in Blazewicz,
Lenstra, and Rinnooy-Kan [1] that the RCPSP, abashop generalization, is NP-hard in the
strong sense. Several solution procedures have gresented in the literature. They can be
classified into three categories: exact methodsch sas works of Demeulemeester and
Herroelen [2], Mingozi et al. [3], and Pattersorakt[4], which mainly make use of various
branch-and-bound procedures; heuristic methoddb@s¢he serial and the parallel schedule
generation schemes of Boctor [5], Kolisch, andxDfé]. Finally, metaheuristic methods
based on Tabu search from Baar et al. [7], NorastzkeIbaraki [8], simulated annealing of
Bouleimen and Lecocq [9], Cho and Kim [10], and gjenalgorithms form Alcaraz and
Maroto [11], Alcaraz et al. [12], Hartmann [13], Ntes et al. [14], and Valls et al. [15].
Surveys on several other solution procedures caoue in works of Demeulemeester and
Herroelen [16]. The RCPSP under minimization oltoésource tardiness penalty costs is an
applicable problem, and a modified version of th@PSP in which all assumptions and
constraints are maintained, but the objective foncis different. Moreover, several exact,
heuristic and metaheuristic algorithms are propdsedcheduling problems with objective
function related to tardiness. Nadjafi and Shadrdkt} developed a B&B algorithm for the
weighted earliness—tardiness project-schedulingblpno using generalized precedence
relations. Liaw, Lin, Cheng, and Chen [18] devebtbpe B&B algorithm for scheduling
unrelated parallel machines for minimizing totaligited tardiness. Essafi, Yazid, and
Dauzere-Péres [19] proposed a genetic local sedgahithm for minimizing total weighted
tardiness in the job-shop scheduling problem. Bil§eac¢, Kurtulan, and Pekgin [20]
developed a Tabu search algorithm for solving thealpel machine total tardiness problem.
In addition, Bilge, Kurtulan, and Kira¢ [21] presed a Tabu search algorithm for the single
machine total weighted tardiness problem. Bianaa]'Olmo, and Speranza [22] referred to
resources that can be assigned to only one actavigytime in dedicated form. However, in
this article, we assume that only a few renewabtources exist including expert human
resources with high skill levels, particular typ#scranes, and tunnel boring machines that
have to be leased from third party providers. Ciberang that these limited renewable
resources are employed in other projects, thesedistated ready-date as well as a due-date
for each item, such that no resource can be attedsefore its ready-date; however, these
resources are allowed to be used after their dtesdgy paying penalty cost, depending on
the resource type. Ranjbar et al. [23] studied phidblem with single mode for each activity,
and availability of one unit for each type of rerable resource, in which they used the exact
method of “branch and bound" in order to solvephablem. The problem we studied here is
a generalization of the problem introduced by Ranjét al., with the difference that, the
assumption that only one unit of each resource ty@ailable, and no activity needs more
than one resource for execution has been remowvedchddition, we used metaheuristic
algorithm to solve the problem. Since our problenthwhis profile is unique and is
introduced for the first time, and considering ttia optimal solution could not be found in
the literature review, therefore we used differgatidation approaches. The rest of this
article is organized as follows. Problem modeling formulation are provided in Section 2.
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The computational Study is presented in Sectidrirglly, conclusions are given in Section
4.

2. Problem Modeling and For mulations

In this article, we introduce a resource-consadiproject-scheduling problem with finish-
to-start precedence relations among project asyitconsidering renewable resource
tardiness penalty costs. For each project, n éietivand R renewable resources are givgn. R
is the availability of each renewable resource. @heation of an activity i is given as di.
Activity | requires J units of renewable resource k. Our model is preskeunsing an activity-
on-node (AON) network. Thus, there are two dummivaies, first activity and the last
activity (0 and n+1), which denote start and enthefproject, respectively. The dummy start
and end activities have zero duration and zerouresoconsumption. It should be noted that
for each renewable resourcepkdk, and p show the ready date, due date, and tardiness
penalty cost of this renewable resource, respdygtiuie order to embed the resource release
dates in the network, one dummy node correspondirgach resource k, k=1... R, is added
to the project network. This node displays an a@gtiwith duration px with no resource
requirements, which is a direct successor of thg summy activity and direct predecessor
of every activity ENx where N is a set of activities that need a number of rexidey
resources of KR type for execution. Each type of limited reneveatadsource is leased for a
fixed period, starting from its ready time, and iagdwith its due-date, and is not available
before its ready time; however it can be used atitedue-date provided a tardiness penalty
cost is paid. All activities are ready at the begng of the project, and no preemption is
permitted. We define the problem parameters asvili

n: Number of project activities

R: Number of renewable resources

Rk: Renewable resource k availability

pk: Ready time of renewable resource k

dx: Due date of renewable resource k

Px: Tardiness penalty cost of renewable resource kdoh period

Pr: Set of predecessors of activity j

d;: Duration of activity |

rik: Renewable resource k requirement for executitigitg

Tk: Is the renewable resourkdardiness, determined Ay=max {CPk—&, 0}, whereCPxis

the release time of resourkén the project and equal @P=max {f}i eNx.

(Earliest) finish time that is shown wifiy (fi=s;+d;), wheres is an integer and shows the
start time of activityi. The integer linear programming model for this lpjeon can be
formulated as follows:

R
minz="" PT« (1)
k=1

S.t.
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CPS+dieNy  k=1,2,...,R 2)
Ti>CPe& k=1,2,...,R 3)
Tx0 k=1,2,....R (4)
S-S2d j=1,2,...,n EPrj (5)
j;ﬁ)rjk <R, k=1,2,.,R (6)
S>pdeNe  k=1,2,...R 7)
S, CR, Tke N fori=0,1,...,n+1 (8)

In the above model, objective function (1) représe¢he minimization of the total weighted
resource tardiness penalty costs. It should bedntitat as the cost of leasing for each
renewable resource is fixed, it does not need puaration in the objective function.
Constraint (2) shows that the release time of easburce is not less than the finish time of
each activity, which requires that resource. Camstrsets (3) and (4) ensure tfAgtis equal

to max {CR-&, 0}. Constraint (5) is the precedence constraint imglyhat start time of
activity | must be after all its predecessors arestied. Constraint (6) is the renewable
resource constraint, whe#dt) is the set containing in-progress activities meti. Constraint

(7) makes the starting times of all activities geedhan or equal to the release dates of their
corresponding resources. Constraint (8) ensurév#niablesS , CR andT, are non-negative
integers. For validation of the model, and validatiof the proposed SA solution, we
considered a small network as a case example. Taldleows the resource information,
which in relation to our example with n=7 real waties, m=2 resources and the
corresponding graph is depicted in Figure 1. I figure, the number shown above each
node indicates activity duration and the numbeb&dw indicates the resources required for
activity execution. The nodes labele@ndp correspond to ready times of resources 1 and 2,
respectively. We also solved the model of this eganusing exact solution as well as SA
algorithm, which both of their objective functioase shown in Table 2. As we can see in this
table, in order to evaluate SA's algorithm perfanoeawe solved the model relevant to this
network using TS and GA, which resulted in a similbjective function value.

Table 1. Resource information of the example pttojec
Resource Availability Ready date Due date Perwbt N
Res 1 4 2 11 14 {1,2,4,6}
Res 2 5 3 10 11 {3,5,7}

Table 2. Comparison between performance of exathataheuristic algorithms for small network
Exact Solution SA TS GA

14 14 14 14
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Figure 1. Network of the example project

3. Computational Study

The aim of this section is to evaluate the perforoeaof SA approach by comparing it with
GA and TS. The performance is appraised accordirtbe objective function value quality.
The solver applied in the study was MATLAB (2009dacplex 12.2, run with a machine
equipped with Windows 7, Intel (R) Core (TM) 2 wigh53 GHz processor, and 3 GB of
RAM.

3.1.Test problem

We used the sample problems library of PSPLIB [2A§l selected two sets of project
scheduling problems (i.e. j30 and 60). These datandt include some of our model
parameters such as penalty cost of renewable @=uand ready time of renewable
resources etc. hence; in this article we have eyegladiscrete uniform distribution in
selecting these parameters. The unit penalty coistenewable resource tardiness were
randomly chosen from discrete uniform distribut{@®, 30). The ready times of renewable
resources were randomly generated from discretéoramidistribution (0, 15), and the
renewable resources due dates were randomly pfokeddiscrete uniform distribution:

Yefs Y

j=1
Moreover, the algorithms run in 20 iterations.

3.2.Performance of the Proposed Algorithm
In order to evaluate performance of the SA alpamitthe algorithm was implemented for the
introduced test data. Obtained results were cordparigh results of the GA and TS
algorithms. Comparison results are given in Talk®sand (4), which are presented for j30
and j60 data, respectively. The first column of thkele shows the Data Name. The ending
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section of the Data Name, which is in number forepresents the number of random
parameter productions that do not constitute tha dallection, and were randomly produced
according to the previous section method. In fiaeteach problem, parameters are randomly
produced three-times. Columns 2, 3 and 4 show #menof the metaheuristic algorithm.
Each of these columns comprises four other colunmsshich the first column shows the
minimum result obtained from five repetitions. Quolus 2, 3, and 4 represent average,
maximum, and standard deviation, respectively. TEs row of this table displays result
averages for simpler and better comparison. FiR)and Figure (3) represent performance
difference between the three algorithms for thbzetl data for j30 and j60 respectively. As
can be seen, the vertical axis is objective fumctialue, and the horizontal axis is data. In the

next section, we will provide descriptions of obtd results.
Table 3. Comparison between performance of SA, AtBGA for J30

Name TS SA GA
Min Avg. Max  SDev Min Avg. Max  SDev Min Avg. Max  S&y
j301_1.1 563 563 563 0 563 563 563 0 563 563 563
j301_1.2 515 515 515 0 515 515 515 0 515 515 515
j301_1.3 289 289 289 0 289 289 289 0 289 289 289
j305_2.1 1150 1178.53 1244 2453 1150 1150 1150 0 1501 1157.08 1235 24.53
j305_2.2 1234 1245.63 1275 8.64 1234 1234 1234 0 3412 1239.75 1257 10.40
j305_2.3 1097 111242 1143 15.63 1034 1034 1034 0 0341 1041.75 1127 26.84
j3010_1.1 733 733 733 0 733 733 733 733 733 733
j3010_1.2 821 821 821 0 821 821 821 821 821 821
j3010_1.3 538 538 538 0 538 538 538 538 538 538
j3015_1.1 1109 1109 1109 0 1109 1109 1109 1109 0911 1109 0
j3015_1.2 1117 1117 1117 0 1117 1117 1117 1117 1711 1117 0
j3015_1.3 938 938 938 0 938 938 938 0 938 938 938 0
Average g42 846.63 857.08 4.07 836.75 836.75 836.75 0 836.75 838.47 8535 5.15
Table 4. Comparison between performance of SA, AtBGA for J60
TS SA GA
Name
Min Avg. Max SDev  Min Avg. Max SDev Min Avg. Max Sy
j601_1.1 547 564.43 587 12.95 547 547 547 0 547 5554 572 12.07
j601_1.2 204 212.52 276 23.63 195 195 195 0 195 .7198 210 6.32
j601_1.3 486 49852 52469 1835 486 486 486 0 486 495.2 532 19.39
j605_1.1 1736  1826.46 2016  27.42 1616 1621.75 1639040 1639  1765.30 1872  21.27
j605_1.2 578 615.53 626 21.63 489 500.41 578 20.31578 589.6 606 17.71
j605_1.3 793 838.42 1153 42.74 649 658.83 767 34.06837 934.53 1023 19.38
j6010_1.1 1953  1989.30 2035 21.53 1903 1910.32  192@1.42 1926 1954.3 1995 7.23
j6010_1.2 758 758 758 0 758 758 758 0 758 758 758 0
j6010_1.3 1133 1133 1133 0 1133 1133 1133 0 1133 3311 1133 0
j6015_1.1 2177 2177 2177 0 2177 2177 2177 0 2177 7721 2177 0
j6015_1.2 873 873 873 0 873 873 873 0 873 873 873 0
j015_1.3 1390 1390 1390 0 1390 1390 1390 0 1390 9013 1390 0
Average  1052.33 1073.01 1129.06 14.02 1018 1020.8839.08 7.18 1044.92 1068.59 1095.08 8.61
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Table 5. Comparison between performance of exathataheuristic algorithms in relaxed state)sor

Relax TS SA GA
Name Solution

(exact) Min Avg. Max SDev Min Avg. Max SDev Min Avg. Max Sy
j301_1.1 297 297 297 297 0 297 297 297 0 297 297 729 0
j301_1.2 215 215 215 215 0 215 215 215 0 215 215 521 0
j301_1.3 57 57 57 57 0 57 57 57 0 57 57 57 0
j305_2.1 400 400 400 400 0 400 400 400 0 400 400 0 40 O
j305_2.2 480 480 480 480 0 480 480 480 0 480 480 0 48 0
j305_2.3 181 181 181 181 0 181 181 181 0 181 181 1 18 O
j3010_1.1 666 666 666 666 0 666 666 666 0 666 666 66 6 O
j3010_1.2 726 726 726 726 0 726 726 726 0 726 726 26 7 O
j3010_1.3 445 445 445 445 0 445 445 445 0 445 445 45 4 0
j3015_1.1 1109 1109 1109 1109 0 1109 1109 1109 0 0911 1109 1109 0
j3015_1.2 1117 1117 1117 1117 0 1117 1117 1117 0 1711 1117 1117 0
j3015_1.3 938 938 938 938 0 938 938 938 0 938 938 38 9 0
Average 552.58 55258 55258 552.58 0 552.58 552.582.58 0 552.58 552.58 552.58 0

Table 6. Comparison between performance of exatteetaheuristic algorithms in relaxed stateléar

Relax TS SA GA
Name Solution

(exact) Min Avg. Max SDev Min Avg. Max SDev Min Avg. Max Sy
j601_1.1 433 433 433 433 0 433 433 433 0 433 433 3 43 0
j601_1.2 171 171 171 171 0 171 171 171 0 171 171 117 O
j601_1.3 486 486 486 486 0 486 486 486 0 486 486 6 48 0
j605_1.1 0 0 0 0 0 0 0 0 0 0 0 0 0
j605_1.2 0 0 0 0 0 0 0 0 0 0 0 0 0
j605_1.3 0 0 0 0 0 0 0 0 0 0 0 0 0
j6010_1.1 1903 1903 1903 1903 0 1903 1903 1903 0 0319 1903 1903 0
j6010_1.2 736 736 736 736 0 736 736 736 0 736 736 36 7 O
j6010_1.3 1133 1133 1133 1133 0 1133 1133 1133 0 3311 1133 1133 0
j6015_1.1 2177 2177 2177 2177 0 2177 2177 2177 0 7721 2177 2177 0
j6015_1.2 873 873 873 873 0 873 873 873 0 873 873 738 0
j6015_1.3 1390 1390 1390 1390 0 1390 1390 1390 0 9013 1390 1390 0
Average 77517  775.17 77517 775.17 0 775.17 775.175.17 0 775.17 775.17 775.17 0

3.3.Discussion

Table 3 shows that the average mean of the residgsned using the Simulated Annealing
algorithm for j30 equals 836.75, which is betteartithe obtained results by TS and GA
algorithms, which are equal to 846.63 and 838.4peetively. Its improvement values equal

9.88 and 1.72 respectively. This result also htids for the average minimum and average
maximum. Table 4 shows that the average mearhefrésults obtained by using the
Simulated Annealing algorithm for j60, equals 1@%).which is better than the obtained
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results by TS and GA algorithms, which are eqadl73.01 and 1068.59, its improvement
values equal 52.16 and 47.74 respectively .Thssllrealso holds true for the average
minimum and average maximum. In addition, althobghncreasing the size of the problem
and number of activities, the solution strength seoss than the state in which the number of
activities was less. However, the Simulated Anmgaklgorithm in this case gives better
answers than the TS and GA algorithms. Another mapd criterion for performance
evaluation is standard deviation. As shown in tahléhe standard deviation average for the
resulting answer from the TS and GA methods for @@4.07and 5.15 respectively.
However, the standard deviation average for thelltieg answer from our simulated
annealing method equals zero. This result alsoshoilge for j60. Therefore, the resulting
answers of the Simulated Annealing is less scattidgran the resulting answers of TS and GA
algorithms, which is sign of the better accuracyhef later. As seen in Figure 2 and Figure 3,
it is clear that the simulated annealing is moffecieht than the TS and GA algorithms in
both J30 and J60 .In these figures, as the gapebet®A and other methods gets larger,
indicates that the SA is more reliable than theal® GA methods. Since our problem is NP-
HARD, therefore, we relaxed the "resource constram achieve higher validation for the
solution method and proposed metaheuristic algorithAfterwards, we solved the problem
using both exact solution and metaheuristic algorg. As you can see in Tables 5 and 6, all
the answers and results are identical. In factyeéiselts of the resource constraint relaxation
are lower bounds of the problem.

4. Conclusion

In this paper, we studied the problem of minimigiotal resource tardiness penalty costs in
the resource constrained project-scheduling probleith metaheuristic algorithms. We
formulated and mathematically modeled this probkesnan integer- Linear programming
model. Since our problem was NP-hard, we used raetatic algorithm as a solution
procedure. At first, we considered a small netwiorkvalidation of both model and proposed
metaheuristic algorithm in small scale, and soltredmodel of this network with both exact
solution and SA-GA-TS metaheuristic algorithms, tesult of which showed that all
objective function values were similar. Then weduseSimulated Annealing metaheuristic
algorithm for the proposed project-scheduling peahl In order to confirm performance of
the proposed algorithm in larger scale and closeeal world, the algorithm was applied to
various test problems available in the literatamq reliability was compared with the Tabu
Search (TS) algorithm and Genetic algorithm (GAdnutational results showed that the
proposed algorithm provided competitive results comparison with the TS and GA
algorithms. Then we used relaxation method for éighalidation of the solution method and
proposed SA metaheuristic algorithm. This means Wearelaxed the resource constraint,
and afterwards obtained the objective function ealwsing both exact method and
metaheuristic algorithms for J30 and J60. Resuitsved that all the objective function
values were identical. Finally, it should be notieat all the results of this paper indicates that
both Model and Solution method are appropriatelyseim.
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