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A B S T R A C T  A R T I C L E   I N F O 

In this paper, we study a resource-constrained project-scheduling 
problem in which the objective is minimizing total Resource Tardiness 
Penalty Costs. We assume renewable resources that are limited in 
number, are restricted to very expensive equipment and machines, 
therefore they are rented and used in other projects, and are not 
available in all project periods. In other words, there exists a 
predefined ready-date as well as a due date for each renewable 
resource type. In this way, no resource is utilized before its ready date. 
Nevertheless, resources are allowed to be used after their due date by 
paying penalty costs depending on the resource type. The objective is 
to minimize the costs of renewable resource usages. We formulated 
and mathematically modeled this problem as an integer-Linear 
programming model. Since our problem is NP-hard and also exact 
methods are only applicable in small scale, therefore metaheuristic 
methods are practical approaches for this problem; this means that 
metaheuristics are better for this problem. In order to authenticate the 
model and solution algorithm in small scale, we consider a network 
with low activity, and then solve the model of this network with both 
exact algorithms and SA-GA-TS metaheuristic algorithms. For more 
activities, as well as getting closer to the real world, we present a 
Simulated Annealing Algorithm to solve this problem. In order to 
examine the performance of this algorithm, data that had been derived 
from studied literature were used, and their answers were compared 
with Genetic Algorithm (GA) and Tabu Search Algorithm (TS). 
Results show that in average, quality of SA answers was better than 
those of the GA and TS algorithms. In addition, we use relaxation 
method to achieve an even higher validation for the SA algorithm. 
Finally all results in this paper indicate that both model and solution 
algorithm have high validity.  
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1. Introduction 

Resource Constrained Project Scheduling Problem (RCPSP) is one of the most important 
issues in the areas of project scheduling and combinatorial optimization. RCPSP includes a 
project that has a number of specific activities with certain durations. RCPSP includes two 
constraints, precedence constraints in which technical precedence relation between activities 
is finish to start, and the other, resource constraints. The objective here is to minimize project 
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makespan. In RCPSP, While an activity is being executed, preemption is not permitted (i.e. 
once started, an activity should be continued until it is completed). It is shown in Blazewicz, 
Lenstra, and Rinnooy-Kan [1] that the RCPSP, as a job-shop generalization, is NP-hard in the 
strong sense. Several solution procedures have been presented in the literature. They can be 
classified into three categories: exact methods  such as works of Demeulemeester and 
Herroelen [2], Mingozi et al. [3], and Patterson et al. [4], which mainly make use of various 
branch-and-bound procedures; heuristic methods based on the serial and the parallel schedule 
generation schemes  of Boctor [5], Kolisch, and Drexl [6]. Finally, metaheuristic methods 
based on Tabu search  from Baar et al. [7], Nonobe and Ibaraki [8], simulated annealing of 
Bouleimen and Lecocq [9], Cho and Kim [10], and genetic algorithms form Alcaraz and 
Maroto [11], Alcaraz et al. [12], Hartmann [13], Mendes et al. [14], and Valls et al. [15]. 
Surveys on several other solution procedures can be found in works of Demeulemeester and 
Herroelen [16]. The RCPSP under minimization of total resource tardiness penalty costs is an 
applicable problem, and a modified version of the RCPSP in which all assumptions and 
constraints are maintained, but the objective function is different. Moreover, several exact, 
heuristic and metaheuristic algorithms are proposed for scheduling problems with objective 
function related to tardiness. Nadjafi and Shadrokh [17] developed a B&B algorithm for the 
weighted earliness–tardiness project-scheduling problem using generalized precedence 
relations. Liaw, Lin, Cheng, and Chen [18] developed a B&B algorithm for scheduling 
unrelated parallel machines for minimizing total weighted tardiness. Essafi, Yazid, and 
Dauzère-Pérès [19] proposed a genetic local search algorithm for minimizing total weighted 
tardiness in the job-shop scheduling problem. Bilge, Kiraç, Kurtulan, and Pekgün [20] 
developed a Tabu search algorithm for solving the parallel machine total tardiness problem. 
In addition, Bilge, Kurtulan, and Kiraç [21] presented a Tabu search algorithm for the single 
machine total weighted tardiness problem. Bianco, Dell’Olmo, and Speranza [22] referred to 
resources that can be assigned to only one activity at a time in dedicated form. However, in 
this article, we assume that only a few renewable resources exist including expert human 
resources with high skill levels, particular types of cranes, and tunnel boring machines that 
have to be leased from third party providers. Considering that these limited renewable 
resources are employed in other projects, there is a dictated ready-date as well as a due-date 
for each item, such that no resource can be accessible before its ready-date; however, these 
resources are allowed to be used after their due dates by paying penalty cost, depending on 
the resource type. Ranjbar et al. [23] studied this problem with single mode for each activity, 
and availability of one unit for each type of renewable resource, in which they used the exact 
method of “branch and bound" in order to solve the problem. The problem we studied here is 
a generalization of the problem introduced by Ranjbar et al., with the difference that, the 
assumption that only one unit of each resource type is available, and no activity needs more 
than one resource for execution has been removed. In addition, we used metaheuristic 
algorithm to solve the problem. Since our problem with this profile is unique and is 
introduced for the first time, and considering that the optimal solution could not be found in 
the literature review, therefore we used different validation approaches. The rest of this 
article is organized as follows. Problem modeling and formulation are provided in Section 2. 
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The computational Study is presented in Section 3. Finally, conclusions are given in Section 
4.  

2. Problem Modeling and Formulations 

 In this article, we introduce a resource-constrained project-scheduling problem with finish-
to-start precedence relations among project activities, considering renewable resource 
tardiness penalty costs. For each project, n activities and R renewable resources are given. Rk 
is the availability of each renewable resource. The duration of an activity i is given as di. 
Activity j requires rjk units of renewable resource k. Our model is presented using an activity-
on-node (AON) network. Thus, there are two dummy activities, first activity and the last 
activity (0 and n+1), which denote start and end of the project, respectively. The dummy start 
and end activities have zero duration and zero resource consumption. It should be noted that 
for each renewable resource K,ρk,δk, and pk show the ready date, due date, and tardiness 
penalty cost of this renewable resource, respectively. In order to embed the resource release 
dates in the network, one dummy node corresponding to each resource k, k=1… R, is added 
to the project network. This node displays an activity with duration ρk with no resource 
requirements, which is a direct successor of the start dummy activity and direct predecessor 
of every activity i∈Nk where Nk is a set of activities that need a number of renewable 

resources of K∈R type for execution. Each type of limited renewable resource is leased for a 
fixed period, starting from its ready time, and ending with its due-date, and is not available 
before its ready time; however it can be used after its due-date provided a tardiness penalty 
cost is paid. All activities are ready at the beginning of the project, and no preemption is 
permitted. We define the problem parameters as follows: 
n: Number of project activities 
R: Number of renewable resources 
Rk: Renewable resource k availability 
ρk: Ready time of renewable resource k 

δk: Due date of renewable resource k 
Pk: Tardiness penalty cost of renewable resource k for each period 
Prj: Set of predecessors of activity j 
dj: Duration of activity j  
rjk: Renewable resource k requirement for executing activity j  

Tk: Is the renewable resource k tardiness, determined by Tk=max {CPk−δk, 0}, where CPk is 

the release time of resource k in the project and equal to CPk=max {fi}i∈Nk. 
(Earliest) finish time that is shown with fi, (fi=si+di), where si is an integer and shows the 
start time of activity i. The integer linear programming model for this problem can be 
formulated as follows: 

∑
=

=

R

k

kkTPz
1

min  (1) 

s.t.  
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CPk≥Si+dii∈Nk     k=1,2,…,R  (2) 

Tk≥CPk-δk       k=1,2,…,R
 

(3) 

Tk≥0    k=1,2,…,R (4) 

Sj-Si≥di       j=1,2,…,n      i∈Prj (5) 

� ��� ≤ ��
�∈�(�)

      � =  1, 2, … ,� (6) 

Si≥ρki∈Nk       k=1,2,…,R (7) 

Si, CPk, Tk∈ N+   for i=0,1,…,n+1 (8) 

In the above model, objective function (1) represents the minimization of the total weighted 
resource tardiness penalty costs. It should be noted that as the cost of leasing for each 
renewable resource is fixed, it does not need incorporation in the objective function. 
Constraint (2) shows that the release time of each resource is not less than the finish time of 
each activity, which requires that resource. Constraint sets (3) and (4) ensure that Tk is equal 
to max {CPk-δk, 0}. Constraint (5) is the precedence constraint implying that start time of 
activity j must be after all its predecessors are finished. Constraint (6) is the renewable 
resource constraint, where A(t) is the set containing in-progress activities at time t. Constraint 
(7) makes the starting times of all activities greater than or equal to the release dates of their 
corresponding resources. Constraint (8) ensures that variables Si,, CPk and Tk are non-negative 
integers. For validation of the model, and validation of the proposed SA solution, we 
considered a small network as a case example. Table 1 shows the resource information, 
which in relation to our example with n=7 real activities, m=2 resources and the 
corresponding graph is depicted in Figure 1. In this figure, the number shown above each 
node indicates activity duration and the number (s) below indicates the resources required for 
activity execution. The nodes labeled α and β correspond to ready times of resources 1 and 2, 
respectively. We also solved the model of this example using exact solution as well as SA 
algorithm, which both of their objective functions are shown in Table 2. As we can see in this 
table, in order to evaluate SA's algorithm performance we solved the model relevant to this 
network using TS and GA, which resulted in a similar objective function value. 

 
 

Table 1. Resource information of the example project. 
 Resource Availability Ready date Due date Penalty cost Nk 

Res 1 4 2 11 14 {1,2,4,6} 
Res 2 5 3 10 11 {3,5,7} 

 
 

Table 2. Comparison between performance of exact and metaheuristic algorithms for small network 

GA TS SA Exact Solution 

14 14 14 14 
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Figure 1. Network of the example project 

3. Computational Study 

The aim of this section is to evaluate the performance of SA approach by comparing it with 
GA and TS. The performance is appraised according to the objective function value quality. 
The solver applied in the study was MATLAB (2009) and cplex 12.2, run with a machine 
equipped with Windows 7, Intel (R) Core (TM) 2 with 2.53 GHz processor, and 3 GB of 
RAM. 

3.1.Test problem 
We used the sample problems library of PSPLIB [24] and selected two sets of project 
scheduling problems (i.e. j30 and 60). These data do not include some of our model 
parameters such as penalty cost of renewable resources, and ready time of renewable 
resources etc. hence; in this article we have employed discrete uniform distribution in 
selecting these parameters. The unit penalty costs of renewable resource tardiness were 
randomly chosen from discrete uniform distribution (10, 30). The ready times of renewable 
resources were randomly generated from discrete uniform distribution (0, 15), and the 
renewable resources due dates were randomly picked from discrete uniform distribution: 

����

�=1
5,   � ����

�=1
3�  

 

 

Moreover, the algorithms run in 20 iterations. 

3.2.Performance of the Proposed Algorithm  
 In order to evaluate performance of the SA algorithm, the algorithm was implemented for the 
introduced test data. Obtained results were compared with results of the GA and TS 
algorithms. Comparison results are given in Tables (3) and (4), which are presented for j30 
and j60 data, respectively. The first column of the table shows the Data Name. The ending 
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section of the Data Name, which is in number form, represents the number of random 
parameter productions that do not constitute the data collection, and were randomly produced 
according to the previous section method. In fact, for each problem, parameters are randomly 
produced three-times. Columns 2, 3 and 4 show the name of the metaheuristic algorithm. 
Each of these columns comprises four other columns, in which the first column shows the 
minimum result obtained from five repetitions. Columns 2, 3, and 4 represent average, 
maximum, and standard deviation, respectively. The last row of this table displays result 
averages for simpler and better comparison. Figure (2) and Figure (3) represent performance 
difference between the three algorithms for the utilized data for j30 and j60 respectively. As 
can be seen, the vertical axis is objective function value, and the horizontal axis is data. In the 
next section, we will provide descriptions of obtained results. 

Table 3. Comparison between performance of SA, TS and GA for J30 

Name 
TS SA GA 

Min Avg. Max SDev Min Avg. Max SDev Min Avg. Max SDev 

j301_1.1 563 563 563 0 563 563 563 0 563 563 563 0 

j301_1.2 515 515 515 0 515 515 515 0 515 515 515 0 

j301_1.3 289 289 289 0 289 289 289 0 289 289 289 0 

j305_2.1 1150 1178.53 1244 24.53 1150 1150 1150 0 1150 1157.08 1235 24.53 

j305_2.2 1234 1245.63 1275 8.64 1234 1234 1234 0 1234 1239.75 1257 10.40 

j305_2.3 1097 1112.42 1143 15.63 1034 1034 1034 0 1034 1041.75 1127 26.84 

j3010_1.1 733 733 733 0 733 733 733 0 733 733 733 0 

j3010_1.2 821 821 821 0 821 821 821 0 821 821 821 0 

j3010_1.3 538 538 538 0 538 538 538 0 538 538 538 0 

j3015_1.1 1109 1109 1109 0 1109 1109 1109 0 1109 1109 1109 0 

j3015_1.2 1117 1117 1117 0 1117 1117 1117 0 1117 1117 1117 0 

j3015_1.3 938 938 938 0 938 938 938 0 938 938 938 0 

Average 842 846.63 857.08 4.07 836.75 836.75 836.75 0 836.75 838.47 853.5 5.15 

Table 4. Comparison between performance of SA, TS and GA for J60 

Name 
TS SA GA 

Min Avg. Max SDev Min Avg. Max SDev Min Avg. Max SDev 

j601_1.1 547 564.43 587 12.95 547 547 547 0 547 554.5 572 12.07 

j601_1.2 204 212.52 276 23.63 195 195 195 0 195 198.7 210 6.32 

j601_1.3 486 498.52 524.69 18.35 486 486 486 0 486 495.2 532 19.39 

j605_1.1 1736 1826.46 2016 27.42 1616 1621.75 1639 10.40 1639 1765.30 1872 21.27 

j605_1.2 578 615.53 626 21.63 489 500.41 578 20.31 578 589.6 606 17.71 

j605_1.3 793 838.42 1153 42.74 649 658.83 767 34.06 837 934.53 1023 19.38 

j6010_1.1 1953 1989.30 2035 21.53 1903 1910.32 1926 21.42 1926 1954.3 1995 7.23 

j6010_1.2 758 758 758 0 758 758 758 0 758 758 758 0 

j6010_1.3 1133 1133 1133 0 1133 1133 1133 0 1133 1133 1133 0 

j6015_1.1 2177 2177 2177 0 2177 2177 2177 0 2177 2177 2177 0 

j6015_1.2 873 873 873 0 873 873 873 0 873 873 873 0 

j6015_1.3 1390 1390 1390 0 1390 1390 1390 0 1390 1390 1390 0 

Average 1052.33 1073.01 1129.06 14.02 1018 1020.85 1039.08 7.18 1044.92 1068.59 1095.08 8.61 



        53        Minimizing Total Resource Tardiness Penalty Costs in the Resource Constrained
 

Figure 2. Comparison between performance of SA, TS and GA for J30

Figure 3. Comparison between performance of SA, TS and GA 

 

 

Total Resource Tardiness Penalty Costs in the Resource Constrained

 
 
 

Figure 2. Comparison between performance of SA, TS and GA for J30

 
 
 
 
 

Figure 3. Comparison between performance of SA, TS and GA for J60

 
 
 

Total Resource Tardiness Penalty Costs in the Resource Constrained… 

  
Figure 2. Comparison between performance of SA, TS and GA for J30 

 
for J60 



        54                      R. Golestaneh et al. 
 

Table 5. Comparison between performance of exact and metaheuristic algorithms in relaxed state for J30 

Name 
Relax 

Solution 
(exact) 

TS SA GA 

Min Avg. Max SDev Min Avg. Max SDev Min Avg. Max SDev 

j301_1.1 297 297 297 297 0 297 297 297 0 297 297 297 0 

j301_1.2 215 215 215 215 0 215 215 215 0 215 215 215 0 

j301_1.3 57 57 57 57 0 57 57 57 0 57 57 57 0 

j305_2.1 400 400 400 400 0 400 400 400 0 400 400 400 0 

j305_2.2 480 480 480 480 0 480 480 480 0 480 480 480 0 

j305_2.3 181 181 181 181 0 181 181 181 0 181 181 181 0 

j3010_1.1 666 666 666 666 0 666 666 666 0 666 666 666 0 

j3010_1.2 726 726 726 726 0 726 726 726 0 726 726 726 0 

j3010_1.3 445 445 445 445 0 445 445 445 0 445 445 445 0 

j3015_1.1 1109 1109 1109 1109 0 1109 1109 1109 0 1109 1109 1109 0 

j3015_1.2 1117 1117 1117 1117 0 1117 1117 1117 0 1117 1117 1117 0 

j3015_1.3 938 938 938 938 0 938 938 938 0 938 938 938 0 

Average 552.58 552.58 552.58 552.58 0 552.58 552.58 552.58 0 552.58 552.58 552.58 0 

 
 

Table 6. Comparison between performance of exact and metaheuristic algorithms in relaxed state for J60 

Name 
Relax 

Solution 
(exact) 

TS SA GA 

Min Avg. Max SDev Min Avg. Max SDev Min Avg. Max SDev 

j601_1.1 433 433 433 433 0 433 433 433 0 433 433 433 0 

j601_1.2 171 171 171 171 0 171 171 171 0 171 171 171 0 

j601_1.3 486 486 486 486 0 486 486 486 0 486 486 486 0 

j605_1.1 0 0 0 0 0 0 0 0 0 0 0 0 0 

j605_1.2 0 0 0 0 0 0 0 0 0 0 0 0 0 

j605_1.3 0 0 0 0 0 0 0 0 0 0 0 0 0 

j6010_1.1 1903 1903 1903 1903 0 1903 1903 1903 0 1903 1903 1903 0 

j6010_1.2 736 736 736 736 0 736 736 736 0 736 736 736 0 

j6010_1.3 1133 1133 1133 1133 0 1133 1133 1133 0 1133 1133 1133 0 

j6015_1.1 2177 2177 2177 2177 0 2177 2177 2177 0 2177 2177 2177 0 

j6015_1.2 873 873 873 873 0 873 873 873 0 873 873 873 0 

j6015_1.3 1390 1390 1390 1390 0 1390 1390 1390 0 1390 1390 1390 0 

Average 775.17 775.17 775.17 775.17 0 775.17 775.17 775.17 0 775.17 775.17 775.17 0 

 

3.3.Discussion  

Table 3 shows  that the average mean of the results obtained using the Simulated Annealing 
algorithm for j30 equals 836.75, which is better than the obtained results  by TS and GA 
algorithms, which are equal to 846.63 and 838.47 respectively. Its improvement values equal 
9.88 and 1.72 respectively. This result also holds true for the average minimum and average 
maximum. Table 4 shows  that the average  mean of the results obtained by using the 
Simulated Annealing algorithm for j60, equals 1020.85, which is better than the obtained 
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results  by TS and GA algorithms, which are equal to 1073.01 and 1068.59, its improvement 
values equal 52.16 and 47.74 respectively  .This result also holds true for the average 
minimum and average maximum. In addition, although by increasing the size of the problem 
and number of activities, the solution strength worsens than the state in which the number of 
activities was less. However, the Simulated Annealing algorithm in this case gives better 
answers than the TS and GA algorithms. Another important criterion for performance 
evaluation is standard deviation. As shown in table 3, the standard deviation average for the 
resulting answer from the TS and GA methods for j30 are4.07and 5.15 respectively. 
However, the standard deviation average for the resulting answer from our simulated 
annealing method equals zero. This result also holds true for j60. Therefore, the resulting 
answers of the Simulated Annealing is less scattered than the resulting answers of TS and GA 
algorithms, which is sign of the better accuracy of the later. As seen in Figure 2 and Figure 3, 
it is clear that the simulated annealing is more efficient than the TS and GA algorithms in 
both J30 and J60 .In these figures, as the gap between SA and other methods gets larger, 
indicates that the SA is more reliable than the TS and GA methods. Since our problem is NP-
HARD, therefore, we relaxed the "resource constraint" to achieve higher validation for the 
solution method and proposed metaheuristic algorithm. Afterwards, we solved the problem 
using both exact solution and metaheuristic algorithms. As you can see in Tables 5 and 6, all 
the answers and results are identical. In fact, the results of the resource constraint relaxation 
are lower bounds of the problem. 

4. Conclusion 

 In this paper, we studied the problem of minimizing total resource tardiness penalty costs in 
the resource constrained project-scheduling problem with metaheuristic algorithms. We 
formulated and mathematically modeled this problem as an integer- Linear programming 
model. Since our problem was NP-hard, we used metaheuristic algorithm as a solution 
procedure. At first, we considered a small network for validation of both model and proposed 
metaheuristic algorithm in small scale, and solved the model of this network with both exact 
solution and SA-GA-TS metaheuristic algorithms, the result of which showed that all 
objective function values were similar. Then we used a Simulated Annealing metaheuristic 
algorithm for the proposed project-scheduling problem. In order to confirm performance of 
the proposed algorithm in larger scale and closer to real world, the algorithm was applied to 
various test problems available in the literature, and reliability was compared with the Tabu 
Search (TS) algorithm and Genetic algorithm (GA). Computational results showed that the 
proposed algorithm provided competitive results in comparison with the TS and GA 
algorithms. Then we used relaxation method for higher validation of the solution method and 
proposed SA metaheuristic algorithm. This means that we relaxed the resource constraint, 
and afterwards obtained the objective function values using both exact method and 
metaheuristic algorithms for J30 and J60. Results showed that all the objective function 
values were identical. Finally, it should be noted that all the results of this paper indicates that 
both Model and Solution method are appropriately chosen. 
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