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A B S T R A C T  A R T I C L E   I N F O 

In this paper, we consider a reliability redundancy optimization 
problem in a series-parallel type system employing the redundancy 
strategy of cold-standby. The problem consists of two parts 
component selection and determination of redundancy level of each 
component—which need to be solved so that the mean lifetime of the 
system can be maximized. The redundancy allocation problem is non-
deterministic polynomial-time hard and is solved by a combined 
genetic algorithm - simulation approach. Finally, this algorithm is 
tested on 33 benchmark problems.  
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1. Introduction 

Designers are constantly attempting to improve the reliability of manufacturing systems to 
increase economic and production efficiencies. There are two ways to accomplish this. One is 
to improve the reliability of the system components, and the other is to add more components 
to the system. It has been shown that the first approach is not very effective. In the second 
approach, appropriately called the redundancy allocation problem (RAP), an optimal 
combination of the components and the redundancy level of each component must be 
determined. The only drawback of this approach is that it increases the weight, cost, and 
volume of the system.  
There are four configurations for connecting the components in a system. They are series, 
parallel, series-parallel, and parallel-series. In this paper, we are considering the redundancy 
allocation problem for a series-parallel system. In this configuration (Figure 1), several 
subsystems are connected to each other in series, whereas the components in each subsystem 
are connected in parallel.  
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Figure 1. Series-parallel system 

There are two types of redundancy strategies: active and standby. In the active strategy, all 
redundant components operate simultaneously from time zero, whereas in the standby 
strategy, only the needed components operate and the redundant components are idle until the 
active component fails.  
There are three categories of standby redundancy: cold, warm, and hot. In cold-standby, 
components do not fail before operating. In warm standby, idle components can fail, but the 
probability of their failure is less than that of the failure of the operating component. In hot 
standby, the operating components and the idle components follow the same pattern of 
failure. 
In a system with cold-standby redundancy configuration, a detection mechanism senses the 
failure of a component, and the system switches over to a safe component, if available. The 
detection and switching to the redundant component can be carried out in two ways. In the 
first scenario, the system is continually monitored for failure of detection. In this case, the 
failure of the detection/switching mechanism can occur at any time. In the second scenario, 
the failure of the detection/switching mechanism occurs only when a switching is required. In 
this scenario, the probability of the detection and the switching mechanism working properly 
and activating a redundant component in the subsystem i is denoted by ρi [1]. 
An RAP can be solved by an exact or a meta-heuristic method. The exact method includes 
dynamic programming [2, 3, 4, and 5], integer programming [6, 7, 8, and 9], and mixed-
integer nonlinear programming [10]. Coit [11] proposed an integer programming solution for 
an RAP such that the reliability of a system employing the cold-standby redundancy strategy 
was maximized. Chern [12] demonstrated that even a simple RAP with linear constraints in a 
series system is non-deterministic polynomial-time hard. This persuaded researchers to 
develop heuristic and meta-heuristic approaches to solve RAP. These approaches can obtain 
near-optimal solutions within a reasonable computational time.  
In previous studies, meta-heuristic methods, such as the genetic algorithm (GA) [13 and 14], 
variable neighborhood descent algorithm [15] and ant colony optimization [16 and 17] have 
been used to maximize system reliability for an RAP. 
In all the above mentioned studies, the researchers intended to maximize the reliability of the 
system for a specific period of time. In contrast, this study attempts to maximize the mean 
lifetime of the system. The only work which has considered mean lifetime in the redundancy 
allocation problem was proposed by [18]. They considered mean time to failure (MTTF) of 
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the system as mean lifetime index in the objective function. But, the component selection was 
not allowed in this model. Considering the fact the in real-world problem, the component 
selection is very important for a system designer. Hence, in this research, we consider a 
redundancy allocation problem in which the component selection is allowed. The Monte 
Carlo simulation is used to calculate the MTTF, and the GA is applied to solve the RAP in a 
system employing the cold-standby redundancy strategy; switch failure is only possible when 
switching is required. The probability that switching occurs properly in all subsystems is 
denoted byρ . The components are assumed to be not repairable. 

In each subsystem, there are mi options for selecting components, and the components within 
each subsystem must be of the same type. The time to failure of the components follows 
Erlang distribution function. Each available component has different levels of cost, weight, 
and reliability. There are redundancy level, cost, and weight constraints associated with 
components, and the problem is to select the component and identify the redundancy levels 
for each subsystem to maximize the MTTF of the system.  
This paper is organized as follows. Section 2 contains the mathematical formulation for the 
problem. A genetic algorithm combined with the Monte Carlo method is presented in section 
3. Section 4 presents the experimental results, and finally, section 5 states the conclusion and 
suggests possible future researches on this topic. 

2. Problem formulation 

2.1.Notations 

S number of subsystems 
ni number of components used in the subsystem i (i=1, 2,…, S) 
N set of ni (n1, n2, …, nS) 
nmax,I          maximum number of components used in the subsystem i  
mi number of available components for the subsystem i 
zi index of components selected for the subsystem i 
Z set of zi (z1, z2, …, zs) 
t mission time 
R(t; Z, N)   system reliability at time t for solution vectors Z and N 
r i(t)           reliability at time t for the jth components of the subsystem i 
C, W         cost and weight constraints 
Ci,j, wi,j     cost and weight of the jth component of the subsystem i 
ρ  Probability of the switch working properly 
 

2.2.Formulation 

0
max ( ; , )
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Subject to:  
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The R (t;Z,N) formulation is derived from [11]. Owing to the complexity of its calculation, 
Coit had to use an equivalent formulation. Exact calculation of the MTTF is more complex 
than that of R(t; Z,N). We use the Monte Carlo simulation to overcome the complexity. 
Constraints (3) and (4) represent the cost and weight constraints, respectively.  

3. Proposed genetic algorithm 

The GA is one of the most effective and applied meta-heuristic techniques for solving a 
variety of combinatorial problems. It has also been successfully employed for a variety of 
RAP [13 and 14]. The GA starts with a set of randomly generated initial solutions 
(chromosomes) called the initial population. A crossover operator is applied to improve the 
quality of solutions and a mutation operator is applied to increase the variety of solutions. 
Solutions for the crossover operator are selected by a mechanism called the selection strategy. 
The algorithm is repeated until the termination condition is met. 

3.1.Solution representation 

The solution is represented by two vectors, one representing the selected components, and 
the other, the level of redundancy. Figure 2 illustrates the solution representation for a system 
with seven subsystems. The jth bit in both vectors represents the selected component and the 
redundancy level for the jth subsystem.  
 

 

 
Figure 2. Solution representation 

3.2.Fitness function 

Each chromosome is evaluated by a fitness function. In this paper, the fitness function 
comprises the result of the Monte Carlo simulation and the penalty function. 
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3.2.1. Monte Carlo simulation 

The Monte Carlo methods are a class of computational algorithms that rely on repeated 
random sampling to compute their results. These methods are often used for simulating 
physical and mathematical systems. They are used when it is infeasible to compute an exact 
result using a deterministic algorithm. 
Calculating the reliability of a system with the cold-standby redundancy strategy at time t is 
possible only when the time to failure of the components follows a simple distribution 
function. Obtaining the MTTF of a system is very difficult, even when the components have 
a simple distribution function. The Monte Carlo simulation can be very useful in calculating 
both the reliability at time t and the MTTF objective functions when the distribution function 
of the time to failure of the component is complex. 
The simulation algorithm for calculating the MTTF is presented in Table 1, 
where,  
n.sim   number of simulation 
S number of subsystem 
r ij a random number assumed to be the time to failure of the jth component in 

subsystem i 
ni redundancy level in subsystem i 
ρ  probability of switch working properly 
TTFi time to failure of subsystem i 
TTFSk time to failure of the system for the kth simulation 
MTTF mean time to failure of the system 

 
Table 1. Proposed simulation algorithm 
For (k=1 to n.sim) 
Begin 
For (i=1 to S) 
          Begin  
                   Generate a random number ri1 

         TTFi←  ri1 
For (j=2 to ni) 
                    Begin  
                             Generate a random number (0,1)R∈  

If R< ρ  then  

                             Begin  
                                       Generate a random number rij 
                                       TTFi← TTFi+ rij 
End if 
                             Else  
                                   Exit “For j” loop   
                    End for j 
          End for i 
          TTFSk= min i

i
TTF  

End for k 
.

1

.

n sim

k
k

TTFS
MTTF

n sim
=

=

∑
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According to the Table 1, the simulation is performed n.sim times, and the average of the 
simulation results gives the value of the MTTF. For each simulation, the time to failure 
values of the subsystems are calculated, the minimum value gives us the time to failure of the 
system. 
For the simulation to estimate the time to failure of a subsystem, first the distribution function 
is used to generate a random number as the time to failure of the first component. This 
number is assumed to be the time to failure of the subsystem. If other components are 
available in that subsystem, a constant number between 0 and 1 that is generated randomly is 
used to determine if the switch has worked. If this number is less than ρ , it means that the 

switch has worked properly and another component has been activated. The time to failure of 
this component is added to the time to failure of the subsystem. The simulation terminates 
when this process is carried out for all components in the subsystem or when the switch does 
not work properly. 

3.2.2. Penalty function 

The crossover and mutation operators can produce infeasible solutions. The penalty method 
is the most effective approach to resolve this problem and provides an efficient search 
through the feasible and infeasible regions. Coit & Smith [13] used a penalty function in a 
GA to solve an RAP; this method significantly increased the quality of solutions. In this 
paper, a dynamic penalty function derived from [13] is used.  
The fitness function is obtained by subtracting the penalty function from the result of the 
simulation: 

( )( ) ( )penalized unpenalized best best
w c

w c
f f f all f feas

NFT NFT

α α    ∆ ∆ = − + −          

(5) 

where, fpenalized is the penalized objective function,  funpenalized  is the objective function 
obtained by simulation, fbest (feas) is the value of the current best feasible solution, and fbest 

(all)is the value of the best solution without considering the penalty. 
w∆  and c∆ denote the amount of violations of the weight and cost constraints for the 

components, respectively. K is a severity parameter. NFTc and NFTw are the “near-feasible 
thresholds (NFTs)” for the cost and weight constraints, respectively. The dynamic NFTs for 
the cost and weight constraints are calculated by the following formula: 

0

1 k

NFT
NFT

gβ=
+

 
(6) 

 
where, g is the generation number and NFT0, β, and k are constant parameters. 
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3.3. Selection strategy 

The chromosomes for crossing are selected by employing a linear ranking selection strategy. 
In this strategy, chromosomes are sorted according to the fitness function and all the 

chromosomes are assigned a rank { }Nri ,...,2,1∈ , where N is the population size.  

Rank N indicates the best solution, whereas rank 1 indicates the worst. The probability for 
selecting chromosome i (pi) is obtained by the following formula: 

2

( 1)
i

i

r
p

N N
=

+  

(7) 

3.4.Crossover operator 

A uniform crossover operator is applied to both solution vectors. The operator first generates 
a random binary array called a mask. The size of the mask is equal to the size of the 
chromosomes. An offspring inherits genes from parents according to the mask. To produce 
an offspring, the mask is scanned bit by bit, and if the current bit is equal to 0, then the 
offspring inherits the corresponding gene from the first parent. Otherwise, the gene is 
inherited from the second parent. The second offspring is produced in a similar way, but with 
the difference that in the mask, 0 is changed to 1 and 1 to 0. Figure 3 depicts the uniform 
crossover with an example. 

 
Figure 3. Crossover operator 

If P is the size of the population, then P offsprings are produced by crossover and are 
combined with the parents. Then P number of the best solutions among them are selected and 
they survive to the next generation. After deleting the inferior solutions from the population, 
mutation is performed on the remaining solutions. Mutation is not applied to the best solution 
and the best feasible solution. 
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3.5.Mutation operator 

The probability of mutation of a gene is Pm. To mutate a chromosome, first a random number 

1 (0,1)r ∈  is generated for each gene. Then, for anyone bit in the component selection vector 

where r1<Pm, another component is selected, which replaces the previous one. For anyone bit 

in the redundancy level vector where r1<Pm, another random number 2 (0,1)r ∈ is generated. If 

r2<0.5, the redundancy level of the selected subsystem is decreased by one. Otherwise, it is 
increased by one. If the redundancy level of subsystem is 1, the subsystem is only permitted 
to increase and if the level is equal to nmax, it is only permitted to decrease. An example of the 
mutation operator is depicted in Figure 4. 

 

 
Figure 4. Mutation operator (Pm=0.1) 

4. Experimental design 

4.1.Test problems 

Thirty-three problems provided by Coit [11] are used to test the algorithm. Only the weight 
constraint differs with each problem. These problems are applied to a system with 14 
subsystems where each subsystem has three or four component types to choose from. Table 2 
lists the shape and scale parameters for a Gamma distribution and the cost and weight of each 
component. The cost constraint is 130 for all problems, and the weight constraint ranges from 
159 to 191. The maximum number of components in all subsystems is 6, and the reliability of 
the switch for all subsystems is 0.99. 

Table 2. The example data 
i Choice 1 Choice 2  Choice 3 Choice 4 

λij kij cij wij λij kij cij wij λij kij cij wij λij kij cij wij 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0.00532 
0.00818 
0.0133 
0.00741 
0.00619 
0.00436 
0.0105 
0.0150 
0.00268 
0.0141 

2 
3 
3 
2 
1 
3 
3 
3 
2 
3 

1 
2 
2 
3 
2 
3 
4 
3 
2 
4 

3 
8 
7 
5 
4 
5 
7 
4 
8 
6 

0.000726 
0.000619 
0.0110 
0.0124 
0.00431 
0.00567 
0.00466 
0.00105 
0.000101 
0.00683 

1 
1 
3 
3 
2 
3 
2 
1 
1 
2 

1 
1 
3 
4 
2 
3 
4 
5 
3 
4 

4 
10 
5 
6 
3 
4 
8 
7 
9 
5 

0.00499 
0.00431 
0.0124 
0.00683 
0.00818 
0.00268 
0.00394 
0.0105 
0.000408 
0.00105 

2 
2 
3 
2 
3 
2 
2 
3 
1 
1 

2 
1 
1 
5 
3 
2 
5 
6 
4 
5 

2 
9 
6 
4 
5 
5 
9 
6 
7 
6 

0.00818 
- 
0.00466 
- 
- 
0.000408 
- 
- 
0.000943 
- 

3 
- 
2 
- 
- 
1 
- 
- 
1 
- 

2 
- 
4 
- 
- 
2 
- 
- 
3 
- 

5 
- 
4 
- 
- 
4 
- 
- 
8 
- 



        43        A Hybrid Genetic Algorithm/Simulation Approach for Redundancy Optimization… 
 

11 
12 
13 
14 

0.00394 
0.00236 
0.00215 
0.0110 

2 
1 
2 
3 

3 
2 
2 
4 

5 
4 
5 
6 

0.00355 
0.00769 
0.00436 
0.00834 

2 
2 
3 
1 

4 
3 
3 
4 

6 
5 
5 
7 

0.00314 
0.0133 
0.00665 
0.00355 

2 
3 
3 
2 

5 
4 
2 
5 

6 
6 
6 
6 

- 
0.0110 
- 
0.00436 

- 
3 
- 
3 

- 
5 
- 
6 

- 
7 
- 
9 

 

4.2.Experimental results 

The algorithm was coded in Borland C++ and executed on a computer with 2.1 GHz Intel 
Core 2 Duo processor and 2GB of RAM. We executed the algorithms five times for each 
problem. The execution of the algorithm was terminated when the array of the best solution 
remained unchanged for 10 consecutive generations. The final solution obtained by the GA is 
simulated one million times to obtain the final objective function.  
After extensive experiments with different penalty and genetic parameters, the following 
values were selected: population size=300, Pm=0.005, α=2, NFT0cost=100, 
NFT0weight=W/1.3,βcost =0.008, βweight =0.08, k=1.6. 
Table 3 lists the experimental results for 33 problems, 
where,  
# problem number 
W weight constraint 
Best objective function of the best solution in five executions 
Mean average of objective function in five executions 
CV coefficient of variance for values of objective function (standard deviation divided by 

average) 
CT average of CPU time in seconds for five executions 
Best solution best solution includes two vectors, A-B. A represents the selected components vector, 

and B represents the level of the redundant vector. For example, the solution shown in 
Figure 2 can be represented as 1231231-2413425. 

 
The best and the average values of the objective functions for all problems are depicted in 
Figure 5. The values indicate that the reliability of the system improves with an increase in 
W. 
Coit [11] used Hyper-LINDO software for solving problem 12 with the objective of 
maximizing the reliability of the system at time t (t= 100). He used the equivalent objective 
function instead of the original one and obtained a value of 0.9863.  
We tested the algorithm on problem 12 as well, with the objective of maximizing the 
reliability of the system at time t (t= 100). To calculate this objective function, we replaced 
the last statement of the algorithm in Table 1 with the following statement. 
counter← 0 
For (l=1 to n.sim) 
 If TTFSl equal or bigger than t then 
 counter←counter+1 
End for l 
Reliability← counter / n.sim 
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The added statement compares the simulation result with t. If it is equal or bigger than t,it 
means the system has worked at least t times. The reliability of the system at time t is 
obtained by dividing the total number of simulations having a result equal or bigger than t by 
the number of simulation (n.sim). 
Our algorithm is applied to problem 12 and the following results are obtained: 
Best=0.9856, Average=0.9851, Dev/Ave=0.000396, CT=337.8,  
BS: 31432213131223-32333222232322 
 

 
 

Table 3. Performance of genetic algorithm for the problems provided by Coit (2001) 

No W Best Ave CV CT BS 
1 159 382.461 380.781 0.003953 321.8 32432422231113-32332222122322 
2 160 388.239 384.198 0.009568 379.0 32432432231113-32233222122322 
3 161 392.464 392.070 0.000606 351.8 32432432231113-32332222122322 
4 162 400.459 400.239 0.000331 309.2 32432422231113-32333222122322 
5 163 400.513 399.186 0.007007 364.0 32432422231113-32333222122322 
6 164 412.006 411.785 0.000549 281.6 32432432231113-32333222122322 
7 165 412.109 407.680 0.013560 357.8 32432432233113-32333222122322 
8 166 421.623 421.367 0.000506 302.2 32432432233113-32333222122322 
9 167 421.68 421.451 0.000552 330.0 32432432233113-32333222122322 
10 168 427.532 426.074 0.006152 311.8 32432432231113-32343222122322 
11 169 430.129 426.222 0.009735 383.6 32432432231113-32333222123322 
12 170 438.89 433.764 0.015780 353.6 32432432233113-32343222122322 
13 171 434.657 428.150 0.009003 337.2 32432432233113-32333222122422 
14 172 445.937 441.726 0.016936 315.0 32432432233113-42343222122322 
15 173 448.726 443.447 0.016106 325.6 32432432231113-32343222123322 
16 174 455.372 449.597 0.017074 333.4 32432432233113-32343222122422 
17 175 456.782 452.295 0.010508 329.4 32432432231113-42343222123322 
18 176 461.76  451.333  0.016292   298.0  32432432233113-42343222122422 
19 177  466.271  462.322  0.011242  301.8   324324 32231113-32343222123422 
20 178  466.691  460.993  0.011978  366.0  32432432231113-42343222123422 
21 179  467.928  465.394  0.004233  350.2  32432432233113-42344222122422 
22 180  478.071  476.691  0.002865  306.6  32432422233113-32343232122422 
23 181 477.55  474.069  0.007238  340.0  32432422233113-32343232122422 
24 182  487.347  478.621  0.012955  337.6  32432422233113-42343232122422 
25 183  490.551  487.212  0.008694  294.4  32432422231113-32343232123422 
26 184  490.361  484.001  0.015448  372.0  32432422231113-32343232123422 
27 185  501.498  494.646  0.018686  366.4  32432422231113-42343232123422 
28 186  501.595  493.007  0.022069  351.8  32432422231113-42343232123422 
29 187  502.081  499.850  0.005622  331.0  32432422233113-42343232122423 
30 188  501.859  497.215  0.007501  293.2  32432422233113-42343233122422 
31 189  517.192  506.885  0.023134  330.2  32432422231113-32343232123423 
32 190  513.218  509.122  0.010504  344.2  32432422231113-42343232133422 
33 191  530.712  527.421  0.008088  340.0  32432422231113-42343232123423 
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Figure 5. Best and average values of MTTF in 33 problems 

5. Conclusions  

In this study, we combined a genetic algorithm with a Monte Carlo simulation to solve the 
redundancy allocation problem (RAP). The objective was to maximize the mean time to 
failure (MTTF) of a series-parallel system employing the cold-standby redundancy strategy. 
We also expanded the algorithm to solve the RAP and hence to maximize the system 
reliability at time t. Figure 5 and the magnitude of the coefficient of variance in Table 3 imply 
that the algorithm is robust and very effective. 
In future studies, this approach can be applied to solve RAPs where the components of the 
system are repairable, and the distribution function for time to failure of components is more 
complex. The simultaneous maximization of both the MTTF and system reliability at time t 
using multi-objective algorithms is an area that requires further study. 
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