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1. Introduction

Designers are constantly attempting to improveréiiability of manufacturing systems to
increase economic and production efficiencies. &lage two ways to accomplish this. One is
to improve the reliability of the system componeisd the other is to add more components
to the system. It has been shown that the firstaggh is not very effective. In the second
approach, appropriately called the redundancy afioc problem (RAP), an optimal
combination of the components and the redundanegl lef each component must be
determined. The only drawback of this approachh& it increases the weight, cost, and
volume of the system.

There are four configurations for connecting thenponents in a system. They are series,
parallel, series-parallel, and parallel-seriesthis paper, we are considering the redundancy
allocation problem for a series-parallel system.this configuration (Figure 1), several
subsystems are connected to each other in sefeseas the components in each subsystem
are connected in parallel.
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Figure 1. Series-parallel system
There are two types of redundancy strategies: e@nd standby. In the active strategy, all
redundant components operate simultaneously frane tzero, whereas in the standby
strategy, only the needed components operate angdundant components are idle until the
active component fails.
There are three categories of standby redundaratg; warm, and hot. In cold-standby,
components do not fail before operating. In warangby, idle components can fail, but the
probability of their failure is less than that tietfailure of the operating component. In hot
standby, the operating components and the idle oaemis follow the same pattern of
failure.
In a system with cold-standby redundancy configonata detection mechanism senses the
failure of a component, and the system switches tiva safe component, if available. The
detection and switching to the redundant componantbe carried out in two ways. In the
first scenario, the system is continually monitofed failure of detection. In this case, the
failure of the detection/switching mechanism canuoat any time. In the second scenario,
the failure of the detection/switching mechanismurs only when a switching is required. In
this scenario, the probability of the detection #mel switching mechanism working properly
and activating a redundant component in the subsgysts denoted byi [1].
An RAP can be solved by an exact or a meta-hetunséthod. The exact method includes
dynamic programming [2, 3, 4, and 5], integer paogming [6, 7, 8, and 9], and mixed-
integer nonlinear programming [10]. Coit [11] prepd an integer programming solution for
an RAP such that the reliability of a system emplgythe cold-standby redundancy strategy
was maximized. Chern [12] demonstrated that ev&male RAP with linear constraints in a
series system is non-deterministic polynomial-titmerd. This persuaded researchers to
develop heuristic and meta-heuristic approacheohee RAP. These approaches can obtain
near-optimal solutions within a reasonable comjrat time.
In previous studies, meta-heuristic methods, sscth@ genetic algorithm (GA) [13 and 14],
variable neighborhood descent algorithm [15] andcafony optimization [16 and 17] have
been used to maximize system reliability for an RAP
In all the above mentioned studies, the researchtgsded to maximize the reliability of the
system for a specific period of time. In contrdkts study attempts to maximize the mean
lifetime of the system. The only work which has sidered mean lifetime in the redundancy
allocation problem was proposed by [18]. They cdex®d mean time to failure (MTTF) of
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the system as mean lifetime index in the objediimetion. But, the component selection was
not allowed in this model. Considering the fact thereal-world problem, the component
selection is very important for a system desigi&gnce, in this research, we consider a
redundancy allocation problem in which the compoérssiection is allowed. The Monte
Carlo simulation is used to calculate the MTTF, #mel GA is applied to solve the RAP in a
system employing the cold-standby redundancy sjyawitch failure is only possible when
switching is required. The probability that switeyioccurs properly in all subsystems is
denoted by . The components are assumed to be not repairable.

In each subsystem, there are mi options for selgctdbmponents, and the components within
each subsystem must be of the same type. The tnfi@ltre of the components follows
Erlang distribution function. Each available comeonhas different levels of cost, weight,
and reliability. There are redundancy level, ca@std weight constraints associated with
components, and the problem is to select the coegaend identify the redundancy levels
for each subsystem to maximize the MTTF of theesyst

This paper is organized as follows. Section 2 dostthe mathematical formulation for the
problem. A genetic algorithm combined with the Mo@arlo method is presented in section
3. Section 4 presents the experimental resultsfinatly, section 5 states the conclusion and
suggests possible future researches on this topic.

2. Problem formulation

2.1.Notations

S number of subsystems

n; number of components used in the subsysténal, 2,...,9
N set of p(ng, Ny, ..., Ng)

Nmax, maximum number of components used in the subsyistem
m number of available components for the subsystem

Z index of components selected for the subsystem

Z setofz (z, z, ..., Z)

t mission time

R(t; Z,N) system reliability at timéfor solution vectorZ andN

ri(t) reliability at time for thejth components of the subsystem
C,W cost and weight constraints

Cij, Wij cost and weight of tHéh component of the subsystem

P Probability of the switch working properly

2.2.Formulation

maxMTTF = [ R(t Z, N)di @)

S n-1 t (2)
R(t Z, N) :H( k, (t)+Z‘HOXJ‘O k (t-u) féX)(u) du]



38 H. Karimi and A.A. Najafi

Subject to:

< 3
dc.n<Cnefl,2,...,Ny !

i=1

. (4)

dw,n<Wzefl?2,.,m}

i=1

The R (t;Z,N) formulation is derived from [11]. Owg to the complexity of its calculation,
Coit had to use an equivalent formulation. Exadtudation of the MTTF is more complex
than that of R(t; Z,N). We use the Monte Carlo datian to overcome the complexity.
Constraints (3) and (4) represent the cost andwemnstraints, respectively.

3. Proposed genetic algorithm

The GA is one of the most effective and appliedasreduristic techniques for solving a
variety of combinatorial problems. It has also besencessfully employed for a variety of
RAP [13 and 14]. The GA starts with a set of rantjorgenerated initial solutions
(chromosomes) called the initial population. A cmger operator is applied to improve the
quality of solutions and a mutation operator isl@gopto increase the variety of solutions.
Solutions for the crossover operator are selecyesi tnechanism called the selection strategy.
The algorithm is repeated until the terminationdiban is met.

3.1.Solution representation

The solution is represented by two vectors, oneesgmting the selected components, and
the other, the level of redundancy. Figure 2 iHaigts the solution representation for a system
with seven subsystems. Tfth bit in both vectors represents the selected compt and the
redundancy level for thigh subsystem.

subsystem 1 2 3 4 5 6 7 1 2 3 4 5 6 7
1 2 3 1 2 3 1 2 4 1 3 4 2 5

Component selection vector Redundancy level vector
Figure 2. Solution representation

3.2.Fitnessfunction

Each chromosome is evaluated by a fitness functiorthis paper, the fithess function
comprises the result of the Monte Carlo simulatiod the penalty function.
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3.2.1. MonteCarlo simulation

The Monte Carlo methods are a class of computdtialgmrithms that rely on repeated
random sampling to compute their results. Thesehoakst are often used for simulating
physical and mathematical systems. They are usexth wths infeasible to compute an exact
result using a deterministic algorithm.

Calculating the reliability of a system with thelatstandby redundancy strategy at titrie
possible only when the time to failure of the comguats follows a simple distribution
function. Obtaining the MTTF of a system is ver{fidult, even when the components have
a simple distribution function. The Monte Carlo silation can be very useful in calculating
both the reliability at time and the MTTF objective functions when the distibatfunction

of the time to failure of the component is complex.

The simulation algorithm for calculating the MTTd-presented in Table 1,

where,

n.sim number of simulation

S number of subsystem

Fi a random number assumed to be the time to failutleegth component in
subsysten

n; redundancy level in subsystem

P probability of switch working properly

TTF  time to failure of subsystem
TTFS time to failure of the system for théh simulation
MTTF mean time to failure of the system

Table 1. Proposed simulation algorithm
For (k=1 to n.sim)

Begin
For (i=1to S)
Begin
Generate a random numhber r
TTE(— i1
For (j=2 to n)
Begin
Generate a random remfR € (0,1)
If R< p then
Begin
Generat@adom number;r
TTE TTR+ Tij
End if
Else
ExiEor |” loop
End for j
End for i
TTEEmMIinTTE
I
End for k
n.sim
D> TTFS
MTTF=XLl

n.sim
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According to the Table 1, the simulation is perfedm.simtimes, and the average of the
simulation results gives the value of the MTTF. Each simulation, the time to failure
values of the subsystems are calculated, the mminalue gives us the time to failure of the
system.

For the simulation to estimate the time to failof@ subsystem, first the distribution function
is used to generate a random number as the tinfailtwe of the first component. This
number is assumed to be the time to failure of shbsystem. If other components are
available in that subsystem, a constant numberdeetvd and 1 that is generated randomly is
used to determine if the switch has worked. If tignber is less thap , it means that the
switch has worked properly and another componesitlean activated. The time to failure of
this component is added to the time to failurehef subsystem. The simulation terminates
when this process is carried out for all componantie subsystem or when the switch does
not work properly.

3.2.2. Penalty function

The crossover and mutation operators can proddeadible solutions. The penalty method
is the most effective approach to resolve this j@mband provides an efficient search
through the feasible and infeasible regions. CoiBi&ith [13] used a penalty function in a
GA to solve an RAP; this method significantly inesed the quality of solutions. In this
paper, a dynamic penalty function derived from [B3lsed.

The fitness function is obtained by subtracting plemalty function from the result of the
simulation:

aw ) [ ac )
fpenalized= f unpenallzed_((ﬁj +(ﬁ} J( fbest(a” ) —f bes( feas)

where fyenaizediS the penalized objective function funpenaiized IS the objective function
obtained by simulatiorfyest(feag is the value of the current best feasible sofyt@ndfyest
(all)is the value of the best solution without condialgthe penalty.

Aw and Acdenote the amount of violations of the weight amdtcoconstraints for the
components, respectivel is a severity parameteldFT, andNFT,, are the “near-feasible
thresholds (NFTs)” for the cost and weight constsirespectively. The dynamic NFTs for
the cost and weight constraints are calculatedéydllowing formula:

NFT, (6)
1+ pg*

()

NFT =

where, g is the generation number and jBTand k are constant parameters.
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3.3. Selection strategy

The chromosomes for crossing are selected by emgl@ylinear ranking selection strategy.
In this strategy, chromosomes are sorted accortbnghe fitness function and all the
chromosomes are assigned a rank {12,...,N}, whereN is the population size.

Rank N indicates the best solution, whereas rank 1 inelscghe worst. The probability for
selecting chromosomigp;) is obtained by the following formula:
2r (7)

"IN

3.4.Crossover operator

A uniform crossover operator is applied to bothusoh vectors. The operator first generates
a random binary array called a mask. The size efrtfask is equal to the size of the
chromosomes. An offspring inherits genes from paraccording to the mask. To produce
an offspring, the mask is scanned bit by bit, anthé current bit is equal to 0, then the
offspring inherits the corresponding gene from thet parent. Otherwise, the gene is
inherited from the second parent. The second offgps produced in a similar way, but with

the difference that in the mask, 0 is changed amd 1 to 0. Figure 3 depicts the uniform
crossover with an example.

1 2 3 4 5 6 7 1 2 3 4 5 6 1
Parent 1 202 01|31t |[3 321 ]3]|2]|4]|3]3
1 2 3 4 5 6 7 1 2 3 4 5 6 1

Parent 2 133t 221044 |2|2]1]|5]3
1 2 3 4 5 6 7 1 2 3 4 5 6 71

Mask ol 1|1]ofl1]lolofo|1|ofl1|1]|0]1
1 2 3 4 5 6 7 1 2 3 4 5 6 7

Offspring1 | 2 | 3 |3 |3 |23 30243 ]2]1]3]3
1 2 3 4 5 6 7 1 2 3 4 5 6 1

Offspring2 | 1 | 2 |1 |1 |1 |2 184 |1 ]2]2|4|5]3:

Figure 3. Crossover operator
If P is the size of the population, théh offsprings are produced by crossover and are
combined with the parents. ThBmumber of the best solutions among them are selexstd
they survive to the next generation. After deleting inferior solutions from the population,
mutation is performed on the remaining solutionsitfion is not applied to the best solution
and the best feasible solution.
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3.5.Mutation operator

The probability of mutation of a geneRg. To mutate a chromosome, first a random number
r, € (0,1) is generated for each gene. Then, for anyonenlilieé component selection vector

wherer<Pp, another component is selected, which replacepréhgous one. For anyone bit
in the redundancy level vector whetigPy, another random numbeye (0,1)is generated. If

r,<0.5, the redundancy level of the selected subsysiedecreased by one. Otherwise, it is
increased by one. If the redundancy level of suesyss 1, the subsystem is only permitted
to increase and if the level is equal t@,nit is only permitted to decrease. An examplehef t
mutation operator is depicted in Figure 4.

1 2 3 4 5 6 7 1 2 3 4 5 6 7
Befor mutation ‘1‘2‘3‘1‘3‘1‘2 2‘4‘]‘3‘6‘2‘5‘

1 2 3 4 5 6 7 1 2 3 4 5 6 1
Random numbers T, 0.25‘0.82‘0.05 ‘0.55‘0.63‘0.99‘0.17 0.39‘0.66‘0,01 ‘0.81 ‘0.08‘0.27‘0.09‘

Random numbers r, 0.65 0.34
1 2 3 4 5 6 7 1 2 3 4 5 6 7
After mutation P2 2123|124 ]|2|3|5]|2]:5

Figure 4. Mutation operatoP{=0.1)
4. Experimental design

4.1.Test problems

Thirty-three problems provided by Coit [11] are dige test the algorithm. Only the weight
constraint differs with each problem. These prolsleane applied to a system with 14
subsystems where each subsystem has three ordioyonent types to choose from. Table 2
lists the shape and scale parameters for a Ganstrdbdtion and the cost and weight of each
component. The cost constraint is 130 for all peotd, and the weight constraint ranges from
159 to 191. The maximum number of components iswkystems is 6, and the reliability of

the switch for all subsystems is 0.99.
Table 2. The example data

i Choice 1 Choice 2 Choice 3 Choice 4

Ai ki G Wy A ki G Wi 4 ki G Wi 4 ki G W
1 000532 2 1 3 0000726 1 1 4 000499 2 2 2 000818 3 2 5
2 000818 3 2 8 0000619 1 1 10 0.004312 2 1 9 - - - -
3 00133 3 2 7 0.0110 3 3 5 0.0124 3 1 6 000466 2 4 4
4 0.00741 2 3 5 0.0124 3 4 6 000683 2 5 4 - - - -
5 000619 1 2 4 000431 2 2 3 000818 3 3 5 - - - -
6 000436 3 3 5 000567 3 3 4 000268 2 2 5 0.000408 1 2 4
7 00105 3 4 7 000466 2 4 8 000394 2 5 9 - - - -
8 00150 3 3 4 000105 1 5 7 0.0105 3 6 6 - - - -
9 000268 2 2 8 0.000101 1 3 9 0.000408 1 4 7 0.000943 1 3 8
10 00141 3 4 6 000683 2 4 5 000105 1 5 6 - - - -
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11 000394 2 3 5 00035 2 4 6 000314 2 5 6 - - - -
12 000236 1 2 4 000769 2 3 5 001383 3 4 6 00110 3 5 7
13 000215 2 2 5 000436 3 3 5 000665 3 2 6 - - - -
14 00110 3 4 6 000834 1 4 7 000355 2 5 6 000436 3 6 9

4.2 Experimental results

The algorithm was coded in Borland C++ and execoateé computer with 2.1 GHz Intel
Core 2 Duo processor and 2GB of RAM. We executedatigorithms five times for each
problem. The execution of the algorithm was tern@davhen the array of the best solution
remained unchanged for 10 consecutive generafidresfinal solution obtained by the GA is
simulated one million times to obtain the final @ttjve function.

After extensive experiments with different penadtyd genetic parameters, the following
values were selected: population size=300,,=P005, a=2, NFTocos=100,
NFToWeighFW/l.3Bcost=0.008,Bweight:O.OB, k=1.6.

Table 3 lists the experimental results for 33 peoisd,

where,

# problem number

w weight constraint

Best objective function of the best solution iref@xecutions

Mean average of objective function in five execos$io

cv coefficient of variance for values of objectiftenction (standard deviation divided by
average)

CT average of CPU time in seconds for five exetistio

Best solution best solution includes two vectorB.AA represents the selected components vector,
and B represents the level of the redundant veEtmrexample, the solution shown in
Figure 2 can be represented as 1231231-2413425.

The best and the average values of the objectinetiins for all problems are depicted in
Figure 5. The values indicate that the reliabibfythe system improves with an increase in
W.

Coit [11] used Hyper-LINDO software for solving jem 12 with the objective of
maximizing the reliability of the system at tim¢t= 100). He used the equivalent objective
function instead of the original one and obtaine@lae of 0.9863.

We tested the algorithm on problem 12 as well, vilib objective of maximizing the
reliability of the system at time(t= 100). To calculate this objective function, welezed
the last statement of the algorithm in Table 1 il following statement.

countek— 0

For (=1 to n.sim)

If TTFS equal or bigger thanthen

counter—counter+1

End forl

Reliability « counter / n.sim
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The added statement compares the simulation rehtt. If it is equal or bigger thanit
means the system has worked at ldasmes. The reliability of the system at tinhds
obtained by dividing the total number of simulagdmaving a result equal or bigger thdoy
the number of simulation (n.sim).

H. Karimi and A.A. Najafi

Our algorithm is applied to problem 12 and thedwaihg results are obtained:
Best=0.9856, Average=0.9851, Dev/Ave=0.000396, GI-8
BS: 31432213131223-32333222232322

Table 3. Performance of genetic algorithm for thebfems provided by Coit (2001)

No W Best Ave CvVv CT BS

1 159 382.461 380.781 0.003953 321.8 324324222332332222122322
2 160 388.239 384.19¢ 0.009568 379.0 324324322332233222122322
3 161 392.464 392.07( 0.000606 351.8 324324322332332222122322
4 162 400.459 400.239 0.000381 309.2 324324222332333222122322
5 163 400.513 399.186¢ 0.007007 364.0 324324222332333222122322
6 164 412.006 411.784 0.000549 281.6 324324322332333222122322
7 165 412.109 407.68( 0.013560 357.8 324324322332333222122322
8 166 421.623 421.367 0.000506 302.2 324324322332333222122322
9 167 421.68 421.451 0.0005%2 330.0 324324322332333222122322
10 168 427.532 426.074 0.006152 311.8 3243243223332343222122322
11 169 430.129 426.222 0.009785 383.6 3243243223332333222123322
12 170 438.89 433.764 0.015780 353.6 324324322332333222122322
13 171 434.651 428.150 0.009003 337.2 3243243223332333222122422
14 172 445937 441.72¢ 0.016986 315.0 3243243223332343222122322
15 173 448.726 443.447 0.016106 325.6 3243243223332343222123322
16 174 455,372 449.597 0.0170Y4 333.4 3243243223332343222122422
17 175 456,782 452.29% 0.010508 329.4 3243243223342343222123322
18 176 461.76| 451.333 0.016292 298.0 324323BPP3-42343222122422
19 177 466.271 462.322 0.011242 301.8 3282281113-32343222123422
20 178 466.691 460.993 0.0119Y8 366.0 3243231BP13-42343222123422
21 179 467.928 465.394 0.0042B3 350.2 324323@BP13-42344222122422
22 180 478.071 476.691 0.002865 306.6 3243233P13-32343232122422
23 181 477.55| 474.069 0.0072838 340.0 32432420P832343232122422
24 182 487.3471 478.62]1 0.012955 337.6 324323301 3-42343232122422
25 183 490.551 487.212 0.008604 294.4 324323PP13-32343232123422
26 184 490.361 484.001 0.015448 372.0 324323PP13-32343232123422
27 185 501.498 494.64¢ 0.018686 366.4 324323PP13-42343232123422
28 186 501.599 493.00T 0.022069 351.8 324323PP13-42343232123422
29 187 502.081 499.850 0.005622 331.0 324323301 3-42343232122423
30 188 501.859 497.21% 0.007501 293.2 324323301 3-42343233122422
31 189 517.192 506.88% 0.023184 330.2 324323001 3-32343232123423
32 190 513.218§ 509.122 0.010504 344.2 324323PP13-42343232133422
33 191 |530.712| 527.421f 0.0080898 340.0 32432422238P833232123423
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Figure 5. Best and average values of MTTF in 3dlems

5. Conclusions

In this study, we combined a genetic algorithm vatiMonte Carlo simulation to solve the
redundancy allocation problem (RAP). The objectives to maximize the mean time to
failure (MTTF) of a series-parallel system emplayite cold-standby redundancy strategy.
We also expanded the algorithm to solve the RAP lagdce to maximize the system
reliability at timet. Figure 5 and the magnitude of the coefficientariance in Table 3 imply
that the algorithm is robust and very effective.

In future studies, this approach can be appliedotse RAPs where the components of the
system are repairable, and the distribution fumctar time to failure of components is more
complex. The simultaneous maximization of both MiETF and system reliability at time
using multi-objective algorithms is an area thauiees further study.
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