

*Corresponding author
E-mail address: aanajafi@kntu.ac.ir

Int. J. Research in Industrial Engineering, pp. 35-46

Volume 2, Number 2, 2013

International Journal of Research in Industrial Engineering

journal homepage: www.nvlscience.com/index.php/ijrie

A Hybrid Genetic Algorithm/Simulation Approach for Redundancy
Optimization with Objective of Maximizing Mean Lifetime and
Considering Component Selection

H. Karimi1, A.A. Najafi2,*
1Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran.
2Faculty of Industrial Engineering, K.N. Toosi University of Technology, Tehran, Iran.

A B S T R A C T A R T I C L E I N F O

In this paper, we consider a reliability redundancy optimization
problem in a series-parallel type system employing the redundancy
strategy of cold-standby. The problem consists of two parts
component selection and determination of redundancy level of each
component—which need to be solved so that the mean lifetime of the
system can be maximized. The redundancy allocation problem is non-
deterministic polynomial-time hard and is solved by a combined
genetic algorithm - simulation approach. Finally, this algorithm is
tested on 33 benchmark problems.

 Article history :
Received:
February 5, 2013
Revised:
April 19, 2013
Accepted:
June 22, 2013

 Keywords :
Reliability, redundancy
allocation problem, Monte
Carlo method, genetic
algorithm, means time to
failure.

1. Introduction

Designers are constantly attempting to improve the reliability of manufacturing systems to
increase economic and production efficiencies. There are two ways to accomplish this. One is
to improve the reliability of the system components, and the other is to add more components
to the system. It has been shown that the first approach is not very effective. In the second
approach, appropriately called the redundancy allocation problem (RAP), an optimal
combination of the components and the redundancy level of each component must be
determined. The only drawback of this approach is that it increases the weight, cost, and
volume of the system.
There are four configurations for connecting the components in a system. They are series,
parallel, series-parallel, and parallel-series. In this paper, we are considering the redundancy
allocation problem for a series-parallel system. In this configuration (Figure 1), several
subsystems are connected to each other in series, whereas the components in each subsystem
are connected in parallel.

 36 H. Karimi and A.A. Najafi

Figure 1. Series-parallel system

There are two types of redundancy strategies: active and standby. In the active strategy, all
redundant components operate simultaneously from time zero, whereas in the standby
strategy, only the needed components operate and the redundant components are idle until the
active component fails.
There are three categories of standby redundancy: cold, warm, and hot. In cold-standby,
components do not fail before operating. In warm standby, idle components can fail, but the
probability of their failure is less than that of the failure of the operating component. In hot
standby, the operating components and the idle components follow the same pattern of
failure.
In a system with cold-standby redundancy configuration, a detection mechanism senses the
failure of a component, and the system switches over to a safe component, if available. The
detection and switching to the redundant component can be carried out in two ways. In the
first scenario, the system is continually monitored for failure of detection. In this case, the
failure of the detection/switching mechanism can occur at any time. In the second scenario,
the failure of the detection/switching mechanism occurs only when a switching is required. In
this scenario, the probability of the detection and the switching mechanism working properly
and activating a redundant component in the subsystem i is denoted by ρi [1].
An RAP can be solved by an exact or a meta-heuristic method. The exact method includes
dynamic programming [2, 3, 4, and 5], integer programming [6, 7, 8, and 9], and mixed-
integer nonlinear programming [10]. Coit [11] proposed an integer programming solution for
an RAP such that the reliability of a system employing the cold-standby redundancy strategy
was maximized. Chern [12] demonstrated that even a simple RAP with linear constraints in a
series system is non-deterministic polynomial-time hard. This persuaded researchers to
develop heuristic and meta-heuristic approaches to solve RAP. These approaches can obtain
near-optimal solutions within a reasonable computational time.
In previous studies, meta-heuristic methods, such as the genetic algorithm (GA) [13 and 14],
variable neighborhood descent algorithm [15] and ant colony optimization [16 and 17] have
been used to maximize system reliability for an RAP.
In all the above mentioned studies, the researchers intended to maximize the reliability of the
system for a specific period of time. In contrast, this study attempts to maximize the mean
lifetime of the system. The only work which has considered mean lifetime in the redundancy
allocation problem was proposed by [18]. They considered mean time to failure (MTTF) of

 37 A Hybrid Genetic Algorithm/Simulation Approach for Redundancy Optimization…

the system as mean lifetime index in the objective function. But, the component selection was
not allowed in this model. Considering the fact the in real-world problem, the component
selection is very important for a system designer. Hence, in this research, we consider a
redundancy allocation problem in which the component selection is allowed. The Monte
Carlo simulation is used to calculate the MTTF, and the GA is applied to solve the RAP in a
system employing the cold-standby redundancy strategy; switch failure is only possible when
switching is required. The probability that switching occurs properly in all subsystems is
denoted byρ . The components are assumed to be not repairable.

In each subsystem, there are mi options for selecting components, and the components within
each subsystem must be of the same type. The time to failure of the components follows
Erlang distribution function. Each available component has different levels of cost, weight,
and reliability. There are redundancy level, cost, and weight constraints associated with
components, and the problem is to select the component and identify the redundancy levels
for each subsystem to maximize the MTTF of the system.
This paper is organized as follows. Section 2 contains the mathematical formulation for the
problem. A genetic algorithm combined with the Monte Carlo method is presented in section
3. Section 4 presents the experimental results, and finally, section 5 states the conclusion and
suggests possible future researches on this topic.

2. Problem formulation

2.1.Notations

S number of subsystems
ni number of components used in the subsystem i (i=1, 2,…, S)
N set of ni (n1, n2, …, nS)
nmax,I maximum number of components used in the subsystem i
mi number of available components for the subsystem i
zi index of components selected for the subsystem i
Z set of zi (z1, z2, …, zs)
t mission time
R(t; Z, N) system reliability at time t for solution vectors Z and N
r i(t) reliability at time t for the jth components of the subsystem i
C, W cost and weight constraints
Ci,j, wi,j cost and weight of the jth component of the subsystem i
ρ Probability of the switch working properly

2.2.Formulation

0
max (; ,)

t
MTTF R t Z N dt= ∫

(1)

1
()

0
11

(; ,) () () ()
i

i i i

nS tx x
iz iz iz

xi

R t Z N r t r t u f u duρ
−

==

 = + − ∑∏ ∫

(2)

 38 H. Karimi and A.A. Najafi

Subject to:

1
i

S

iz i
i

c n C
=

≤∑ max,{1,2,..., }i in n∈

(3)

1
i

S

iz i
i

w n W
=

≤∑ {1,2,..., }i iz m∈

(4)

The R (t;Z,N) formulation is derived from [11]. Owing to the complexity of its calculation,
Coit had to use an equivalent formulation. Exact calculation of the MTTF is more complex
than that of R(t; Z,N). We use the Monte Carlo simulation to overcome the complexity.
Constraints (3) and (4) represent the cost and weight constraints, respectively.

3. Proposed genetic algorithm

The GA is one of the most effective and applied meta-heuristic techniques for solving a
variety of combinatorial problems. It has also been successfully employed for a variety of
RAP [13 and 14]. The GA starts with a set of randomly generated initial solutions
(chromosomes) called the initial population. A crossover operator is applied to improve the
quality of solutions and a mutation operator is applied to increase the variety of solutions.
Solutions for the crossover operator are selected by a mechanism called the selection strategy.
The algorithm is repeated until the termination condition is met.

3.1.Solution representation

The solution is represented by two vectors, one representing the selected components, and
the other, the level of redundancy. Figure 2 illustrates the solution representation for a system
with seven subsystems. The jth bit in both vectors represents the selected component and the
redundancy level for the jth subsystem.

Figure 2. Solution representation

3.2.Fitness function

Each chromosome is evaluated by a fitness function. In this paper, the fitness function
comprises the result of the Monte Carlo simulation and the penalty function.

 39 A Hybrid Genetic Algorithm/Simulation Approach for Redundancy Optimization…

3.2.1. Monte Carlo simulation

The Monte Carlo methods are a class of computational algorithms that rely on repeated
random sampling to compute their results. These methods are often used for simulating
physical and mathematical systems. They are used when it is infeasible to compute an exact
result using a deterministic algorithm.
Calculating the reliability of a system with the cold-standby redundancy strategy at time t is
possible only when the time to failure of the components follows a simple distribution
function. Obtaining the MTTF of a system is very difficult, even when the components have
a simple distribution function. The Monte Carlo simulation can be very useful in calculating
both the reliability at time t and the MTTF objective functions when the distribution function
of the time to failure of the component is complex.
The simulation algorithm for calculating the MTTF is presented in Table 1,
where,
n.sim number of simulation
S number of subsystem
r ij a random number assumed to be the time to failure of the jth component in

subsystem i
ni redundancy level in subsystem i
ρ probability of switch working properly
TTFi time to failure of subsystem i
TTFSk time to failure of the system for the kth simulation
MTTF mean time to failure of the system

Table 1. Proposed simulation algorithm
For (k=1 to n.sim)
Begin
For (i=1 to S)
 Begin
 Generate a random number ri1

 TTFi← ri1
For (j=2 to ni)
 Begin
 Generate a random number (0,1)R∈

If R< ρ then

 Begin
 Generate a random number rij
 TTFi← TTFi+ rij
End if
 Else
 Exit “For j” loop
 End for j
 End for i
 TTFSk= min i

i
TTF

End for k
.

1

.

n sim

k
k

TTFS
MTTF

n sim
=

=

∑

 40 H. Karimi and A.A. Najafi

According to the Table 1, the simulation is performed n.sim times, and the average of the
simulation results gives the value of the MTTF. For each simulation, the time to failure
values of the subsystems are calculated, the minimum value gives us the time to failure of the
system.
For the simulation to estimate the time to failure of a subsystem, first the distribution function
is used to generate a random number as the time to failure of the first component. This
number is assumed to be the time to failure of the subsystem. If other components are
available in that subsystem, a constant number between 0 and 1 that is generated randomly is
used to determine if the switch has worked. If this number is less than ρ , it means that the

switch has worked properly and another component has been activated. The time to failure of
this component is added to the time to failure of the subsystem. The simulation terminates
when this process is carried out for all components in the subsystem or when the switch does
not work properly.

3.2.2. Penalty function

The crossover and mutation operators can produce infeasible solutions. The penalty method
is the most effective approach to resolve this problem and provides an efficient search
through the feasible and infeasible regions. Coit & Smith [13] used a penalty function in a
GA to solve an RAP; this method significantly increased the quality of solutions. In this
paper, a dynamic penalty function derived from [13] is used.
The fitness function is obtained by subtracting the penalty function from the result of the
simulation:

()() ()penalized unpenalized best best
w c

w c
f f f all f feas

NFT NFT

α α ∆ ∆ = − + −

(5)

where, fpenalized is the penalized objective function, funpenalized is the objective function
obtained by simulation, fbest (feas) is the value of the current best feasible solution, and fbest

(all)is the value of the best solution without considering the penalty.
w∆ and c∆ denote the amount of violations of the weight and cost constraints for the

components, respectively. K is a severity parameter. NFTc and NFTw are the “near-feasible
thresholds (NFTs)” for the cost and weight constraints, respectively. The dynamic NFTs for
the cost and weight constraints are calculated by the following formula:

0

1 k

NFT
NFT

gβ=
+

(6)

where, g is the generation number and NFT0, β, and k are constant parameters.

 41 A Hybrid Genetic Algorithm/Simulation Approach for Redundancy Optimization…

3.3. Selection strategy

The chromosomes for crossing are selected by employing a linear ranking selection strategy.
In this strategy, chromosomes are sorted according to the fitness function and all the

chromosomes are assigned a rank { }Nri ,...,2,1∈ , where N is the population size.

Rank N indicates the best solution, whereas rank 1 indicates the worst. The probability for
selecting chromosome i (pi) is obtained by the following formula:

2

(1)
i

i

r
p

N N
=

+

(7)

3.4.Crossover operator

A uniform crossover operator is applied to both solution vectors. The operator first generates
a random binary array called a mask. The size of the mask is equal to the size of the
chromosomes. An offspring inherits genes from parents according to the mask. To produce
an offspring, the mask is scanned bit by bit, and if the current bit is equal to 0, then the
offspring inherits the corresponding gene from the first parent. Otherwise, the gene is
inherited from the second parent. The second offspring is produced in a similar way, but with
the difference that in the mask, 0 is changed to 1 and 1 to 0. Figure 3 depicts the uniform
crossover with an example.

Figure 3. Crossover operator

If P is the size of the population, then P offsprings are produced by crossover and are
combined with the parents. Then P number of the best solutions among them are selected and
they survive to the next generation. After deleting the inferior solutions from the population,
mutation is performed on the remaining solutions. Mutation is not applied to the best solution
and the best feasible solution.

 42 H. Karimi and A.A. Najafi

3.5.Mutation operator

The probability of mutation of a gene is Pm. To mutate a chromosome, first a random number

1 (0,1)r ∈ is generated for each gene. Then, for anyone bit in the component selection vector

where r1<Pm, another component is selected, which replaces the previous one. For anyone bit

in the redundancy level vector where r1<Pm, another random number 2 (0,1)r ∈ is generated. If

r2<0.5, the redundancy level of the selected subsystem is decreased by one. Otherwise, it is
increased by one. If the redundancy level of subsystem is 1, the subsystem is only permitted
to increase and if the level is equal to nmax, it is only permitted to decrease. An example of the
mutation operator is depicted in Figure 4.

Figure 4. Mutation operator (Pm=0.1)

4. Experimental design

4.1.Test problems

Thirty-three problems provided by Coit [11] are used to test the algorithm. Only the weight
constraint differs with each problem. These problems are applied to a system with 14
subsystems where each subsystem has three or four component types to choose from. Table 2
lists the shape and scale parameters for a Gamma distribution and the cost and weight of each
component. The cost constraint is 130 for all problems, and the weight constraint ranges from
159 to 191. The maximum number of components in all subsystems is 6, and the reliability of
the switch for all subsystems is 0.99.

Table 2. The example data
i Choice 1 Choice 2 Choice 3 Choice 4

λij kij cij wij λij kij cij wij λij kij cij wij λij kij cij wij

1
2
3
4
5
6
7
8
9
10

0.00532
0.00818
0.0133
0.00741
0.00619
0.00436
0.0105
0.0150
0.00268
0.0141

2
3
3
2
1
3
3
3
2
3

1
2
2
3
2
3
4
3
2
4

3
8
7
5
4
5
7
4
8
6

0.000726
0.000619
0.0110
0.0124
0.00431
0.00567
0.00466
0.00105
0.000101
0.00683

1
1
3
3
2
3
2
1
1
2

1
1
3
4
2
3
4
5
3
4

4
10
5
6
3
4
8
7
9
5

0.00499
0.00431
0.0124
0.00683
0.00818
0.00268
0.00394
0.0105
0.000408
0.00105

2
2
3
2
3
2
2
3
1
1

2
1
1
5
3
2
5
6
4
5

2
9
6
4
5
5
9
6
7
6

0.00818
-
0.00466
-
-
0.000408
-
-
0.000943
-

3
-
2
-
-
1
-
-
1
-

2
-
4
-
-
2
-
-
3
-

5
-
4
-
-
4
-
-
8
-

 43 A Hybrid Genetic Algorithm/Simulation Approach for Redundancy Optimization…

11
12
13
14

0.00394
0.00236
0.00215
0.0110

2
1
2
3

3
2
2
4

5
4
5
6

0.00355
0.00769
0.00436
0.00834

2
2
3
1

4
3
3
4

6
5
5
7

0.00314
0.0133
0.00665
0.00355

2
3
3
2

5
4
2
5

6
6
6
6

-
0.0110
-
0.00436

-
3
-
3

-
5
-
6

-
7
-
9

4.2.Experimental results

The algorithm was coded in Borland C++ and executed on a computer with 2.1 GHz Intel
Core 2 Duo processor and 2GB of RAM. We executed the algorithms five times for each
problem. The execution of the algorithm was terminated when the array of the best solution
remained unchanged for 10 consecutive generations. The final solution obtained by the GA is
simulated one million times to obtain the final objective function.
After extensive experiments with different penalty and genetic parameters, the following
values were selected: population size=300, Pm=0.005, α=2, NFT0cost=100,
NFT0weight=W/1.3,βcost =0.008, βweight =0.08, k=1.6.
Table 3 lists the experimental results for 33 problems,
where,
problem number
W weight constraint
Best objective function of the best solution in five executions
Mean average of objective function in five executions
CV coefficient of variance for values of objective function (standard deviation divided by

average)
CT average of CPU time in seconds for five executions
Best solution best solution includes two vectors, A-B. A represents the selected components vector,

and B represents the level of the redundant vector. For example, the solution shown in
Figure 2 can be represented as 1231231-2413425.

The best and the average values of the objective functions for all problems are depicted in
Figure 5. The values indicate that the reliability of the system improves with an increase in
W.
Coit [11] used Hyper-LINDO software for solving problem 12 with the objective of
maximizing the reliability of the system at time t (t= 100). He used the equivalent objective
function instead of the original one and obtained a value of 0.9863.
We tested the algorithm on problem 12 as well, with the objective of maximizing the
reliability of the system at time t (t= 100). To calculate this objective function, we replaced
the last statement of the algorithm in Table 1 with the following statement.
counter← 0
For (l=1 to n.sim)
 If TTFSl equal or bigger than t then
 counter←counter+1
End for l
Reliability← counter / n.sim

 44 H. Karimi and A.A. Najafi

The added statement compares the simulation result with t. If it is equal or bigger than t,it
means the system has worked at least t times. The reliability of the system at time t is
obtained by dividing the total number of simulations having a result equal or bigger than t by
the number of simulation (n.sim).
Our algorithm is applied to problem 12 and the following results are obtained:
Best=0.9856, Average=0.9851, Dev/Ave=0.000396, CT=337.8,
BS: 31432213131223-32333222232322

Table 3. Performance of genetic algorithm for the problems provided by Coit (2001)

No W Best Ave CV CT BS
1 159 382.461 380.781 0.003953 321.8 32432422231113-32332222122322
2 160 388.239 384.198 0.009568 379.0 32432432231113-32233222122322
3 161 392.464 392.070 0.000606 351.8 32432432231113-32332222122322
4 162 400.459 400.239 0.000331 309.2 32432422231113-32333222122322
5 163 400.513 399.186 0.007007 364.0 32432422231113-32333222122322
6 164 412.006 411.785 0.000549 281.6 32432432231113-32333222122322
7 165 412.109 407.680 0.013560 357.8 32432432233113-32333222122322
8 166 421.623 421.367 0.000506 302.2 32432432233113-32333222122322
9 167 421.68 421.451 0.000552 330.0 32432432233113-32333222122322
10 168 427.532 426.074 0.006152 311.8 32432432231113-32343222122322
11 169 430.129 426.222 0.009735 383.6 32432432231113-32333222123322
12 170 438.89 433.764 0.015780 353.6 32432432233113-32343222122322
13 171 434.657 428.150 0.009003 337.2 32432432233113-32333222122422
14 172 445.937 441.726 0.016936 315.0 32432432233113-42343222122322
15 173 448.726 443.447 0.016106 325.6 32432432231113-32343222123322
16 174 455.372 449.597 0.017074 333.4 32432432233113-32343222122422
17 175 456.782 452.295 0.010508 329.4 32432432231113-42343222123322
18 176 461.76 451.333 0.016292 298.0 32432432233113-42343222122422
19 177 466.271 462.322 0.011242 301.8 324324 32231113-32343222123422
20 178 466.691 460.993 0.011978 366.0 32432432231113-42343222123422
21 179 467.928 465.394 0.004233 350.2 32432432233113-42344222122422
22 180 478.071 476.691 0.002865 306.6 32432422233113-32343232122422
23 181 477.55 474.069 0.007238 340.0 32432422233113-32343232122422
24 182 487.347 478.621 0.012955 337.6 32432422233113-42343232122422
25 183 490.551 487.212 0.008694 294.4 32432422231113-32343232123422
26 184 490.361 484.001 0.015448 372.0 32432422231113-32343232123422
27 185 501.498 494.646 0.018686 366.4 32432422231113-42343232123422
28 186 501.595 493.007 0.022069 351.8 32432422231113-42343232123422
29 187 502.081 499.850 0.005622 331.0 32432422233113-42343232122423
30 188 501.859 497.215 0.007501 293.2 32432422233113-42343233122422
31 189 517.192 506.885 0.023134 330.2 32432422231113-32343232123423
32 190 513.218 509.122 0.010504 344.2 32432422231113-42343232133422
33 191 530.712 527.421 0.008088 340.0 32432422231113-42343232123423

 45 A Hybrid Genetic Algorithm/Simulation Approach for Redundancy Optimization…

Figure 5. Best and average values of MTTF in 33 problems

5. Conclusions

In this study, we combined a genetic algorithm with a Monte Carlo simulation to solve the
redundancy allocation problem (RAP). The objective was to maximize the mean time to
failure (MTTF) of a series-parallel system employing the cold-standby redundancy strategy.
We also expanded the algorithm to solve the RAP and hence to maximize the system
reliability at time t. Figure 5 and the magnitude of the coefficient of variance in Table 3 imply
that the algorithm is robust and very effective.
In future studies, this approach can be applied to solve RAPs where the components of the
system are repairable, and the distribution function for time to failure of components is more
complex. The simultaneous maximization of both the MTTF and system reliability at time t
using multi-objective algorithms is an area that requires further study.

References

[1] Coit, D.W. (2003), Maximization of system reliability with a choice of redundancy
strategies, IIE Trans., Vol. 35, pp. 535-544.

[2] Bellman, R. and Dreyfus, S. (1958), Dynamic programming and the reliability of
multicomponent devices, Oper. Res., Vol. 6, pp. 200-206.

[3] Fyffe, E.D., Hines, W.W. and Lee, N.K. (1968), System reliability allocation and a
computational algorithm, IEEE Trans. Reliab., Vol. 17, pp. 64-69.

[4] Nakagawa, Y., and Miyazaki, S. (1981), Surrogate constraints algorithm for
reliability optimization problems with two constraints, IEEE Trans. Reliab., Vol. 30,
No. 2, pp. 175-80.

[5] Li, J. (1996), A bound dynamic programming for solving reliability optimization,
Microelectr. Reliab., Vol. 36, No. 10, pp. 1515-1520.

[6] Ghare, P.M. and Taylor, R.E. (1969), Optimal redundancy for reliability in series
systems, Oper. Res., Vol. 17, pp. 838-847.

[7] Bulfin, R.L. and Liu, C.Y. (1985), Optimal allocation of redundant components for
large systems, IEEE Trans. Reliab., Vol. 34, No. 3, pp. 241-247.

370
390
410
430
450
470
490
510
530
550

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

M
T

T
F

Problem number

Best Average

 46 H. Karimi and A.A. Najafi

[8] Misra, K.B. and Sharma, U. (1991), An efficient algorithm to solve integer

programming problems arising in system-reliability design, IEEE Trans. Reliab., Vol.
40, No. 1, pp. 81-91.

[9] Coit, D.W. and Liu, J. (2000), System reliability optimization with k-out-of-n
subsystems, Int. J. Reliab. Qual. Safety Eng., Vol. 7, No. 2, pp. 129-143.

[10] Tillman, F.A., Hwang, C.L. and Kuo, W. (1977), Determining component reliability
and redundancy for optimum system reliability, IEEE Trans. Reliab., Vol. 26, No. 3,
pp. 162-165.

[11] Coit, D.W. (2001), Cold-standby redundancy optimization for non-repairable
systems, IIE Transactions, Vol. 33, pp. 471-478.

[12] Chern, M.S. (1992), On the computational complexity of reliability redundancy
allocation in a series system, Oper. Res. Lett., Vol. 11, pp. 309-315.

[13] Coit, D.W. and Smith, A.E. (1996a), Penalty guided genetic search for reliability
design optimization, Comput. Ind. Eng., Vol. 30, No. 4, pp. 895-904.

[14] Coit, D.W. and Smith, A.E. (1996b), Reliability optimization of series-parallel
systems using a genetic algorithm, IEEE Trans. Reliab., Vol. 45, No. 2, pp. 254-260.

[15] Liang, Y.C. and Wu, C.C. (2005), A variable neighborhood descent algorithm for the
redundancy allocation problem, Ind. Eng. Manage. Syst., Vol. 4, No. 1, pp. 109–116.

[16] Liang, Y.C. and Smith, A.E. (1999), An ant system approach to redundancy
allocation, In Proceedings of the congress on evolutionary computation, Washington
DC, USA, pp. 1478-1484.

[17] Liang, Y.C. and Smith, A.E. (2004), An ant colony optimization algorithm for the
redundancy allocation problem, IEEE Trans. Reliab., Vol. 53, No. 3, pp. 417–423.

[18] Najafi, A.A., Karimi, H., Chambari, A. and Azimi, F. (2013), Two metaheuristics for
solving the reliability redundancy allocation problem to maximize mean time to
failure of a series–parallel system, Scientia Iranica, In Press.

