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A B S T R A C T  A R T I C L E   I N F O 

This paper investigates the problem of designing an integrated 
production-distribution system which supports strategic and tactical 
decision levels in supply chain management. This overall optimization 
is achieved using mathematical programming for modeling the supply 
chain functions such as location, production, and distribution 
functions. Our model intends to minimize the total cost including 
production, location, transportation, and inventory holding costs. In 
view of the NP-hard nature of the problem, this paper provides a 
hybrid algorithm incorporates Genetic Algorithm into Lagrangian 
Relaxation method (namely HLRGA) to update the lagrangian 
multipliers and improve the performance of LR method. The 
effectiveness of HLRGA has been investigated by comparing its 
results with those obtained by CPLEX, hybrid genetic algorithm, and 
simulated annealing on a set of supply chain network problems with 
different sizes. Finally, an industrial case demonstrates the feasibility 
of applying the proposed model and algorithm to the real-world 
problem in a supply chain network. 
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1. Introduction 

Supply chain management (SCM) is the systematic analysis and educated decision-making 
within the different business functions of an organization resulting in smooth and cost-
effective flows of resources – material, information, and money. In other words, it is the 
coordination and synchronization of the flow of resources in the network of suppliers, 
manufacturing facilities, distribution centers (DCs) and customers. These network elements 
form the different echelons of the supply chain [1]. Decisions are made across the supply 
chain on three levels: strategic, tactical and operational. Strategic decisions are long term 
decisions where the time horizon may be anything from one year to several years i.e. it 
involves multiple planning horizons. Tactical decisions are taken over a shorter period of 
time, maybe a few months. These are more localized decisions taken to keep the organization 
on the track set at the strategic level. Operational decisions are similar to day-to-day 
decisions for planning a few days worth of operations. These take into consideration the most 
profitable way to carry out daily activities for satisfying immediate requirements. 
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The strategic configuration of the supply chain is thus a key factor influencing the efficiency 
at tactical and operational level. Its long term impact on the efficiency of the supply chain, 
combined with the commitment of substantial capital resources, render this level crucial. One 
of the most important aspects of strategic level is location problem that leads the system to 
define the optimal number of facilities, location of facility in geographical manner, assigning 
the customers to facility and configuration of transportation network. Melo et al. [2] 
presented a comprehensive review based on SC features. According to [2], approximately 
82% of literature deals with single period problems. Likewise, there is a gap in 3-layers, 
Multi periods and Multi products integrated SC and facility location models, as they have 
suggested researching in this case. So, in this paper, a 3-layers SC model includes location-
allocation problem is presented. Also, the proposed model is extended in multi periods and 
multi products. 
There is a vast amount of literature available on supply chain management research dealing 
with the different aspects of the subject. Numerous models in the literature, conceptual as 
well as quantitative, refer to the planning and quantitative aspects of the different business 
functions: location, production, inventory and transportation. A number of quantitative models 
use mixed-integer programming (MIP) to solve the supply chain optimization problems. One of 
the first attempts was done by Geoffrion and Graves [1], where a MIP model was formulated for 
the multiple commodity location problem. This seminal research involved the determination of 
distribution center (DC) locations, their capacities, customer zones and transportation flow 
patterns for all commodities. A solution to the location portion of the problem was presented, 
based on Bender’s Decomposition (BD). 
Cohen and Lee [3] develop an analytical model to establish materials requirements policy 
based on stochastic demand. They develop four different sub-models with a minimum-cost 
objective. A mathematical algorithm at the end decides the optimal ordering policies to 
minimize the costs. A MIP model for a production, transportation, and distribution problem 
has been developed by Pirkul and Jayaraman [4] to represent a multi-product tri-echelon 
capacitated plant and warehouse location problem. The model minimizes the sum of fixed 
costs of operating the plants and warehouses, and the variable costs of transporting multiple 
products from the plants to the warehouses and finally to the customers. 
Schmidt and Wilhelm [5] present a review of the work done on different decisional levels in 
the supply chain with respect to time frames – strategic, tactical and operational. Modeling 
issues are discussed at each level and a prototype formulation is provided as an extension of 
the discussion. Cordeau et al. [6] propose a static model considering a multi-commodity, 
multi-facility and single-country network. The decision variables concern the number of 
locations, the capacity and technology of manufacturing in plants and warehouses, selection 
of suppliers, selection of distribution channels, transportation modes and material flows. 
Vila et al. [7] propose a dynamic model in a much more specialized context. They consider 
an application in the lumber industry, but their model can be applied to other sectors. The 
authors consider an international network, with deterministic demands. They consider 
external suppliers, capacitated plants and warehouses, the choice between a set of available 
technologies, the possibility of adding capacity options to the facilities, and a list of substitute 
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products to replace standard ones. Other studies which address the SC coordination issues at 
different decision levels have been developed [8-12]. These conventional methods generally 
consider an overall production strategy, inventory strategy and flow of products through a 
facility over a single period to minimize total costs or maximize profits [13]. 
Supply chains have been more or less integrated to some extent as a whole, or in parts. 
Integration, if done at all, has been mostly done in patches throughout the supply chain. In 
many cases, this has been driven more by the need to survive and improvise, than by the 
willingness to improve and advance further. Therefore, efforts must be made to integrate 
suppliers, manufacturers, distributors, and customers, so that they will collaborate effectively 
with each other in the entire network. During the past few years, there have been significant 
attempts for providing integrated supply chain problems, which includes suppliers, 
manufacturers, distributors and retailers. The primary objective of an integrated supply chain 
is to optimize all cost components from converting raw materials into final products delivered 
to end users [14-16]. 
The decisions made for network design determines the suppliers, manufacturing plants, and 
intermediate inventory warehouses, selects the distribution channel from suppliers to 
customers, and identifies the transportation volume among distributed facilities for multiple 
period horizon. From operational perspective, it is critical to have a coordinated plan for 
production and distribution activities of multiple level production factories and distribution 
centers in order to take full advantage of the supply network [17, 18]. In general, production 
and distribution planning involve raw material suppliers, manufacturing plants, intermediate 
warehouses, distribution centers and customers which are interconnected in terms of the 
interconnected in terms of supplier/customer relations. 
The objective of this paper is to simultaneously optimize the decision variables of different 
functions that have been traditionally optimized sequentially [9]. Hence in this study, we will 
develop an integrated strategic and tactical supply chain model in a multi-echelon, multi-
level, multi-period supply chain network. The problem, therefore, is modeled as a mixed 
integer linear programming formulation that seeks to optimize fixed charge DCs costs, fixed 
and variable production costs, transportation costs between plant to DCs and DCs to customer 
zones, inventory holding costs and backorder costs while satisfying all customer demands, 
plant and DCs capacity. After formulating the problem  
The main contributions of my project can be summarized as follows: 

• Introducing a novel integrated strategic and tactical SC planning model by integrating 
location and production-distribution planning activities into a multi-echelon, multi-
level and multi-period SC network. 

• Developing a hybrid algorithm which combined the lagrangian relaxation method and 
genetic algorithm to solve the candidate problem. 

• Applying the model and algorithm to a real industrial case for implementing the 
feasibility of applying the proposed model to a real-world problem. 

This paper is organized as follows: the mathematical model of the SCN design problem is 
given in section two. While third section includes an explanation about the proposed 
HLRGA, the brief description of the hybrid genetic algorithm and simulated annealing 
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algorithms used in computational experiments are given in section four. Moreover, the fifth 
section gives computational results and presents an industrial case. This is followed by 
conclusions in the sixth section. 

2. Mathematical Model 

In this research we consider a multi-plant, and multi-customer location-production-
distribution system. The system contains a set of manufacturing facilities with limited 
production capacities situated within a geographical area. Each of these facilities can produce 
one or all of the products in the company’s portfolio. The customer demands for product are 
to be satisfied from this set of manufacturing facilities. There are fixed costs associated with 
each facility location which may include land costs, construction and fabrication costs etc. 
Although we assume that the customer allocation has to be done within the existing set of 
manufacturing facilities, sometimes it may be necessary to make changes or expansions in the 
current facilities to accommodate the production quantities which ultimately will prove to be 
beneficial. Costs for these changes would be included in the fixed costs. So the production 
capacities of each of these facilities effectively represent its current and potential capacities. 
When the number of customers is large and the distances between them and the deot, or 
sources are long it is often beneficial to utilize distribution centers. This makes the model 
much more complicated as products can now be shipped straght from the sourcce to 
customer, or products may be shipped to the customer via a distribution center, as shown in 
Figure 1. 

 

Figure 1. A real-world supply chain network 

The addition of the distribution centers makes the system much more flexible. For example, 
transshipments can now occur at the distributions centers: product may be shipped from 
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multiple sources to the distribution centers and then shipped from there to a single customer. 
It also allows for the possibility of inventory to be held at the distribution centers. Thus, 
inventory can be shipped to a distribution center during one time period and held there for 
delivery during another time period. To optimize this model, however, both fixed and 
variable costs now need to be taken into account. Variable costs include the costs of 
transporting products between the sources, the distribution centers, and the final customers, 
as well as the cost of holding inventory at the distribution centers. 
Below is a proposed mathematical model to represent the distribution and inventory problem 
with set-up costs. This model takes into account possible inventory at the distribution centers, 
set-up costs associated with operating each source, and time periods. This model works on 
the assumption that all demands are met in the time period they occur, and that the starting 
and ending inventories at all distributions centers are zero. The following notations are used 
to define the mathematical model: 

Parameters: 
M=  Number of sources (plants) 
N=  Number of distribution centers 
H=  Number of time periods in the planning horizon 
P= Number of customers 
BM= A big number 
atij=  Unitary transportation cost from source i to distribution center j 
PCit= Variable cost to produce a unit of product in source i during time period t 
htj=  Inventory cost in distribution center j at the end of period t 
btjk=  Unitary transportation cost from distribution center j to customer k during time period 
t 
ctik= Unitary cost of transportation units directly from source i to customer k during time 
period t 
r ti=  Products available in source i during time period t 
dtk=  Demand at customer k during time period t 
fti=  Setup cost associated with transportation products from source i 

Variables: 
xtij=  Number of products to be sent from source i to distribution center j during time period 
t 
qit= Quantity of products produced in source i during period t 
stj=  Inventory at distribution center j at the end of time period t 
ytjk=  Number of products to be sent from distribution center j to customer k during time 
period t 
ztik=  Number of products to be sent directly from source i to customer k during time period 
t 
uj=  1 if distribution center j  is opened, 0 otherwise 
vti=  1 if xtij > 0, 0 otherwise 

Mathematical model: 

The production-distribution problem can be formulated as follows: 
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In this model, namely PRDIS model, the goal of objective function (1) is to minimize the 
producing, shipping, inventory, and set up costs. The summations in the objective function 
represent these costs. The first set of summations represents the cost of shipping from the 
source to the distribution centers, the cost of shipping from a source straight to a customer, 
and the setup of cost of operating from those sources. The set-up cost is included with the use 
of the binary variable vti. The second set of summation represents the cost of shipping from 
the distribution centers to the customers, and the cost of holding any inventory at the 
distribution centers. 
The next set of equations represents the constraints of the model. The first set of constraints 
(2) ensures the total amount shipped from each source (total to all distribution centers and to 
all customers) is less than that source's capacity in each time period. The second set of 
constraints (3) ensures the demands at each customer are met during each time period. 
Constraints (4) ensure that the total number of products delivered from the source i to 
distribution center j during time period t is equal to production number in a given period t. 
Constraints (4) ensure that the number of products to be sent directly from source i to 
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customer k during time period t is equal to production number in a given period. The next set 
of constraints (6) is a conservation constraint. This set of constraints ensures that the products 
at the beginning of the time period plus the products entering the distribution center minus 
the products shipped from the distribution center is equal to the products counted as on-hand 
inventory at the start of the next time period. The next set of constraints (7) ensures that the 
set-ups costs are considered. If any products are shipped from a source (either to a 
distribution center or to a customer) during a time period, then the value of the binary 
variable vti will be 1, and the set-up costs for that time period will be included in the objective 
function. If no products are shipped, then this value is 0, and the set-up costs for that source 
and time period are disregarded. Constraints (8) and (9) guarantee the assignment of 
customers and transportation to open DCs. The next set of constraints (10) ensures that the 
inventory at the beginning and end of the planning horizon at each distribution center is zero. 
Finally, the last set of constraints (11) ensures that non-negativity and binary conditions hold 

3. Proposed Hybrid Algorithm 

Supply chain network design is to provide an optimal platform for efficient and effective 
SCM. This is an important and strategic operations management problem in SCM. The 
design task involves the choice of facilities (plants and distribution centers (DCs)) to be 
opened and the distribution network design to satisfy the customer demand with minimum 
cost. It belongs to a production-distribution and facility location-allocation problem. Solution 
approaches for these problems are optimization algorithms within the framework of Benders’ 
decomposition [1, 19], heuristics based on branch-and-bound [20], and Lagrangian relaxation 
[21]. However, these techniques consume extensive amounts of time and effort in finding 
optimal solutions for realistically sized problems. The problem under consideration can be 
reduced to the well-known p-median problem which is known to be NP-hard [22]. Therefore, 
researchers have utilized heuristic and meta-heuristic approaches to solve this problem.  
Syarif et al. [23] have developed a spanning tree-based GA approach for the multi-source, 
single-product, multi-stage SCN design problem. Jayaraman and Ross [24] have also 
proposed a heuristic approach based on simulated annealing for the designing of distribution 
network and management in supply chain environment. Yeh [25] has proposed a memetic 
algorithm (MA) which is a combination of GA, greedy heuristic, and local search methods 
for the same problem. The author has extensively investigated the performance of the MA on 
the randomly generated problems. 
Due to the limitations involved in exhaustive enumeration, branch and bound and 
mathematical modeling for solving large sized problems, researchers started developing 
heuristics. Even though these heuristics did not guarantee optimal solutions, they gave 
feasible solutions within a reasonable computational time [26]. A heuristic method is a 
procedure that is likely to find a good feasible solution but leaves no guarantee of its quality 
or whether it is optimal or not [27]. All the possible solutions are not considered, since that 
would require an infinite amount of time, but rather a part of the solution space with solutions 
that might or might not be optimal. The solution space is searched smarter, discarding those 
parts that certainly not will contain good solutions and focusing more on those parts that 
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could include a good one. Nevertheless, a well-designed heuristic method can often provide a 
near-optimal solution, or indicate that no optimal solution exists. The method should also be 
efficient enough, so that it can deal with large problems within a reasonable time. 
The problem with ordinary heuristic methods is that for every problem given, a procedure 
must be designed to fit and to solve the problem [27, 28]. However, in recent years another 
type of procedure has been developed, the meta-heuristic that consists of both a general 
structure and strategy guidelines to adjust to the specific problem given. This approach is 
very timesaving and meta-heuristics have become an important tool for solving a wide range 
of practical problems. Furthermore, ordinary heuristics often are local improvement 
procedures, i.e. they try to improve the current solution within the local neighborhood of that 
solution. This means that for every iteration, the method will find a solution near the current 
one and accept it if it’s better, converging towards the local optimum within the 
neighborhood of the starting solution. The drawback of this approach is that if the given 
problem consists of multiple local optima, the procedure applied will converge to one local 
optimum and then stop.  
The algorithm developed to solve the integrated production-distribution with set-up costs 
uses a combination of genetic algorithm and Lagrangian relaxation techniques. First, an 
algorithm using the method of GA is developed to solve an uncapacitated PRDIS model. 
Next, a relaxed model of PRDIS is developed using the method of Lagrangian relaxation. 
Finally, the GA algorithm is used in conjunction with subgradient optimization to solve the 
Lagrangian relaxation model, and produce a solution to the PRDIS model itself. 

3.1.Proposed Genetic Algorithm 

For larger and more complicated problems, meta-heuristic procedures are used, where the 
search method combines local improvement procedures with more advanced and intelligent 
strategies to create a process capable of escaping from local optima and performing a robust 
search of the solution space. An important characteristic of the meta-heuristic is hence the 
possibility to escape from a local optimum after reaching it, and depending on the method, 
there are different ways of doing so. One common way, besides searching locally for better 
solutions than the current one, is to also have the possibility to accept a neighbor solution if it 
is worse than the current one. Another way is to prohibit solutions, within the current solution 
neighborhood, to force the procedure to search in another direction away from a local 
optimum.  
In this section, representation and genetic operators which were used in GA for multi-
objective design of SCN will be explained. 

3.1.1. Representation 

The representation scheme for the decision variables is a key point before using GAs to solve 
an optimization problem. This representation decides how the problem will be shown in the 
GA. There are three ways of encoding tree: (1) edge-based encoding, (2) vertex-based 
encoding and (3) edge-and-vertex encoding [29]. 



        53       A Hybridized Lagrangian Genetic Algorithm for Designing an Integrated…  
 
In this study, to escape from these repair mechanisms in the search process of GA, we used 
priority based encoding developed by Gen and Cheng [29]. They had successfully applied 
this encoding to the shortest path problem and the project scheduling problem. The first 
application of this encoding structure to a single product transportation problem was carried 
out by [30]. In priority- based encoding, the position of a gene is used to represent a node 
(source in transportation network), and the value is used to represent the priority of 
corresponding node for constructing a tree among candidates. 

3.1.2. Evaluation 

The purpose of the evaluation function is to measure the fitness of candidate solutions in the 
population with respect to the objective functions and constraints of the model. The fitness 
values are used to select parent solutions to create the next generation of solutions. The 
fitness of an individual dictates the number of copies of that solution in the mating pool. In 
this paper, the evaluation is achieved by the sum of the objective function (Eq. (1)) and the 
penalty terms of constraint violation. 

3.1.3. Crossover 

The crossover operators produce offspring by exchanging information contained in the 
parents. The proposed GA uses a simple crossover operator in which a random crossover 
point is determined along the length of the chromosome and swamps the right hand side 
segments of the parents. The crossover operation is done with a probability called the 
crossover probability. A segment-based crossover operator which was based on uniform 
crossover is used in this paper. In this operator, each segment of offspring is randomly 
selected with equal chance among the corresponding segments of parents. As it is seen in 
Figure 2, crossover operator utilizes from a binary mask. Its length is equal to number of 
stage in SCN. While “0” means that the first parent will transfer its genetic materials to the 
offspring, “1” means that the offspring will take genetic materials from the second parent for 
the corresponding segment. This crossover operator tends to preserve good gene segments of 
both parents. 

 1 2 3 1 2 3 4 1 2 3 1 2 3 4 5 1 2 3 4 5 
Parent 
1 

3 7 4 2 6 5 1 4 5 6 8 3 2 7 1 1 1 3 3 3 

 1 2 3 1 2 3 4 1 2 3 1 2 3 4 5 1 2 3 4 5 
Parent 
2 

1 4 5 6 7 3 2 8 1 3 5 7 6 4 2 1 3 2 2 3 

                     

Binary 
Mask 

0 1 0 

    

 1 2 3 1 2 3 4 1 2 3 1 2 3 4 5 1 2 3 4 5 
Child 3 7 4 2 6 5 1 8 1 3 5 7 6 4 1 1 1 3 3 3 

Figure 2. An illustration of crossover operator 
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3.1.4. Mutation 

The mutation operator acts on a single chromosome to alter the information contained in the 
genes. In this operator, firstly, a decision about which segments will be mutated is given with 
probability of 0.5 (i.e. using a binary mask), and then selected segments are mutated. Swap 
operator is used for chromosome. The scheme of mutation operator is shown in Figure 3. 

 1 2 3 1 2 3 4 1 2 3 1 2 3 4 5 1 2 3 4 5 
Parent 3 7 4 2 6 5 1 8 1 2 5 7 6 4 1 1 1 3 3 3 
                     

Binary 
Mask 

1 0 1 

    

 1 2 3 1 2 3 4 1 2 3 1 2 3 4 5 1 2 3 4 5 
Child 3 2 4 7 6 5 1 8 1 2 5 7 6 4 1 1 2 3 3 3 

Figure 3. An illustration of mutation operator 

3.1.5. Selection strategy 

After obtaining the fitness value of each chromosome, chromosomes will then be selected. 
This is the vital process in the algorithm since it selects the parents to produce offspring and 
optimal solution will be obtained among the new solutions. Chromosomes with higher fitness 
value will have a higher chance of being selected more often. This is achieved by assigning a 
probability value to each chromosome selected, so that better chromosomes will be assigned 
a higher probability. The roulette wheel selection strategy is used in this research. 

3.2.Hybrid Lagrangian Genetic Algorithm 

One method frequently used to solve linear programming problems is that of Lagrangian 
relaxation. The general approach of Lagrangian relaxation can be find in [31, 32]. This 
method can also be applied to the DIPS model. Using the same parameter and variable 
definitions as the proposed model, the relaxed the model is: ��� � =  ������������ + �	���
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In this model, the objective function is updated to reflect the lagrangian multipliers and the 
first constraint from the first model as a penalty function. The remaining constraints ((13)-
(21)) now directly mirror the constraints of the uncapacitated model ((3)-(11)). 
For the resulting model it will be necessary to find an efficient scheme to update the 
Lagrangian multipliers���. The general approach to this updating is the Subgradient 
Optimization technique as described in [32, 33]. In the subgradient optimization method, the 
lagrangian multipliers, ���, are updates using the gradient of the solution with respect to �. 
Thus, the entire model can be solved by combining the methods of genetic algorithm with 
subgradient optimization. In this algorithm, the relaxed model is solved using the method of 
genetic algorithm as presented in section 3.1 by updating the objective function of the 
uncapacitated production-distribution model with the objective function of the Lagrangian 
relaxed model. This solution is then used to update the lagrangian multipliers by the method 
of subgradient optimization. This process is repeated until a stopping criteria is reached 
(either the lagrangian multipliers converge or a set number of iterations is performed). This 
method is outlined below in Figure 4. 
The program first initializes the lagrangian multipliers, passes them to the Genetic Algorithm 
to update the uncapacitated production-distribution model objective function, solve the 
model, and projects the solution back to the feasible region. The program then passes that 
solution and the lagrangian multipliers to the subgradient optimization algorithm to update 
the lagrangian multipliers and evaluates the improvement of the solution, and repeats this 
process until a final solution is reached. 

4. Methods for Comparisons 

To investigate the effectiveness of the HLRGA, two heuristic approaches have utilized. These 
two approaches are based on GA which is hybridized by linear programming and called 
hybrid genetic algorithm (hGA), and simulated annealing (SA). The section presents a brief 
explanation about the hGA and SA developed for the problem by the authors of the paper. 
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Require: an upper bound ��, initial values ��,�� ≥ 0, a sequence  �, and !����. 
Ensure: best solution ("∗,#∗,$∗,%∗) for production-distribution model 

1. Set iteration & = 0 
2. While '��,���� − ��,�� ' ≤ ( for all t, i, and & < !���� do 
3. Call GA to solve uncapacitated production-distribution model and  obtain )*��+ 
4. If GA solution is an improved feasible solution to production-distribution model 

then 
5. )� ←GA solution of uncapacitated problem   {update ��} 
6. End if 
7. Calculate 

   ,� = ��
��     {gradient of ����,�� �} 

8. Calculate 

   � = �������(��)�
�����     {step size} 

9. ��,���� = -��.0, ��,�� + �,�,�� / 
10. If no progress in l iteration then 

11.  ��� = ��
�  

12. End if 
13. & = & + 1 
14. End while 

Figure 4. Pseudo code for Proposed Hybrid Lagrangian Genetic Algorithm 

4.1.Hybrid genetic algorithm 

As is known, when the opened plants and DCs are known on the multi-stage SCN design 
problem, the problem is reduced to a capacitated transshipment problem (CTP), which is 
relatively easier to solve by commercial software packages such as LINGO, CPLEX, etc., 
since it is a linear programming formulation. Based on this property, a GA hybridized with 
CPLEX (hGA) is developed. In hGA, a chromosome consists of two segments having same 
encodings. First, a transportation tree between DCs and customers and demands of the DCs 
are obtained by decoding of the second segment of the chromosome, and the cost of the last 
stage is calculated. The GA procedure is the same as explained in section 3.1. After 
determining which plants will be opened using binary encoding of the first segment, the 
problem for the first two stages is reduced to CTP, and the CTP is solved by CPLEX. The 
fitness value of the chromosome is the summation of the cost of CTP and the cost of last 
stage which is obtained by decoding of the second segment of chromosome.  

4.2.Simulated annealing 

Simulated annealing (SA) is a effective optimization algorithm motivated from an analogy 
between the simulation of the annealing of solid and the strategy of solving combinatorial 
optimization problems. In this paper, in order to enhance the exploitation ability of the 
proposed algorithm, DE is hybridized with a simulated annealing (SA) algorithm. All current 
solution vectors are improved by using SA. 
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The applied SA could be briefly introduced as follows: It starts with an initial solution, each 
solution vector of the current generation, and for each vector a neighbor solution is generated. 

In the proposed SA, a neighbor vector 0� = 1!�,�, … ,!�,�2 for each solution vector ("�) is 

generated according to Equation 22. 0� =  "� + �����(3�� − 3��) × 4 (22) 
where 4 is used to ensure that parameter values lies inside their allowed ranges in neighbor 
vector. Let F(X) and F(N) denote the objective function values of the current solution and the 
neighbor solution, respectively and define ∆ as the difference between these objectives; that 
is ∆= F(X) - F(N). If ∆≤ 0, the neighbor solution is accepted; otherwise it is accepted with 

probability equal to 5�∆  ! . where T is the temperature parameter such that T > 0. At the 
beginning, the temperature is set at the initial temperature T0. Then T is decreased after 
generations according to the formula6 = ∝ 6, where ∝ is the coefficient controlling the 
cooling schedule (0 < 7 < 1). 

5. Experimental Results 

This section gives numerical results on the performance of HLRGA. All algorithms are coded 
in MATLAB 7 and executed on an Intel® Core 2 DuoE4500 at 2.20 GHz with 2.0GB of 
RAM. Before the numerical results, information about the test problems and the parameter 
setting of each algorithm will be given. 

5.1.Test problems 

Two sets of the test problems are considered in this research. The first set consists of 10 
classes of problems called small size problems, and each class contains 10 randomly 
generated problem instances. Therefore, 100 problem instances are considered for the small 
size problems. These problems can be solved optimally and they are used to provide a better 
sense of the performance of the HLRGA. The second set called large size problems includes 
six classes of problems. Each class of this set contains 20 randomly generated problems, and 
a total of 120 problem instances are considered as large size problems. This set of large size 
problems are used to provide an idea of the comparative performance of the heuristic 
approaches with respect to objective function value. The methods presented in [34] are used 
to generate some of the tests’ data. 
The parameter settings of HLRGA, hGA, and SA are as follows: since one offspring is 
generated by crossover and mutation operators at each generation of the HLRGA and hGA, 
the crossover rate is set to 0.9, and the mutation is applied to offspring with the probability of 
0.15. Based on the preliminary runs, the population sizes of HLRGA and hGA are taken as 
50. The initial temperature in SA is set to 1000 in which an inferior solution (inferior by 70% 
relative to current solution) is accepted with a probability of 0.90. The final temperature is 
taken as 0.15 such that a solution which is inferior by %1 relative to current solution is 
accepted with a probability of 0.1%. The best individual of the initial population of the 
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HLRGA is taken as the initial solution of SA. In order to make a fair comparison between 
heuristic algorithms, CPU time is chosen as a stopping criterion. 

5.2.Computational Results 

The parameters of the small size problems are given in Table 1. The problems are described 
by providing the number of customers (|P|), the number of potential DCs (|N|), the number of 
sources (|M|), and the number of time horizons (|H|). As mentioned in section 5.1, each class 
of problems contains 20 randomly generated problem instances. To investigate the solution 
quality of the heuristic approaches, the optimum solution of each problem instance is 
obtained by CPLEX. The CPU time of each problem instance, which is used as a stopping 
criterion for the HLRGA, hGA, and SA, is obtained by solving the problem instance with the 
LH. The last two columns of the Table 1 report the average CPU times for the CPLEX. As is 
seen in this table, the optimum solutions of the first six problems are obtained in a short time 
by CPLEX. 

Table 1. Small size problems 

Problem 
Class 

 
Parameters    

 CPU Time 
(S) 

 |P| |N| |M| |H|  CPLEX 
S1  10 5 2 2  3.25 
S2  10 5 2 2  8.43 
S3  20 5 2 2  7.46 
S4  20 10 3 3  16.67 
S5  30 5 3 3  87.93 
S6  30 10 4 3  213.03 
S7  40 10 4 4  723.90 
S8  40 15 5 4  1305.11 
S9  50 10 5 4  4988.30 
S10  50 15 10 6  12895.83 

 
 

Table 2. Comparison of meta-heuristics for small size problems 
 

 

Problem 
Class 

 Optimality gaps (%) 

  HLRGA  hGA  SA 
  Average Maximum  Average Maximum  Average Maximum 
S1  0.00 0.43  0.00 0.32  0.03 0.45 
S2  0.05 0.41  0.00 0.24  0.19 0.35 
S3  0.13 0.65  0.09 0.44  0.32 0.87 
S4  0.34 1.04  0.27 0.69  0.45 0.98 
S5  0.86 1.54  0.95 1.43  1.43 1.90 
S6  1.14 2.26  1.59 2.98  1.96 3.16 
S7  1.88 2.59  2.13 3.22  2.29 3.35 
S8  1.94 2.46  2.09 3.18  3.14 3.44 
S9  2.62 3.11  3.62 4.26  3.80 4.19 
S10  3.19 3.75  4.67 5.52  4.43 6.87 
          
Average  1.215 1.82  1.54 2.23  1.80 2.56 
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In Table 2, we have reported the summary of results for 10 classes of the small size problems 
with 20 instances in each. As performance measures, we have used the average percentage 
gap and maximum percentage gap between heuristic solution and optimum solution. The gap 
is defined as 100 × (heuristic solution value - optimum solution value)/optimum solution 
value. When the heuristic approaches are compared with respect to average gap over all 10 
classes of the problems, it is seen that the HLRGA exhibits the best performance with the 
average gap of 1.215%. As seen in Table 2, while the average gap between the optimum 
solution and the HLRGA is less than 2%, the average gaps for the hGA and SA are less than 
2%. Also, as seen in Table 2, the average and maximum gaps of the hGA and SA are close to 
each other. With respect to maximum gap over all 10 classes of the problems, it is seen that 
the HLRGA is comparable to the hGA. 

Table 3. Large size problems 
Problem 
Class 

 Parameters     
 |I| |J| |K| |L| |H| 

S1  100 20 2 5 3 
S2  100 30 2 5 3 
S3  200 30 4 10 6 
S4  200 40 4 10 6 
S5  300 40 6 20 12 
S6  300 50 6 20 12 

Table 3 reports the parameters of the six classes of large size problems with 20 instances in 
each. As seen in Table 3, the number of customers, the number of potential DCs and the 
number of sources vary from 100 to 300, from 20 to 50, and from 10 to 25, respectively. 
Since the problems are very large, it is not possible to obtain their optimum solutions by 
CPLEX. As observed in Table 1, the average CPU times in CPLEX for the problem classes, 
where the number of product is 3, are higher than for the problems having two products. This 
shows that one of the important factors affected on the solution time of the problem instances 
is the number of the product. 

Table 4. Comparison of meta-heuristics for large size problems 
 

 

 

 

 

 

Table 4 shows the average and maximum gaps of the proposed meta-heuristic approaches. 
Since the optimal solutions for large size problems are not known, the gap is defined as 100 × 
(heuristic solution value - lower bound)/lower bound. The lower bound is the best value of 
the objective function found by any of algorithms (i.e., HLRGA, hGA, and SA). When the 

Problem 
Class 

 Optimality gaps (%) 

  HLRGA  hGA  SA 
  Average Maximum  Average Maximum  Average Maximum 
S1  2.43 4.63  4.23 5.98  4.68 6.78 
S2  2.25 4.12  4.59 6.32  4.56 6.96 
S3  2.89 4.76  5.22 6.88  4.68 7.43 
S4  3.23 5.14  5.89 7.33  5.37 7.82 
S5  3.53 5.64  6.19 7.47  5.89 8.37 
S6  3.41 5.60  6.48 7.68  5.84 8.63 
          
Average  3.20 5.22  5.84 7.26  5.39 7.98 
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heuristic approaches are compared with respect to average and maximum gaps over all six 
classes of the problems, it is seen that the HLRGA outperforms the other heuristics. Its 
average and maximum gaps are between 2.25% and 3.53%, and 4.12% and 5.64%, 
respectively. While the average and maximum gaps of the SA over the six classes of the 
problems are 5.39 % and 7.98%, respectively, these values are 5.84% and 7.26%, 
respectively, for the hGA. When the problem size increases, it is seen that the performance of 
the SA drastically decreases.  
Furthermore, the proposed model has been evaluated by using date from an industrial real-
world case in Iran. The conventional production and distribution strategy used by case is to 
maintain a constant work force level over the planning horizon, and fluctuated demands can 
then be met by using some combination of inventories, overtime. However, the expected 
performance was unable to achieve because of drawbacks on the current experiential method 
focus on a single component of the overall system, for example procurement, production, 
transportation, warehouses, or scheduling, despite the integration of these components in a 
single supply chain, and evaluation comparisons can only be done for specific plans under 
specific conditions and indication is vague for the optimum plan. 
Alternatively, the decision maker would apply a mathematical programming method to 
develop an integrated production-distribution planning decisions plan for the industrial case. 
The planning horizon is 12 months. The forecasted demand fluctuates a lot over the planning 
horizon because seasonal variations. The product model includes 27 types of products. Also it 
comprises 4 sources and 160 customers. 
 In order to compare the quality of heuristic solutions obtained by the HLRGA with that of 
optimal solutions if they are available or feasible solutions obtained after running CPLEX for 
10 h (i.e. 36,000 s), we have conducted the additional computational experiments. It is seen 
that CPLEX could not reach to optimal solutions for the problems after running 10 h. The 
average and maximum gaps based on the feasible solution of the CPLEX for this real case 
which solve 10 times are 3.38% and 5.59%, respectively. These results support the fact that 
the HLRGA can be used as an effective and efficient tool for designing the supply chain 
networks in real world case. 

6. Conclusion 

This work develops an integrated production distribution system in real-world industrial case 
which is a multi-source, multi-stage supply chain network design problem in dynamic 
environment. In this paper, a hybrid lagrangian relaxation genetic algorithm (HLRGA) is 
proposed for the candidate problem, which is a NP-hard problem. In the proposed algorithm 
the genetic algorithm (GA) is incorporated into the lagrangian relaxation (LR) method to 
update the lagrangian multipliers and improve the performance of LR method. The 
effectiveness of the HLRGA was investigated comparing its results with those obtained by 
CPLEX, hybrid GA and simulated annealing on two sets of test problems consisting of a total 
of 320 instances. Experimental study showed that the HLRGA found better heuristic 
solutions than the other heuristic approaches and reached the good heuristic solutions with 
lower computation time when compared with CPLEX. This is particularly attractive in large-
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scale systems. Future research is achieved on consideration of this modeling under 
uncertainty conditions with other critical SC problems such as vehicle routing, carriers 
loading, etc. 
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