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ARTICLE INFO ABSTRACT

Article history: This paper investigates the problem of designing imtegrated
Received production-distribution system which supports stgéd and tactical
October 10, 2012 decision levels in supply chain management. Thesaloptimization
Revised is achieved using mathematical programming for rtindehe supply
December 17, 2012 chain functions such as location, production, angtridution
Accepted functions. Our model intends to minimize the totalst including
February 20, 2013 production, location, transportation, and inventtwlding costs. In

view of the NP-hard nature of the problem, this graprovides a
hybrid algorithm incorporates Genetic Algorithm ant.agrangian

Keywords : Relaxation method (namely HLRGA) to update the dagian
Supply chain network, multipliers and improve the performance of LR metholrhe
Facility Location, effectiveness of HLRGA has been investigated by maming its
Lagrangian Relaxation, results with those obtained by CPLEX, hybrid gemetgorithm, and
Genetic Algorithm simulated annealing on a set of supply chain nétvpooblems with

different sizes. Finally, an industrial case dent@tss the feasibility
of applying the proposed model and algorithm to thal-world
problem in a supply chain network.

1. Introduction

Supply chain management (SCM) is the systematitysisaand educated decision-making

within the different business functions of an orgation resulting in smooth and cost-

effective flows of resources — material, informati@and money. In other words, it is the

coordination and synchronization of the flow of aeces in the network of suppliers,

manufacturing facilities, distribution centers (D@&d customers. These network elements
form the different echelons of the supply chain. [REcisions are made across the supply
chain on three levels: strategic, tactical and afp@mal. Strategic decisions are long term
decisions where the time horizon may be anythimgnfrone year to several years i.e. it
involves multiple planning horizons. Tactical deams are taken over a shorter period of
time, maybe a few months. These are more locatieetsions taken to keep the organization
on the track set at the strategic level. Operatiatexisions are similar to day-to-day

decisions for planning a few days worth of operatiolrhese take into consideration the most
profitable way to carry out daily activities fortsdlying immediate requirements.
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The strategic configuration of the supply chaithiss a key factor influencing the efficiency
at tactical and operational level. Its long termpaut on the efficiency of the supply chain,
combined with the commitment of substantial capi#aburces, render this level crucial. One
of the most important aspects of strategic levébgstion problem that leads the system to
define the optimal number of facilities, locatiohfacility in geographical manner, assigning
the customers to facility and configuration of spartation network. Melo et al. [2]
presented a comprehensive review based on SC dsatccording to [2], approximately
82% of literature deals with single period problerh&ewise, there is a gap in 3-layers,
Multi periods and Multi products integrated SC dadility location models, as they have
suggested researching in this case. So, in thisrpap3-layers SC model includes location-
allocation problem is presented. Also, the propasedlel is extended in multi periods and
multi products.

There is a vast amount of literature available opp$y chain management research dealing
with the different aspects of the subject. Numerowsdels in the literature, conceptual as
well as quantitative, refer to the planning andjuative aspects of the different business
functions: location, production, inventory and spartation A number of quantitative models
use mixed-integer programming (MIP) to solve thppby chain optimization problems. One of
the first attempts was done by Geoffrion and Grdtgswvhere a MIP model was formulated for
the multiple commodity location problem. This seaiinesearch involved the determination of
distribution center (DC) locations, their capadtieustomer zones and transportation flow
patterns for all commodities. A solution to thedtion portion of the problem was presented,
based on Bender’'s Decomposition (BD).

Cohen and Lee [3] develop an analytical model tak#sh materials requirements policy
based on stochastic demand. They develop fourréiffesub-models with a minimum-cost
objective. A mathematical algorithm at the end desithe optimal ordering policies to
minimize the costs. A MIP model for a productiomgnisportation, and distribution problem
has been developed by Pirkul and Jayaraman [4gpoesent a multi-product tri-echelon
capacitated plant and warehouse location probldme. Model minimizes the sum of fixed
costs of operating the plants and warehouses, tengdriable costs of transporting multiple
products from the plants to the warehouses andlyfittathe customers.

Schmidt and Wilhelm [5] present a review of the kvdone on different decisional levels in
the supply chain with respect to time frames —tastyia, tactical and operational. Modeling
issues are discussed at each level and a prottagmpeilation is provided as an extension of
the discussion. Cordeau et al. [6] propose a statidel considering a multi-commodity,
multi-facility and single-country network. The dsicin variables concern the number of
locations, the capacity and technology of manufaoguin plants and warehouses, selection
of suppliers, selection of distribution channelansportation modes and material flows.

Vila et al. [7] propose a dynamic model in a mucbrenspecialized context. They consider
an application in the lumber industry, but theirdabcan be applied to other sectors. The
authors consider an international network, withedw®inistic demands. They consider
external suppliers, capacitated plants and wareasyuke choice between a set of available
technologies, the possibility of adding capacityiags to the facilities, and a list of substitute
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products to replace standard ones. Other studieshveldldress the SC coordination issues at
different decision levels have been developed [B-IBese conventional methods generally
consider an overall production strategy, inventsinategy and flow of products through a
facility over a single period to minimize total t®®r maximize profits [13].

Supply chains have been more or less integratesbmoe extent as a whole, or in parts.
Integration, if done at all, has been mostly dan@atches throughout the supply chain. In
many cases, this has been driven more by the mesdrvive and improvise, than by the
willingness to improve and advance further. Themfefforts must be made to integrate
suppliers, manufacturers, distributors, and custsyjs® that they will collaborate effectively
with each other in the entire network. During tlestpfew years, there have been significant
attempts for providing integrated supply chain peais, which includes suppliers,
manufacturers, distributors and retailers. The grymobjective of an integrated supply chain
is to optimize all cost components from convertiagy materials into final products delivered
to end users [14-16].

The decisions made for network design determinesstippliers, manufacturing plants, and
intermediate inventory warehouses, selects theriltision channel from suppliers to
customers, and identifies the transportation volam®ng distributed facilities for multiple
period horizon. From operational perspective, itiigical to have a coordinated plan for
production and distribution activities of multipkevel production factories and distribution
centers in order to take full advantage of the supptwork [17, 18]. In general, production
and distribution planning involve raw material sligs, manufacturing plants, intermediate
warehouses, distribution centers and customershwére interconnected in terms of the
interconnected in terms of supplier/customer reteti

The objective of this paper is to simultaneouslyirojze the decision variables of different
functions that have been traditionally optimizeduentially [9]. Hence in this study, we will
develop an integrated strategic and tactical supplin model in a multi-echelon, multi-
level, multi-period supply chain network. The prol, therefore, is modeled as a mixed
integer linear programming formulation that seekeptimize fixed charge DCs costs, fixed
and variable production costs, transportation dostaeen plant to DCs and DCs to customer
zones, inventory holding costs and backorder cesite satisfying all customer demands,
plant and DCs capacity. After formulating the peahl

The main contributions of my project can be sumpeatias follows:

e Introducing a novel integrated strategic and tatt8C planning model by integrating
location and production-distribution planning aittes into a multi-echelon, multi-
level and multi-period SC network.

e Developing a hybrid algorithm which combined thgréngian relaxation method and
genetic algorithm to solve the candidate problem.

e Applying the model and algorithm to a real indudtrtase for implementing the
feasibility of applying the proposed model to a+warld problem.

This paper is organized as follows: the mathemiatioadel of the SCN design problem is
given in section two. While third section includas explanation about the proposed
HLRGA, the brief description of the hybrid genetadgorithm and simulated annealing
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algorithms used in computational experiments avergin section four. Moreover, the fifth

section gives computational results and presentsndmstrial case. This is followed by
conclusions in the sixth section.

2. Mathematical Model

In this research we consider a multi-plant, and tirnwistomer location-production-
distribution system. The system contains a set ahufacturing facilities with limited
production capacities situated within a geogragltacaa. Each of these facilities can produce
one or all of the products in the company’s portfolhe customer demands for product are
to be satisfied from this set of manufacturing lfaes. There are fixed costs associated with
each facility location which may include land cgstenstruction and fabrication costs etc.
Although we assume that the customer allocationtbase done within the existing set of
manufacturing facilities, sometimes it may be neaggto make changes or expansions in the
current facilities to accommodate the productioargities which ultimately will prove to be
beneficial. Costs for these changes would be iredud the fixed costs. So the production
capacities of each of these facilities effectivagresent its current and potential capacities.
When the number of customers is large and the ritistabetween them and the deot, or
sources are long it is often beneficial to utildistribution centers. This makes the model
much more complicated as products can now be stigbeaght from the sourcce to

customer, or products may be shipped to the custemen distribution center, as shown in
Figure 1.
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Figure 1. A real-world supply chain network

The addition of the distribution centers makesdpgtem much more flexible. For example,
transshipments can now occur at the distributiomsters: product may be shipped from
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multiple sources to the distribution centers arehtbhipped from there to a single customer.
It also allows for the possibility of inventory tee held at the distribution centers. Thus,
inventory can be shipped to a distribution cenigirgdy one time period and held there for
delivery during another time period. To optimizastimodel, however, both fixed and
variable costs now need to be taken into accoumtialdle costs include the costs of
transporting products between the sources, theliisbn centers, and the final customers,
as well as the cost of holding inventory at therthation centers.

Below is a proposed mathematical model to reprethentlistribution and inventory problem
with set-up costs. This model takes into accoussjtde inventory at the distribution centers,
set-up costs associated with operating each soantetime periods. This model works on
the assumption that all demands are met in the pem®d they occur, and that the starting
and ending inventories at all distributions centmes zero. The following notations are used
to define the mathematical model:

Parameters:

=  Number of sources (plants)
= Number of distribution centers
= Number of time periods in the planning horizon
= Number of customers
BM= A big number

aij= Unitary transportation cost from sourde distribution centey
PCi= Variable cost to produce a unit of product in seurduring time period
hy=  Inventory cost in distribution centgeat the end of period

by=  Unitary transportation cost from distributiomberj to customek during time period
t

Cik= Unitary cost of transportation units directly ficsourcel to customek during time

periodt

M= Products available in sourcduring time period

dw=  Demand at custom&rduring time period

fi= Setup cost associated with transportation prisducm source

Variables:

Xi=  Number of products to be sent from sourtedistribution centeyrduring time period

t
gi=  Quantity of products produced in souraturing period

=  Inventory at distribution centgat the end of time peridd

yik=  Number of products to be sent from distributmanterj to customek during time
periodt

Zix= Number of products to be sent directly from seunto customek during time period
t

U= 1 if distribution centey is opened, 0 otherwise

vi=  1ifxs >0, O otherwise

Mathematical model:

The production-distribution problem can be formethas follows:
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t=11i=1 \j=1 k=1
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+ Z Z <Z btl]ytl] + ht]St]) + Z Z PCitqit
=1j=1 t=11i=1
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Z xtl] + Z Ztik < Tt Vt: i (2)
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Z Vejk + ) Ztik = dek vt k (3)
=1 i=1
N
thij < Qi Vt, i (4)
j=1
N
Zztij < Qi Vt,i (5)
j=1
M P
Z Xtij + Se—ij — Stj — Z Yejk =0 vt,j (6)
i=1 k=1
N P

Z Xeij + Z Zyik | —Bvy <0 vt,j (7)

j=1 k=1
Xtij < BMUj Vt, i, j (8)
YVtij < BM'U,] Vt, l,] (9)
SO,j = SQ’]' = 0 V] (10)
xtl-j > OfYt]'k = 0, Ztik = 0, Stj >0 Vt, i,j,k (11)

In this model, namely PRDIS model, the goal of otiye function (1) is to minimize the
producing, shipping, inventory, and set up costsee Summations in the objective function
represent these costs. The first set of summatemsesents the cost of shipping from the
source to the distribution centers, the cost opihg from a source straight to a customer,
and the setup of cost of operating from those ®surthe set-up cost is included with the use
of the binary variable;. The second set of summation represents the cagtiping from
the distribution centers to the customers, and dbst of holding any inventory at the
distribution centers.

The next set of equations represents the congrafrthe model. The first set of constraints
(2) ensures the total amount shipped from eachceqtal to all distribution centers and to
all customers) is less than that source's capacityach time period. The second set of
constraints (3) ensures the demands at each custmmemet during each time period.
Constraints (4) ensure that the total number odpects delivered from the sourgeto
distribution center during time period is equal to production number in a given period
Constraints (4) ensure that the number of prodtmtbe sent directly from sourdeto



51 A Hybridized Lagrangian Genetic Algorithm for Dgrsing an Integrated...

customeik during time period is equal to production number in a given peridade Tiext set

of constraints (6) is a conservation constrainis Bet of constraints ensures that the products
at the beginning of the time period plus the prasl@ntering the distribution center minus
the products shipped from the distribution cendezqual to the products counted as on-hand
inventory at the start of the next time period. Hext set of constraints (7) ensures that the
set-ups costs are considered. If any products higped from a source (either to a
distribution center or to a customer) during a tiperiod, then the value of the binary
variablev, will be 1, and the set-up costs for that time p&mall be included in the objective
function. If no products are shipped, then thisueak 0, and the set-up costs for that source
and time period are disregarded. Constraints (8 @) guarantee the assignment of
customers and transportation to open DCs. The swixbf constraints (10) ensures that the
inventory at the beginning and end of the planmiagzon at each distribution center is zero.
Finally, the last set of constraints (11) ensub@s hon-negativity and binary conditions hold

3. Proposed Hybrid Algorithm

Supply chain network design is to provide an opliplatform for efficient and effective
SCM. This is an important and strategic operatior@nagement problem in SCM. The
design task involves the choice of facilities (péaand distribution centers (DCs)) to be
opened and the distribution network design to Satise customer demand with minimum
cost. It belongs to a production-distribution aadility location-allocation problem. Solution
approaches for these problems are optimizatiorritthgas within the framework of Benders’
decomposition [1, 19], heuristics based on bramaHzound [20], and Lagrangian relaxation
[21]. However, these techniques consume extensiveuats of time and effort in finding
optimal solutions for realistically sized problemishe problem under consideration can be
reduced to the well-knowprmedian problem which is known to be NP-hard [22jerefore,
researchers have utilized heuristic and meta-heuapproaches to solve this problem.

Syarif et al. [23] have developed a spanning tr@sed GA approach for the multi-source,
single-product, multi-stage SCN design problem.adayan and Ross [24] have also
proposed a heuristic approach based on simulateebfing for the designing of distribution
network and management in supply chain environméeh [25] has proposed a memetic
algorithm (MA) which is a combination of GA, greetiguristic, and local search methods
for the same problem. The author has extensivelgsiigated the performance of the MA on
the randomly generated problems.

Due to the limitations involved in exhaustive enuaten, branch and bound and
mathematical modeling for solving large sized peaoid, researchers started developing
heuristics. Even though these heuristics did naraputee optimal solutions, they gave
feasible solutions within a reasonable computatidime [26]. A heuristic method is a
procedure that is likely to find a good feasibléuson but leaves no guarantee of its quality
or whether it is optimal or not [27]. All the poska solutions are not considered, since that
would require an infinite amount of time, but rathepart of the solution space with solutions
that might or might not be optimal. The solutiorasp is searched smatrter, discarding those
parts that certainly not will contain good solusoand focusing more on those parts that



52 A. Jafari et al.

could include a good one. Nevertheless, a wellghesl heuristic method can often provide a
near-optimal solution, or indicate that no optirealution exists. The method should also be
efficient enough, so that it can deal with largeljdems within a reasonable time.

The problem with ordinary heuristic methods is tfatevery problem given, a procedure
must be designed to fit and to solve the problei EB]. However, in recent years another
type of procedure has been developed, the metastieuhat consists of both a general
structure and strategy guidelines to adjust togiecific problem given. This approach is
very timesaving and meta-heuristics have becomenpartant tool for solving a wide range
of practical problems. Furthermore, ordinary hdigss often are local improvement
procedures, i.e. they try to improve the curretaitsan within the local neighborhood of that
solution. This means that for every iteration, thethod will find a solution near the current
one and accept it if it's better, converging tovgarthe local optimum within the
neighborhood of the starting solution. The drawbatkhis approach is that if the given
problem consists of multiple local optima, the mdare applied will converge to one local
optimum and then stop.

The algorithm developed to solve the integrateddpection-distribution with set-up costs
uses a combination of genetic algorithm and Lageangelaxation techniques. First, an
algorithm using the method of GA is developed ttves@an uncapacitated PRDIS model.
Next, a relaxed model of PRDIS is developed ushmg method of Lagrangian relaxation.
Finally, the GA algorithm is used in conjunctiontkvsubgradient optimization to solve the
Lagrangian relaxation model, and produce a solutidhe PRDIS model itself.

3.1.Proposed Genetic Algorithm

For larger and more complicated problems, metaistguiprocedures are used, where the
search method combines local improvement proceduittsmore advanced and intelligent
strategies to create a process capable of escapmgocal optima and performing a robust
search of the solution space. An important charastie of the meta-heuristic is hence the
possibility to escape from a local optimum aftesial@ng it, and depending on the method,
there are different ways of doing so. One commow, WBasides searching locally for better
solutions than the current one, is to also havetssibility to accept a neighbor solution if it
is worse than the current one. Another way is @it solutions, within the current solution
neighborhood, to force the procedure to searchniotheer direction away from a local
optimum.

In this section, representation and genetic opesatdhich were used in GA for multi-
objective design of SCN will be explained.

3.1.1. Representation

The representation scheme for the decision vasgabla key point before using GAs to solve
an optimization problem. This representation dexidew the problem will be shown in the
GA. There are three ways of encoding tree: (1) dmged encoding, (2) vertex-based
encoding and (3) edge-and-vertex encoding [29].
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In this study, to escape from these repair mechanis the search process of GA, we used
priority based encoding developed by Gen and Cliay They had successfully applied
this encoding to the shortest path problem andptiogect scheduling problem. The first
application of this encoding structure to a singleduct transportation problem was carried
out by [30]. In priority- based encoding, the pasitof a gene is used to represent a node
(source in transportation network), and the valseused to represent the priority of
corresponding node for constructing a tree amondidates.

3.1.2. Evaluation

The purpose of the evaluation function is to meashe fithess of candidate solutions in the
population with respect to the objective functi@ml constraints of the model. The fitness
values are used to select parent solutions to ecribet next generation of solutions. The
fitness of an individual dictates the number ofiespof that solution in the mating pool. In

this paper, the evaluation is achieved by the stitheobjective function (Eqg. (1)) and the

penalty terms of constraint violation.

3.1.3. Crossover

The crossover operators produce offspring by exgingninformation contained in the
parents. The proposed GA uses a simple crossoveatop in which a random crossover
point is determined along the length of the chromnes and swamps the right hand side
segments of the parents. The crossover operatiatome with a probability called the
crossover probability. A segment-based crossoveratpr which was based on uniform
crossover is used in this paper. In this operadach segment of offspring is randomly
selected with equal chance among the corresporsiggients of parents. As it is seen in
Figure 2, crossover operator utilizes from a binangsk. Its length is equal to number of
stage in SCN. While “0” means that the first pareiit transfer its genetic materials to the
offspring, “1” means that the offspring will takermgetic materials from the second parent for
the corresponding segment. This crossover opetaadis to preserve good gene segments of
both parents.

1 2 3 1 2 3 4 1 2 3 1 2 3 4 5 1 2 3 4 5
Tare”t 3 |7 |4 |2 |6 |5 |1 |4 |5 |6|8|3|2| 7/2]1]12]3/]3]3

1 2 3 1 2 3 4 1 2 3 1 2 3 4 5 1 2 3 4 s
g arent |y 14 15 |6 | 7| 3 8 |1 |35 |7 l6lal2]1|3]|2]2]|s3
Binary
Mask 0 1 0

1 2 3 1 2 3 4 1 2 3 1 2 3 4 5
chid [3 |7 |4 |2 |6 |5 1 [8 |1 |35 7 16 4 1 |
Figure 2. An illustration of crossover operator
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3.1.4. Mutation

The mutation operator acts on a single chromosanadter the information contained in the
genes. In this operator, firstly, a decision abehich segments will be mutated is given with
probability of 0.5 (i.e. using a binary mask), ahén selected segments are mutated. Swap
operator is used for chromosome. The scheme oftiontaperator is shown in Figure 3.

i 2 3 1 2 3 4 1 2 3 1 2 3 4 5 1 2 3 4 5
Parent | 3|7 4 ]2 |6 |5 [ 1]8 |1 J2]5]71]6 4 ]1]21]a]3][3]3]
Binary
Mask 1 0 1

i 2 3 1 2 3 4 1 2 3 1 2 3 4 5 1 2 3 4 5
chid [3 [2 [4 |7 |6 [5]1]8 Ja1 J2]5 7 ]6 [4]1]1]23]3]3]

Figure 3. An illustration of mutation operator
3.1.5. Selection strategy

After obtaining the fitness value of each chromospehromosomes will then be selected.

This is the vital process in the algorithm sincedlects the parents to produce offspring and
optimal solution will be obtained among the newusohs. Chromosomes with higher fitness

value will have a higher chance of being selectedenoften. This is achieved by assigning a
probability value to each chromosome selectedhabhetter chromosomes will be assigned
a higher probability. The roulette wheel selecttrategy is used in this research.

3.2.Hybrid Lagrangian Genetic Algorithm

One method frequently used to solve linear programgnproblems is that of Lagrangian

relaxation. The general approach of Lagrangianxatian can be find in [31, 32]. This

method can also be applied to the DIPS model. Usfimgsame parameter and variable
definitions as the proposed model, the relaxedrtbdel is:

Q M N
Min Z = Zz Z AgijXeij + z CrikZtik + ftiVti

t=1i=1 \j=1 k=1
Q N M Q M
+ZZ<Z btl]ytl] +htjst]) +Zzpcit%’t (12)
t=1j=1 \i=1 t=1i=1
Q M N P
+Zzlti thij +Zztik — T4
t=1i=1 j=1 k=1

Subject to

N M

Z Yejk t Z Zik = g Vi, k (13)
j=1 i=1

me < qu vt i (14)
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N
Zztij = qit vt,i (15)
j=1
M P
Z Xtij + St—ij — Stj — Z Yejk =0 vt,j (16)
i=1 k=1
N P

Z xtij + Z Ztik | — thi <0 Vt,] (17)

j=1 k=1
Xtij < BMUj Vt, i, j (18)
Veij < BMuj Vt, i,j (19)
Soj = Sq,j =0 vj (20)
xtl] Z 0, Yt]k 2 0, Ztik 2 0, Stj 2 01 Atl Z 0 Vt) i)jlk (21)

In this model, the objective function is updatedafiect the lagrangian multipliers and the
first constraint from the first model as a pendiipction. The remaining constraints ((13)-
(21)) now directly mirror the constraints of thecapacitated model ((3)-(11)).

For the resulting model it will be necessary todfian efficient scheme to update the
Lagrangian multiplierd;;. The general approach to this updating is ®Sbgradient
Optimizationtechnique as described in [32, 33]. In the subgradoptimization method, the
lagrangian multipliersy;;, are updates using the gradient of the solutiah waspect tol.
Thus, the entire model can be solved by combiniegrhethods of genetic algorithm with
subgradient optimization. In this algorithm, théaxed model is solved using the method of
genetic algorithm as presented in section 3.1 bgatipg the objective function of the
uncapacitated production-distribution model witle thbjective function of the Lagrangian
relaxed model. This solution is then used to uptladagrangian multipliers by the method
of subgradient optimization. This process is repeaintil a stopping criteria is reached
(either the lagrangian multipliers converge or sareember of iterations is performed). This
method is outlined below in Figure 4.

The program first initializes the lagrangian muleps, passes them to the Genetic Algorithm
to update the uncapacitated production-distributioadel objective function, solve the
model, and projects the solution back to the féagibegion. The program then passes that
solution and the lagrangian multipliers to the sabgent optimization algorithm to update
the lagrangian multipliers and evaluates the impnoent of the solution, and repeats this
process until a final solution is reached.

4. Methodsfor Comparisons

To investigate the effectiveness of the HLRGA, tvewrristic approaches have utilized. These
two approaches are based on GA which is hybridizgdinear programming and called
hybrid genetic algorithm (hGA), and simulated arimga(SA). The section presents a brief
explanation about the hGA and SA developed foptioblem by the authors of the paper.
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Require: an upper bound, initial values/l‘t’,i > 0, a sequence,, andN;;,,-.
Ensure: best solutionX*,Y*, Z*, 8*) for production-distribution model

1. Setiteratiorr =0
2. While|AfH — 2| < e for allt, i, andt < Ny, do
3. Call GA to solve uncapacitated production-distibatmodel and obtaih(A%)
4. If GA solution is an improved feasible solution t@guction-distribution model
then
5. L «GA solution of uncapacitated problem {updat e L}
6. Endif
7. Calculate
T= Z—; {gradient of L(4%,)}
8. Calculate )
k=M {step size}

lly=II2
9. ALt = max{0, AL, + ky[;}
10.1f no progress ihiterationthen

6y
110,41 = %

12. End if
13.t=1+1
14. End while

Figure 4. Pseudo code for Proposed Hybrid Lagran@i@netic Algorithm
4.1.Hybrid genetic algorithm

As is known, when the opened plants and DCs arevikman the multi-stage SCN design
problem, the problem is reduced to a capacitatedsghipment problem (CTP), which is
relatively easier to solve by commercial softwaeekages such as LINGO, CPLEX, etc.,
since it is a linear programming formulation. Basedthis property, a GA hybridized with
CPLEX (hGA) is developed. In hGA, a chromosome ©i80f two segments having same
encodings. First, a transportation tree between &@@kscustomers and demands of the DCs
are obtained by decoding of the second segmeriteotiromosome, and the cost of the last
stage is calculated. The GA procedure is the samexplained in section 3.1. After
determining which plants will be opened using byjnancoding of the first segment, the
problem for the first two stages is reduced to Camj the CTP is solved by CPLEX. The
fitness value of the chromosome is the summatiothefcost of CTP and the cost of last
stage which is obtained by decoding of the secegdent of chromosome.

4.2.Simulated annealing

Simulated annealing (SA) is a effective optimizataigorithm motivated from an analogy
between the simulation of the annealing of solid #me strategy of solving combinatorial
optimization problems. In this paper, in order tth@&nce the exploitation ability of the
proposed algorithm, DE is hybridized with a simethainnealing (SA) algorithm. All current
solution vectors are improved by using SA.
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The applied SA could be briefly introduced as fako It starts with an initial solution, each
solution vector of the current generation, andeiach vector a neighbor solution is generated.
In the proposed SA, a neighbor vecy = [Nl,i: ---:ND,i] for each solution vectorX() is
generated according to Equation 22.

N; = X; +rand;(X/ = X/) xp (22)
wherep is used to ensure that parameter values liesdrtbieir allowed ranges in neighbor
vector. LetF(X) andF(N) denote the objective function values of the aursslution and the
neighbor solution, respectively and defiveas the difference between these objectives; that
is A= F(X) - F(N). If A< 0, the neighbor solution is accepted; otherwiss @&ccepted with

probability equal toe~"/r. whereT is the temperature parameter such that 0. At the
beginning, the temperature is set at the initiahgeratureT,. ThenT is decreased after
generations according to the fornilila& < T, where < is the coefficient controlling the
cooling scheduled(< a < 1).

5. Experimental Results

This section gives numerical results on the peréoroe of HLRGA. All algorithms are coded
in MATLAB 7 and executed on an Intel® Core 2 DuoB@5at 2.20 GHz with 2.0GB of
RAM. Before the numerical results, information abthe test problems and the parameter
setting of each algorithm will be given.

5.1.Test problems

Two sets of the test problems are considered m mésearch. The first set consists of 10
classes of problems called small size problems, @mch class contains 10 randomly
generated problem instances. Therefore, 100 probistances are considered for the small
size problems. These problems can be solved opyiraatl they are used to provide a better
sense of the performance of the HLRGA. The secendalled large size problems includes
six classes of problems. Each class of this setagm20 randomly generated problems, and
a total of 120 problem instances are considerddrge size problems. This set of large size
problems are used to provide an idea of the cortiparperformance of the heuristic
approaches with respect to objective function valllee methods presented in [34] are used
to generate some of the tests’ data.

The parameter settings of HLRGA, hGA, and SA areddsws: since one offspring is
generated by crossover and mutation operatorscat generation of the HLRGA and hGA,
the crossover rate is set to 0.9, and the mutadiapplied to offspring with the probability of
0.15. Based on the preliminary runs, the populasiaes of HLRGA and hGA are taken as
50. The initial temperature in SA is set to 1000vimch an inferior solution (inferior by 70%
relative to current solution) is accepted with algability of 0.90. The final temperature is
taken as 0.15 such that a solution which is infebp %1 relative to current solution is
accepted with a probability of 0.1%. The best indlial of the initial population of the
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HLRGA is taken as the initial solution of SA. Inder to make a fair comparison between
heuristic algorithms, CPU time is chosen as a stapgriterion.

5.2.Computational Results

The parameters of the small size problems are giva@rable 1. The problems are described
by providing the number of customers (|P]), the Ioemof potential DCs (|N|), the number of

sources (|M|), and the number of time horizong.(ikH mentioned in section 5.1, each class
of problems contains 20 randomly generated probtestances. To investigate the solution
quality of the heuristic approaches, the optimunutemn of each problem instance is

obtained by CPLEX. The CPU time of each problentaimse, which is used as a stopping
criterion for the HLRGA, hGA, and SA, is obtainey $olving the problem instance with the

LH. The last two columns of the Tabladport the average CPU times for the CPLEX. As is
seen in this table, the optimum solutions of tinst fix problems are obtained in a short time
by CPLEX.

Table 1. Small size problems

Problem Parameters (CSI;U Time
Class P N M| Il CPLEX
S1 10 5 2 2 3.25

S2 10 5 2 2 8.43

S3 20 5 2 2 7.46

S4 20 10 3 3 16.67

S5 30 5 3 3 87.93

S6 30 10 4 3 213.03
S7 40 10 4 4 723.90
S8 40 15 5 4 1305.11
S9 50 10 5 4 4988.30
S10 50 15 10 6 12895.83

Table 2. Comparison of meta-heuristics for smak giroblems

zlr;)iem Optimality gaps (%)

HLRGA hGA SA

Average Maximum Average Maximum Average Maximum
S1 0.00 0.43 0.00 0.32 0.03 0.45
S2 0.05 0.41 0.00 0.24 0.19 0.35
S3 0.13 0.65 0.09 0.44 0.32 0.87
S4 0.34 1.04 0.27 0.69 0.45 0.98
S5 0.86 1.54 0.95 1.43 1.43 1.90
S6 1.14 2.26 1.59 2.98 1.96 3.16
S7 1.88 2.59 2.13 3.22 2.29 3.35
S8 1.94 2.46 2.09 3.18 3.14 3.44
S9 2.62 3.11 3.62 4.26 3.80 4.19
S10 3.19 3.75 4.67 5.52 4.43 6.87

Average 1.215 1.82 1.54 2.23 1.80 2.56
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In Table 2, we have reported the summary of resuttd@aclasses of the small size problems
with 20 instances in each. As performance measuredjave used the average percentage
gap and maximum percentage gap between heuristitcsoand optimum solution. The gap
is defined as 100 x (heuristic solution value -impim solution value)/optimum solution
value. When the heuristic approaches are compaitbdr@spect to average gap over all 10
classes of the problems, it is seen that the HLR®Z3Aibits the best performance with the
average gap of 1.215%. As seenTiable 2, while the average gap between the optimum
solution and the HLRGA is less than 2%, the avegages for the hGA and SA are less than
2%. Also, as seen ifable 2 the average and maximum gaps of the hGA and 8Alase to
each other. With respect to maximum gap over altla8ses of the problems, it is seen that
the HLRGA is comparable to the hGA.

Table 3. Large size problems

Problem Parameters

Class [l I K] L] |H|
S1 100 20 2 5 3
S2 100 30 2 5 3
S3 200 30 4 10 6
S4 200 40 4 10 6
S5 300 40 6 20 12
S6 300 50 6 20 12

Table 3reports the parameters of the six classes of lsimeproblems with 20 instances in
each. As seen iifable 3 the number of customers, the number of potemias and the
number of sources vary from 100 to 300, from 2G@p and from 10 to 25, respectively.
Since the problems are very large, it is not pdssib obtain their optimum solutions by
CPLEX. As observed in Table 1, the average CPUgimeCPLEX for the problem classes,
where the number of product is 3, are higher tloartife problems having two products. This
shows that one of the important factors affectedhensolution time of the problem instances
is the number of the product.

Table 4. Comparison of meta-heuristics for large groblems

(P:lr;)iem Optimality gaps (%)
HLRGA hGA SA
Average Maximum Average Maximum Average Maximum
S1 2.43 4.63 4.23 5.98 4.68 6.78
S2 2.25 4.12 4.59 6.32 4.56 6.96
S3 2.89 4.76 5.22 6.88 4.68 7.43
S4 3.23 5.14 5.89 7.33 5.37 7.82
S5 3.53 5.64 6.19 7.47 5.89 8.37
S6 3.41 5.60 6.48 7.68 5.84 8.63
Average 3.20 5.22 5.84 7.26 5.39 7.98

Table 4 shows the average and maximum gaps of itjpoped meta-heuristic approaches.
Since the optimal solutions for large size problemesnot known, the gap is defined as 100 x
(heuristic solution value - lower bound)/lower bduifhe lower bound is the best value of
the objective function found by any of algorithme.( HLRGA, hGA, and SA). When the
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heuristic approaches are compared with respectéage and maximum gaps over all six
classes of the problems, it is seen that the HLRSEifperforms the other heuristics. Its
average and maximum gaps are between 2.25% ando03.88d 4.12% and 5.64%,
respectively. While the average and maximum gapth®fSA over the six classes of the
problems are 5.39 % and 7.98%, respectively, themlees are 5.84% and 7.26%,
respectively, for the hGA. When the problem sizgeases, it is seen that the performance of
the SA drastically decreases.

Furthermore, the proposed model has been evallgtesing date from an industrial real-
world case in Iran. The conventional production dmsiribution strategy used by case is to
maintain a constant work force level over the plagrhorizon, and fluctuated demands can
then be met by using some combination of invensoravertime. However, the expected
performance was unable to achieve because of dckwlmn the current experiential method
focus on a single component of the overall systEmexample procurement, production,
transportation, warehouses, or scheduling, desipgentegration of these components in a
single supply chain, and evaluation comparisonsardy be done for specific plans under
specific conditions and indication is vague for gdptimum plan.

Alternatively, the decision maker would apply a haahatical programming method to
develop an integrated production-distribution plagndecisions plan for the industrial case.
The planning horizon is 12 months. The forecaswdahd fluctuates a lot over the planning
horizon because seasonal variations. The produdehmacludes 27 types of products. Also it
comprises 4 sources and 160 customers.

In order to compare the quality of heuristic soln$ obtained by the HLRGA with that of
optimal solutions if they are available or feasibtdutions obtained after running CPLEX for
10 h (i.e. 36,000 s), we have conducted the additioomputational experiments. It is seen
that CPLEX could not reach to optimal solutions flee problems after running 10 h. The
average and maximum gaps based on the feasibleosobf the CPLEX for this real case
which solve 10 times are 3.38% and 5.59%, respagtihese results support the fact that
the HLRGA can be used as an effective and effictent for designing the supply chain
networks in real world case.

6. Conclusion

This work develops an integrated production distiidn system in real-world industrial case
which is a multi-source, multi-stage supply chaietwork design problem in dynamic
environment. In this paper, a hybrid lagrangiaraxation genetic algorithm (HLRGA) is
proposed for the candidate problem, which is a RHproblem. In the proposed algorithm
the genetic algorithm (GA) is incorporated into fagrangian relaxation (LR) method to
update the lagrangian multipliers and improve thexfgymance of LR method. The
effectiveness of the HLRGA was investigated commgaits results with those obtained by
CPLEX, hybrid GA and simulated annealing on twe s#ttest problems consisting of a total
of 320 instances. Experimental study showed that HLRGA found better heuristic
solutions than the other heuristic approaches aadhed the good heuristic solutions with
lower computation time when compared with CPLEXisTik particularly attractive in large-
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scale systems. Future research is achieved on desason of this modeling under
uncertainty conditions with other critical SC prefis such as vehicle routing, carriers
loading, etc.
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