Document Type : Research Paper

Authors

Department of Industrial Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran.

10.22105/riej.2023.403685.1387

Abstract

The inventory routing problem arises from the combination of the vehicle routing problem and the vendor-managed inventory problem. In this paper, we present a mathematical model and a novel genetic algorithm for solving the multi-period inventory routing problem. The objective is to supply products to scattered customers within a given time horizon while managing customer inventories to avoid shortages and minimize total inventory and transportation costs. To represent solutions for this problem, we introduce a new chromosomal structure. This structure offers simplicity in encoding and decoding solutions, maintains feasibility after crossover and mutation operations, addresses both routing and inventory management in a single step, and consolidates information about each solution method comprehensively. The algorithm parameters, including crossover and mutation rates, population size, number of iterations, and selection pressure, are fine-tuned using the Taguchi method. To assess algorithm efficiency, we utilize standard instances from the literature. Our results demonstrate that the proposed algorithm performs favorably compared to previous approaches.

Keywords

Main Subjects

[1]     Moin, N. H., Salhi, S., & Aziz, N. A. B. (2011). An efficient hybrid genetic algorithm for the multi-product multi-period inventory routing problem. International journal of production economics, 133(1), 334–343. DOI:10.1016/j.ijpe.2010.06.012
[2]     Bertazzi, L., Coelho, L. C., De Maio, A., & Laganà, D. (2019). A matheuristic algorithm for the multi-depot inventory routing problem. Transportation research part e: logistics and transportation review, 122, 524–544. https://doi.org/10.1016/j.tre.2019.01.005
[3]     Coelho, L. C., Cordeau, J. F., & Laporte, G. (2014). Thirty years of inventory routing. Transportation science, 48(1), 1–19. DOI:10.1287/trsc.2013.0472
[4]     Mahjoob, M., Fazeli, S. S., Milanlouei, S., Tavassoli, L. S., & Mirmozaffari, M. (2022). A modified adaptive genetic algorithm for multi-product multi-period inventory routing problem. Sustainable operations and computers, 3, 1–9. DOI:10.1016/j.susoc.2021.08.002
[5]     Archetti, C., Feillet, D., & Speranza, M. G. (2015). Complexity of routing problems with release dates. European journal of operational research, 247(3), 797–803. https://doi.org/10.1016/j.ejor.2015.06.057
[6]     Lambora, A., Gupta, K., & Chopra, K. (2019). Genetic algorithm-a literature review. 2019 international conference on machine learning, big data, cloud and parallel computing (COMITCON) (pp. 380–384). IEEE. https://ieeexplore.ieee.org/abstract/document/8862255
[7]     Mirjalili, S. (2019). Evolutionary algorithms and neural networks. In Studies in computational intelligence (Vol. 780). Springer. https://doi.org/10.1007/978-3-319-93025-1
[8]     Katoch, S., Chauhan, S. S., & Kumar, V. (2021). A review on genetic algorithm: past, present, and future. Multimedia tools and applications, 80, 8091–8126. https://link.springer.com/article/10.1007/s11042-020-10139-6
[9]     Zapata-Cortes, J. A., Arango-Serna, M. D., Serna-Úran, C. A., & Gil-Gómez, H. (2021). A genetic algorithm for solving the inventory routing problem with time windows. In New perspectives on enterprise decision-making applying artificial intelligence techniques (pp. 463–481). Springer. https://doi.org/10.1007/978-3-030-71115-3_20
[10]   Bell, W. J., Dalberto, L. M., Fisher, M. L., Greenfield, A. J., Jaikumar, R., Kedia, P., … & Prutzman, P. J. (1983). Improving the distribution of industrial gases with an on-line computerized routing and scheduling optimizer. Interfaces (Providence, Rhode Island), 13(6), 4–23. DOI:10.1287/inte.13.6.4
[11]   Cheng, C., Qi, M., Wang, X., & Zhang, Y. (2016). Multi-period inventory routing problem under carbon emission regulations. International journal of production economics, 182, 263–275. DOI:10.1016/j.ijpe.2016.09.001
[12]   Onggo, B. S., Panadero, J., Corlu, C. G., & Juan, A. A. (2019). Agri-food supply chains with stochastic demands: a multi-period inventory routing problem with perishable products. Simulation modelling practice and theory, 97, 101970. DOI:10.1016/j.simpat.2019.101970
[13]   Xiao, N., & Rao, Y. L. (2016). Multi-product multi-period inventory routing optimization with time window constrains. International journal of simulation modelling, 15(2), 352–364. DOI:10.2507/IJSIMM15(2)CO8
[14]   Alinaghian, M., Tirkolaee, E. B., Dezaki, Z. K., Hejazi, S. R., & Ding, W. (2021). An augmented Tabu search algorithm for the green inventory-routing problem with time windows. Swarm and evolutionary computation, 60, 100802. DOI:10.1016/j.swevo.2020.100802
[15]   Soysal, M., Çimen, M., Belbağ, S., & Toğrul, E. (2019). A review on sustainable inventory routing. Computers & industrial engineering, 132, 395–411. https://doi.org/10.1016/j.cie.2019.04.026
[16]   Solyalı, O., & Süral, H. (2011). A branch-and-cut algorithm using a strong formulation and an a priori tour-based heuristic for an inventory-routing problem. Transportation science, 45(3), 335–345. DOI:10.1287/trsc.1100.0354
[17]   Coelho, L. C., & Laporte, G. (2014). Optimal joint replenishment, delivery and inventory management policies for perishable products. Computers and operations research, 47, 42–52. DOI:10.1016/j.cor.2014.01.013
[18]   Andersson, H., Christiansen, M., & Desaulniers, G. (2016). A new decomposition algorithm for a liquefied natural gas inventory routing problem. International journal of production research, 54(2), 564–578. DOI:10.1080/00207543.2015.1037024
[19]   Oudouar, F., & Zaoui, E. M. (2019). A hybrid Heuristic for vehicle routing problem. ACM international conference proceeding series, 24(1), 101–116. DOI:10.1145/3372938.3373014
[20]   Yu, B., Ma, N., Cai, W., Li, T., Yuan, X., & Yao, B. (2013). Improved ant colony optimisation for the dynamic multi-depot vehicle routing problem. International journal of logistics research and applications, 16(2), 144–157. DOI:10.1080/13675567.2013.810712
[21]   Cordeau, J. F., Laganà, D., Musmanno, R., & Vocaturo, F. (2015). A decomposition-based heuristic for the multiple-product inventory-routing problem. Computers & operations research55, 153-166. https://doi.org/10.1016/j.cor.2014.06.007
[22]   Su, Z., Lü, Z., Wang, Z., Qi, Y., & Benlic, U. (2020). A matheuristic algorithm for the inventory routing problem. Transportation science, 54(2), 330–354. DOI:10.1287/trsc.2019.0930
[23]   Wu, W., Zhou, W., Lin, Y., Xie, Y., & Jin, W. (2021). A hybrid metaheuristic algorithm for location inventory routing problem with time windows and fuel consumption. Expert systems with applications, 166, 114034. DOI:10.1016/j.eswa.2020.114034
[24]   Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press.
[25]   Abdelmaguid, T. F., & Dessouky, M. M. (2006). A genetic algorithm approach to the integrated inventory-distribution problem. International journal of production research, 44(21), 4445–4464. DOI:10.1080/00207540600597138
[26]   Park, Y. B., Yoo, J. S., & Park, H. S. (2016). A genetic algorithm for the vendor-managed inventory routing problem with lost sales. Expert systems with applications, 53, 149–159. DOI:10.1016/j.eswa.2016.01.041
[27]   Othman, S. N., Mustaffa, N. H., Radzi, N. H. M., Sallehuddin, R., & Bazin, N. E. N. (2016). A modelling of genetic algorithm for inventory routing problem simulation optimisation. International journal of supply chain management, 5(4), 43–51.
[28]   Hiassat, A., Diabat, A., & Rahwan, I. (2017). A genetic algorithm approach for location-inventory-routing problem with perishable products. Journal of manufacturing systems, 42, 93–103. DOI:10.1016/j.jmsy.2016.10.004
[29]   Azadeh, A., Elahi, S., Farahani, M. H., & Nasirian, B. (2017). A genetic algorithm-Taguchi based approach to inventory routing problem of a single perishable product with transshipment. Computers and industrial engineering, 104, 124–133. DOI:10.1016/j.cie.2016.12.019
[30]   Arab, R., Ghaderi, S. F., & Tavakkoli-Moghaddam, R. (2020). Bi-objective inventory routing problem with backhauls under transportation risks: two meta-heuristics. Transportation letters, 12(2), 113–129. DOI:10.1080/19427867.2018.1533624
[31]   Yavari, M., Enjavi, H., & Geraeli, M. (2020). Demand management to cope with routes disruptions in location-inventory-routing problem for perishable products. Research in transportation business and management, 37, 100552. DOI:10.1016/j.rtbm.2020.100552
[32]   Amri Sakhri, M. S. (2022). Comparative analysis of different crossover structures for solving a periodic inventory routing problem. International journal of data science and analytics, 14(2), 141–153.
[33]   Sakhri, M. S. A., Tlili, M., & Korbaa, O. (2022). A memetic algorithm for the inventory routing problem. Journal of heuristics, 28(3), 351–375. DOI:10.1007/s10732-022-09497-1
[34]   Gen, M., Cheng, R., & Lin, L. (2008). Network models and optimization: multiobjective genetic algorithm approach. Springer Science & Business Media.
[35]   Freddi, A., Salmon, M., Freddi, A., & Salmon, M. (2019). Introduction to the Taguchi method. Design principles and methodologies: from conceptualization to first prototyping with examples and case studies, 159–180. https://doi.org/10.1007/978-3-319-95342-7_7
[36]   Karna, S. K., & Sahai, R. (2012). An overview on Taguchi method. International journal of engineering and mathematical sciences1(1), 1-18.
[37]   Archetti, C., Bertazzi, L., Laporte, G., & Speranza, M. G. (2007). A branch-and-cut algorithm for a vendor-managed inventory-routing problem. Transportation science, 41(3), 382–391.