Document Type : Research Paper

Authors

1 School of Industrial Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.

2 Department of Industrial Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.

10.22105/riej.2023.388330.1371

Abstract

Supply chain management is a process in which a number of organizations work together as a supply chain until the raw materials reach the manufacturer and finally, a valuable product is provided to the end consumer. With the increase in population and the increase in environmental sensitivities, the forward-reverse supply chain has attracted a lot of attention, which pursues goals such as optimization, customer satisfaction, responding to their needs in the shortest time with the lowest cost and high quality. In this paper, a forward- reverse multi-product and multi-period network is designed under the condition of uncertainty in the demand parameter. The purpose of the proposed model is to maximize profit by considering customer satisfaction simultaneously and reducing delay and the fuzzy approach has been used to solve the model under conditions of uncertainty. The proposed model is mixed-integer linear programming and for its validation and applicability, it has been solved by GAMS software, a numerical example using simulated data in deterministic and uncertain state. The results of the analysis of the numerical example show that the show that with increasing uncertainty in the demand parameter, the optimal value of the objective function decreases.

Keywords

Main Subjects

[1]     Singh, G., & Rizwanullah, M. (2022). Combinatorial optimization of supply chain networks: a retrospective & literature review. Materials today: proceedings, 62, 1636–1642.
[2]     Manogaran, G., Shakeel, P. M., Baskar, S., Hsu, C. H., Kadry, S. N., Sundarasekar, R., … & Muthu, B. A. (2021). FDM: fuzzy-optimized data management technique for improving big data analytics. IEEE transactions on fuzzy systems, 29(1), 177–185. DOI:10.1109/TFUZZ.2020.3016346
[3]     Bhuniya, S., Pareek, S., & Sarkar, B. (2021). A supply chain model with service level constraints and strategies under uncertainty. Alexandria engineering journal, 60(6), 6035–6052.
[4]     Haddadsisakht, A., & Ryan, S. M. (2018). Closed-loop supply chain network design with multiple transportation modes under stochastic demand and uncertain carbon tax. International journal of production economics, 195, 118–131. DOI:10.1016/j.ijpe.2017.09.009
[5]     Asghari, M., Afshari, H., Mirzapour Al-e-hashem, S. M. J., Fathollahi-Fard, A. M., & Dulebenets, M. A. (2022). Pricing and advertising decisions in a direct-sales closed-loop supply chain. Computers and industrial engineering, 171, 108439. DOI:10.1016/j.cie.2022.108439
[6]     He, Q., Wang, N., Yang, Z., He, Z., & Jiang, B. (2019). Competitive collection under channel inconvenience in closed-loop supply chain. European journal of operational research, 275(1), 155–166.
[7]     Ganji, M., Rabet, R., & Sajadi, S. M. (2022). A new coordinating model for green supply chain and batch delivery scheduling with satisfaction customers. Environment, development and sustainability, 24(4), 4566–4601. DOI:10.1007/s10668-021-01620-9
[8]     Klibi, W., Martel, A., & Guitouni, A. (2010). The design of robust value-creating supply chain networks: a critical review. European journal of operational research, 203(2), 283–293.
[9]     Peng, H., Shen, N., Liao, H., Xue, H., & Wang, Q. (2020). Uncertainty factors, methods, and solutions of closed-loop supply chain-a review for current situation and future prospects. Journal of cleaner production, 254, 120032. DOI:10.1016/j.jclepro.2020.120032
[10]   Fattahi, M., Govindan, K., & Keyvanshokooh, E. (2017). Responsive and resilient supply chain network design under operational and disruption risks with delivery lead-time sensitive customers. Transportation research part E: logistics and transportation review, 101, 176–200.
[11]   Wang, Y., Lu, X., & Tan, Y. (2018). Impact of product attributes on customer satisfaction: an analysis of online reviews for washing machines. Electronic commerce research and applications, 29, 1–11. DOI:10.1016/j.elerap.2018.03.003
[12]   Gloor, P., Fronzetti Colladon, A., Giacomelli, G., Saran, T., & Grippa, F. (2017). The impact of virtual mirroring on customer satisfaction. Journal of business research, 75, 67–76.
[13]   Pirkul, H., & Jayaraman, V. (1998). A multi-commodity, multi-plant, capacitated facility location problem: formulation and efficient heuristic solution. Computers and operations research, 25(10), 869–878. DOI:10.1016/S0305-0548(97)00096-8
[14]   Kaskavelis, C. A., & Caramanis, M. C. (1998). Efficient lagrangian relaxation algorithms for industry size job-shop scheduling problems. IIE transactions (institute of industrial engineers), 30(11), 1085–1097. DOI:10.1080/07408179808966565
[15]   Fujita, K., Amaya, H., & Akai, R. (2013). Mathematical model for simultaneous design of module commonalization and supply chain configuration toward global product family. Journal of intelligent manufacturing, 24(5), 991–1004. DOI:10.1007/s10845-012-0641-x
[16]   Shen, Z. J. M. (2006). A profit-maximizing supply chain network design model with demand choice flexibility. Operations research letters, 34(6), 673–682. DOI:10.1016/j.orl.2005.10.006
[17]   Kesen, S. E., Kanchanapiboon, A., & Das, S. K. (2010). Evaluating supply chain flexibility with order quantity constraints and lost sales. International journal of production economics, 126(2), 181–188. DOI:10.1016/j.ijpe.2010.03.006
[18]   Ramezani, M., Bashiri, M., & Tavakkoli-Moghaddam, R. (2013). A new multi-objective stochastic model for a forward/reverse logistic network design with responsiveness and quality level. Applied mathematical modelling, 37(1–2), 328–344. DOI:10.1016/j.apm.2012.02.032
[19]   Bushuev, M. A., Guiffrida, A. L., & Rudchenko, T. (2018). Supply chain delivery performance improvement for several delivery time distributions. International journal of operational research, 33(4), 538–558. DOI:10.1504/IJOR.2018.096491
[20]   Hong, J., Diabat, A., Panicker, V. V., & Rajagopalan, S. (2018). A two-stage supply chain problem with fixed costs: an ant colony optimization approach. International journal of production economics, 204, 214–226. DOI:10.1016/j.ijpe.2018.07.019
[21]   Shojaie, A. A., & Bariran, S. E. S. (2020). Comparison of two modified meta-heuristic soft algorithms for solving a bi-objective facility layout problem. International journal of mathematics in operational research, 16(3), 435–454. DOI:10.1504/IJMOR.2020.106928
[22]   Kazemi Esfeh, M., Shojaei, A. A., Javanshir, H., & Khalili Damghani, K. (2022). Solving a bi-objective flexible flow shop problem with transporter preventive maintenance planning and limited buffers by NSGA-II and MOPSO. International journal of nonlinear analysis and applications, 13(1), 217–246. (In Persian). https://journals.semnan.ac.ir/article_5473.html
[23]   Zhu, K., Shen, J., & Yao, X. (2019). A three-echelon supply chain with asymmetric information under uncertainty. Journal of ambient intelligence and humanized computing, 10(2), 579–591.
[24]   Zaid, S., Palilati, A., Madjid, R., & Abadi, S. Y. (2021). The effect of supply chain integration on customer loyalty: the mediating roles of operational performance and customer satisfaction. Uncertain supply chain management, 9(4), 867–876. DOI:10.5267/j.uscm.2021.8.002
[25]   Salmannejad, M., Mirghafoori, S. H., Andalib Ardakani, D., & Mirfakhredini, S. H. (2022). Hospital supply chain optimization under uncertainty: application of fuzzy goal programming. Journal of industrial management perspective, 12(1), 161–191. (In Persian). DOI:10.52547/jimp.12.161
[26]   Zhao, J., Wei, J., & Sun, X. (2017). Coordination of fuzzy closed-loop supply chain with price dependent demand under symmetric and asymmetric information conditions. Annals of operations research, 257(1–2), 469–489. DOI:10.1007/s10479-016-2123-6
[27]   Kim, J., Chung, B. Do, Kang, Y., & Jeong, B. (2018). Robust optimization model for closed-loop supply chain planning under reverse logistics flow and demand uncertainty. Journal of cleaner production, 196, 1314–1328. DOI:10.1016/j.jclepro.2018.06.157
[28]   Pant, K., Singh, A. R., Pandey, U., & Purohit, R. (2018). A multi echelon mixed integer linear programming model of a close loop supply chain network design. Materials today: proceedings, 5(2), 4838–4846. DOI:10.1016/j.matpr.2017.12.059
[29]   Mahmoodirad, A., Niroomand, S., & Shafiee, M. (2020). A closed loop supply chain network design problem with multi-mode demand satisfaction in fuzzy environment. Journal of intelligent and fuzzy systems, 39(1), 503–524. DOI:10.3233/JIFS-191528
[30]   Rajak, S., Vimal, K. E. K., Arumugam, S., Parthiban, J., Sivaraman, S. K., Kandasamy, J., & Duque, A. A. (2022). Multi-objective mixed-integer linear optimization model for sustainable closed-loop supply chain network: a case study on remanufacturing steering column. Environment, development and sustainability, 24(5), 6481–6507. DOI:10.1007/s10668-021-01713-5
[31]   Safaei, S., Ghasemi, P., Goodarzian, F., & Momenitabar, M. (2022). Designing a new multi-echelon multi-period closed-loop supply chain network by forecasting demand using time series model: a genetic algorithm. Environmental science and pollution research, 29(53), 79754–79768. DOI:10.1007/s11356-022-19341-5
[32]   Zhang, Z., Liu, S., & Niu, B. (2020). Coordination mechanism of dual-channel closed-loop supply chains considering product quality and return. Journal of cleaner production, 248, 119273. DOI:10.1016/j.jclepro.2019.119273
[33]   Jiménez, M., Arenas, M., Bilbao, A., & Rodríguez, M. V. (2007). Linear programming with fuzzy parameters: an interactive method resolution. European journal of operational research, 177(3), 1599–1609. DOI:10.1016/j.ejor.2005.10.002
[34]   Heilpern, S. (1992). The expected value of a fuzzy number. Fuzzy sets and systems, 47(1), 81–86. DOI:10.1016/0165-0114(92)90062-9
[35]   Jiménez, M. (1996). Ranking fuzzy numbers through the comparison of its expected intervals. International journal of uncertainty, fuzziness and knowldege-based systems, 4(4), 379–388. DOI:10.1142/S0218488596000226