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Abstract 

   

1 | Introduction  

Data Envelopment Analysis (DEA) was introduced to assess the relative efficiency of a 

homogeneous group of Decision-Making Units (DMUs), such as banks, industries, police stations, 

hospitals, tax offices, schools, and university departments [1]-[7]. The traditional DEA methods allow 

each DMU to generate a set of relative weights. These weights maximize the ratio of aggregated 

weighted outputs to aggregated weighted inputs while ensuring that the same ratio does not exceed 

one for all DMUs. The maximum ratio is regarded as the efficiency score for the evaluated DMU. 

The traditional DEA approaches can separate efficient DMUs from inefficient DMUs, but they 

cannot discriminate the efficient DMUs with the efficiency score one [8]. In the face of this issue, 

Sexton et al. [9] suggested the cross-evaluation method as a ranking method in DEA that involves 

self-evaluation efficiency and peer-evaluation efficiency. The standard cross-efficiency method in the 

self-evaluation section uses traditional DEA models such as the CCR and BCC models that are 

constructed based on linear programming.  
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These models usually have alternate optimal solutions, so each DMU is assigned a self-evaluation 

efficiency score and several peer-evaluation efficiency scores. So, regarding the ultimate cross-efficiency 

score that is calculated based on self-evaluation and peer-evaluation scores for each DMU, the ranking 

of each DMU can be changed [9]. To overcome this issue and considering that the evaluation strategy 

and attitude among DMUs significantly impact the weight selection and hence the cross-efficiency 

scores, Doyle and Green [10] proposed the aggressive and benevolent models which these ideas are 

widely used in cross-efficiency evaluation. Both models attempt that maximize the efficiency of the 

DMU under evaluation, but simultaneously the benevolent model maximizes the average efficiency of 

other DMUs and the aggressive model minimizes the average efficiency of other DMUs. Liang et al. 

[11] proposed benevolent game cross-efficiency. In this model, a unique set of weights is determined 

based on the Nash equilibrium and the benevolent strategy. Using the symmetric weight assignment 

technique, Jahanshahloo et al. [12] suggested a new secondary goal for the evaluation cross-efficiency 

score. Li et al. [8] considered the reciprocal behaviors among DMUs to address the cross-efficiency 

evaluation and used a novel threshold value to determine positive or negative reciprocal behaviors by 

comparing the peer-evaluated efficiency with the threshold value-based efficiency. Chen et al. [13] 

introduced a meta-frontier analysis framework into a cross-efficiency method to develop a new 

efficiency evaluation method. Chen and Wang [14] innovatively proposed the definition of cross-

efficiency and developed two new target-setting approaches for individual DMU and global optimization 

to improve the cross-efficiency of DMUs in different decision-making situations. Chen et al. [15] 

introduced prospect theory to describe the subjective preference of decision-makers in the aggregation 

process when they face gains and losses, then a new method is constructed to aggregate cross-efficiency. 

Contreras et al. [16] proposed a new cross-efficiency model based on bargaining problems and the Kalai-

Smorodinsky solution. Wu et al. [17] proposed an innovative composite method for ranking DMUs by 

calculating the Shannon entropy of the obtained cross-efficiency scores derived from the perspectives 

of satisfaction and consensus. 

Another strategy for cross-efficiency evaluation is the neutral strategy that was first proposed by Wang 

and Chin [18]. Unlike aggressive or benevolent models, the neutral cross-efficiency method attempts to 

specify a set of weights for the inputs and outputs of each DMU from its profit perspective. Wang et al. 

[19] proposed a neutral method for cross-efficiency evaluation based on the distance of each DMU from 

the best DMU (IDMU) or the worst DMU (ADMU). Based upon the method of Wang et al. [19], 

Carrillo and Jorge [20] proposed a neutral model that determines an optimal set of weights that maximize 

the efficiency score of the ADMU and minimize the efficiency score of the IDMU simultaneously while 

keeping the efficiency of the evaluated unit unchanged. Shi et al. [21] utilized an ideal and anti-ideal 

frontier as evaluation criteria and proposed a new method for evaluating cross-efficiency scores. Using 

IDMU and ADMU, Liu et al. [22] introduced a prospect value based on prospect theory. They proposed 

a new secondary goal based on a neutral strategy for evaluating cross-efficiency scores. 

Kao and Liu [23] studied two basic network systems, series and parallel, and developed a relational 

model to measure the cross-efficiencies of the systems and divisions. Based on this model, Örkcü et al. 

[24] proposed a new neutral model for cross-efficiency evaluation of the basic two-stage network 

systems. This model can be ranked each DMU based on the efficiency score of sub-stages and the 

overall efficiency score. In this model, the overall efficiency is the product of those of the stages. Liu et 

al. [25] proposed the neutral cross-efficiency evaluation method for general parallel systems. Shi et al. 

[26] proposed a neutral cross-efficiency evaluation method based on the prospect theory, which reflects 

the bounded rationality of DMUs when facing gain and loss as secondary goals. In addition to 

developing theoretical models, cross-efficiency has been applied in evaluating efficiency in various fields. 

For example, Wang et al. [27] conducted a cross-efficiency assessment of energy efficiency in the 

construction industry. Amin and Hajjami [28] generated cross-efficiency matrices by combining multiple 

optimal solutions to produce stock portfolios with lower risk and higher expected returns. 

This paper proposes a new neutral secondary goal for cross-efficiency evaluation. This model can 

guarantee the maximum self-evaluation efficiency of the DMU being evaluated and the maximum sum 



413 

 

  

A
 n

e
u

tr
a
l 

D
E

A
 m

o
d

e
l 

fo
r 

c
ro

ss
-e

ff
ic

ie
n

c
y
 e

va
lu

a
ti

o
n

 

 
of the output weights. The following model is an extension of the first model to cross-weight evaluation. 

The remainder of this paper is arranged as follows. In Section 2, we address the cross-efficiency evaluation 

approach. The new models for evaluating the efficiency score are introduced in Section 3. In Section 4, 

using two data sets, we compare the results of the proposed models with cross-efficiency models and 

demonstrate the effectiveness of the proposed models. Concluding is discussed in Section 5.   

2 | Cross-Efficiency Evaluation 

We consider n DMUs that each  produces  different output indexes


   from  different input indexes


  , where 


 and 


 are two sets of nonnegative numbers. The efficiency of is as follows:  

where   and  are the rth output and ith input weights respectively. 

 The cross-efficiency evaluation process is often two-step, called self-evaluation and peer-evaluation. Each 

DMU's efficiency score is evaluated against the weights of all DMUs, not just its own. Suppose 

 
   
 

 be the DMU under evaluation. In the first phase of the cross-efficiency process, self-

evaluation, the relative efficiency  of to other DMUs can be calculated using the traditional DEA 

model, such as the CCR model [1] that has the following form: 

where  is referred the relative efficiency of . Let   and  be 

the optimal solution of the Model (2) for evaluation , then in the second phase of the cross-efficiency 

method, peer-evaluation, the cross-efficiency score of , using   and 

 , calculates as follows: 

In this case, 


  is the final score of   for ranking. 









 (1) 



 





  



 

 



 

  (2) 

 



 




 (3) 
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Model (2) usually generates alternative optimal solutions, so we have different cross-efficiency scores for 

each DMU. Sexton et al. [9] introduced a secondary goal in cross-efficiency evaluation to overcome this 

vagueness. In this regard, Doyle and Green [10] presented new secondary goals called benevolent and 

aggressive models. As mentioned in the last section these models maximize the efficiency of  

while minimize (maximize) the average cross-efficiency of other DMUs. The benevolent and aggressive 

formulations are as follows: 

 

 

 

 

 

 

Models (4) and (5) are accounted as the aggressive and benevolent models for cross-efficiency evaluation, 

respectively. Due to the different nature of the two models, two models provide different weights. As a 

result, the two methods usually will produce different rankings. Aiming to avoid aggressive and 

benevolent strategy in evaluating cross-efficiency score performance, Wang and Chin [18] proposed the 

following neutral model as a secondary goal to evaluate cross-efficiency in DEA: 

 

 

 

 

 

  

  

 

 

 
 
 
 

 
 
 
 



  

   

 



 

 

 

 



 (4) 

  

  

 

 

 
 
 
 

 
 

 
 

  

   

 

 

 

 

 

 

 (5) 









 
 
 
 
 
 
 











 

(6) 
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For , Model (6) finds an optimal set of weights to maximize each of its output's efficiency, 







, as much as possible while its relative efficiency is kept. In this paper, we proposed 

a new secondary goal based on the neutral cross-efficiency evaluation idea. 

3 | Proposed Model for the Cross-Efficiency Evaluation 

In this section, we proposed the following neutral DEA model for the cross-efficiency evaluation of 

 : 

where is obtained from Model (2) for evaluation DMUP. In this model, the sum of output weights is 

maximized while the efficiency of DMUP is kept. In other words, the value of each of the output weights 

in the objective function is considered the same, and this causes the production of non-zero output weights 

to decrease. On the other hand, the efficiency of each of the outputs of DMUP increases regardless of the 

amount of these outputs, while in the Model (6), the selection of optimal weights is influenced by the lowest 

output value of DMUP. Model (7) has fewer constraints than Model (6), as a result, its computational 

complexity is less than Model (6), and based on numerical results, it has the same performance as Model (6). 

The proposed model discusses a new secondary goal in a way that reduces the influences of the existence 

of multiple optimal solutions. These secondary goals have nothing to do with the cross-efficiency of other 

DMUs, so they can be categorized as neutral secondary goals rather than aggressive and benevolent. 

3.1 | Extension to the Cross-Weight Evaluation 

Similar to cross-efficiency models, Model (7) must solve n times, and each time the efficiency of a DMU 

must be maintained unchanged, so we have n sets of input and output weights. If these weights are 

comparable, we can form a cross weights matrix and obtain a set of input and output weights using the 





  

 

 



  
 



 







  





 

 



 





 (7) 
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arithmetic mean to calculate the efficiency of DMU. For this purpose, we propose the following model 

for the cross-efficiency evaluation of  based on which n sets of generated weights 

are comparable: 

 

Theorem 1. Model (8) has a feasible solution. 

Proof: Suppose  and  be the optimal solution of the Model (7) for 

evaluation . We define 
 

   
 

as follows: 

 

 

 

  

Therefore, we have 

 

 

 

 

 

The proof is completed. 

Let 
 

   
 

 be the optimal solution of Model (8) for the cross-efficiency 

evaluation of  , thus the cross-weight matrix is as follows. 



 

 

 



  

 



 

 



 

 



 

(8) 

 

 

 
 
 
 

 
 
 
 

 

 

 

 

  

 

 

 

   

 

      

    



 
 

 

   


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Table 1. Cross-weight evaluation for n DMUs. 

 

 

 

According to information in Table 1, the final values of input and output weights are as follows: 

Then we can calculate the final score of   using Eqs. (9) and (1). 

4 | Numerical Example 

In this section, to evaluate the performance of the proposed process, we consider two numerical examples 

that were used in previous studies in the DEA literature. Models (4)-(6) and the proposed models are applied 

to rank all DMUs and compare their performance.  

Example 1. Consider the case of 14 airlines as DMUs with three inputs and two outputs which is adapted 

from [12], Tofallis [29] and Chiang et al. [30]. The airlines data are summarized in Table 2.  

Table 2. Data for 14 passenger airlines. 

 

 

 

 

 

 

 

The CCR efficiency scores for 14 passenger airlines are revealed in the second column of Table 3. According 

to the results of the CCR model, 7 of 14 airlines are identified as efficient DMUs. In this case, it is not 

possible to recognize their superiority over each other; so, we use the results of Models (4)-(6) and the 

proposed models to rank them, which are shown in the third through the twelfth columns of Table 3, 

respectively. 

Target DMU Input Weights Output Weights 
p
1v  p

2v  … p
mv  p

1u  p
2u  … p

su  

1 
2 

⁝ 
n 

1
1v  

1
2v  … 1

mv  
1
1u  

1
2u  … 1

su  

2
1v  

2
2v  … 2

mv  
2
1u  

2
2u  … 2

su  

⁝ ⁝ ⁝ ⁝ ⁝   ⁝ 
n
1v  

n
2v  … n

mv  
n
1u  

n
2u  … n

su  





 

 





 
(9) 

Airline (DMU) 
Inputs Outputs 
x1 x2 x3 y1 y2 

1 5723 3239 2003 26677 697 
2 5895 4225 4557 3081 539 
3 24099 9560 6267 124055 1266 
4 13565 7499 3213 64734 1563 
5 5183 1880 783 23604 513 
6 19080 8032 3272 95011 572 
7 4603 3457 2360 22112 969 
8 12097 6779 6474 52363 2001 
9 6587 3341 3581 26504 1297 
10 5654 1878 1916 19277 972 
11 12559 8098 3310 41925 3398 
12 5728 2481 2254 27754 982 
13 4715 1792 2485 31332 543 
14 22793 9874 4145 122528 1404 
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 Table 3. Results of Models (4)-(6) and proposed models in Example 1. 

 

 

 

 

 

 

 

 

 

As can be seen in Table 3, the sum of efficiencies in the Model (7) is higher than the Model (6). The sum 

of efficiencies in the Models (8) and (5) is the same. Also, the sum of efficiencies in the Model (6) and also 

the Model (7) (neutral models) is higher than Model (4) (aggressive model) and lower than the Model (5) 

(benevolent model), which all above results are reasonable with respect the structures of models. 

 

Fig. 1. Illustrative comparison between the ranking results of Models (4)-(6) and proposed 

models in Example 1. 

Fig. 1 provides an illustrative comparison among Models (4)-(6) and the proposed models in Example 1 

according to the ranking results shown in Table 3. As can be seen,  took first place in Models (5), 

(7) and (8), whereas it gained the second rank in Models (4) and (6). Also  and  took first 

place in Model (6) and Model (4), respectively. Note that has the worst performance in all methods. 
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1 0.8684 0.5990 12 0.7543 12 0.7179 11 0.7200 11 0.7543 12 
2 0.3379 0.1652 14 0.1894 14 0.1988 14 0.1956 14 0.1894 14 
3 0.9475 0.6226 11 0.7678 9 0.7278 10 0.7332 10 0.7678 9 
4 0.9581 0.6734 7 0.8222 6 0.7748 8 0.7796 8 0.8222 6 
5 1 0.7983 1 0.8912 3 0.8730 4 0.8802 4 0.8912 3 
6 0.9766 0.6385 9 0.7554 11 0.7000 13 0.7078 13 0.7554 11 
7 1 0.6478 8 0.8214 7 0.7887 7 0.7869 7 0.8214 7 
8 0.8588 0.5855 13 0.7242 13 0.7135 12 0.7107 12 0.7242 13 
9 0.9477 0.6309 10 0.7590 10 0.7659 9 0.7611 9 0.7590 10 
10 1 0.6813 6 0.7803 8 0.8129 5 0.8114 6 0.7803 8 
11 1 0.7742 2 0.9193 1 0.9048 2 0.9048 1 0.9193 1 
12 1 0.7314 5 0.8850 4 0.8825 3 0.8815 3 0.8850 4 
13 1 0.7503 3 0.9190 2 0.9058 1 0.9041 2 0.9190 2 
14 1 0.7316 4 0.8659 5 0.8128 6 0.8205 5 0.8659 5 
sum  9.0300  10.8544  10.5791  10.5975  10.8544  
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Table 4. Ranking models correlation test in Example 1. 

 

 

 

 

 

 

Table 4 shows the value of Spearman's rank correlation coefficients of the five models in Table 2 to assess 

the similarities between the rankings induced from the corresponding values. In all the cases, the values 

are statistically significant at the 0.0001 level. The test values correlations among Models (4)-(8) are all above 

0.9. Note that Model (7) has the highest correlation with the Model (6) (green) and the Model (8) has the 

highest correlation with the Model (5) (green). Also, the Model (7) has the lowest correlation with the Model 

(4) (red) and the Model (8) has the lowest correlation with the Model (6) (red). 

Example 2. This example is taken from Shi et al. [21] and is about the efficiency evaluation of 20 

machinery manufacturing enterprises (DMUs) in 2014 with four inputs and four outputs. The 

manufacturing data are documented in Table 5. 

 Table 5. Data for 20 machinery manufacturing enterprises. 

 

 

 

 

 

 

 

 

  

The CCR efficiency scores and their rankings for 20 DMUs in the second column in Table 6 show that 10 

of 20 DMUs are efficient, so we cannot find any difference between them for ranking. Thus, we use cross-

efficiency for further distinction. The results of Models (4)-(8) for evaluations of 20 enterprises are shown 

in the third through the twelfth columns in Table 6. 

 

 

 Spearmen's Rho Model (4) Model (5) Model (6) Model (7) Model (8) 

Model (4) 
Correlation 1.0000 0.9516 0.9033 0.9165 0.9516 

Sig.(bilateral)  0 0 0 0 

Model (5) 
Correlation 0.9516 1.0000 0.9429 0.9604 1.0000 

Sig.(bilateral) 0  0 0 0 

Model (6) 
Correlation 0.9033 0.9429 1.0000 0.9912 0.9429 

Sig.(bilateral) 0 0  0 0 

Model (7) 
Correlation 0.9165 0.9604 0.9912 1.0000 0.9604 

Sig.(bilateral) 0 0 0  0 

Model (8) 
Correlation 0.9516 1.0000 0.9429 0.9604 1.0000 

Sig.(bilateral) 0 0 0 0  

Enterprises (DMUs) 1x  2x  3x  4x  1y  2y  3y  4y  

1 15 1361 222 27 3012 926.51 89 4.2 
2 12.2 520 435 205 2144 1146 318 5.6 
3 16.54 226.31 226.31 7 2799.76 1118.97 158.63 8.4 
4 40 595 74.16 7 198 1554.96 220.35 11.5 
5 11.18 0.396 317.3 9 3100 603.6 107.37 3.7 
6 12.61 224.6 224.8 119 3436.8 581.6 1177 4.9 
7 4.91 349 187 6 3801 1404 193 4.3 
8 100 273 285 198 2533 1716 167 8.7 
9 12.22 398.89 398.89 8 5192.85 1955.78 125.79 8.8 
10 11 532.86 532.86 391 3472.98 3550.89 528.22 9.1 
11 11.87 566 566 2 2937 5197 400 0.2 
12 14.66 1044.5 961.62 232 11142 4362 827.14 18.8 
13 11.48 173.71 173.7 4 1975 1508.96 43.8 12.4 
14 24.56 346.04 223.3 11 2605.94 771 173.67 13.5 
15 21.18 179.39 179.39 2 1858.3 504 70 5.9 
16 10.32 454.71 454.71 31 3300.33 1382.91 532.36 4.9 
17 5.33 328 41 4 5549.02 368 987 2.5 
18 10.78 547.99 518.68 11 5837 2619.39 285.45 6.4 
19 15.48 613.72 573.81 13 4820.71 2621.4 404.94 10.4 
20 12.55 615.88 316.79 11 9018.71 384.22 64.99 1.5 
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 Table 6. Results of Models (4)-(6) and proposed model in Example 2. 

 

 

 

 

 

 

 

 

 

 

 

As can be seen in Table 6, the sum of efficiencies in the Model (7) is higher than the Model (6). The sum 

of efficiencies in the Model (8) is higher than the Model (5). Also, the sum of efficiencies in the Model (6) 

and also the Model (7) (neutral models) is higher than Model (4) (aggressive model) and lower than Model 

(5) (benevolent model). Note that in this example, Model (8) with the same performance as the Model (5) 

produces the sum of efficiencies than Model (5). 

 

Fig. 2. Illustrative comparison between the ranking results of Models (4)-(6) and proposed models 

in Example 2. 

Fig. 2 provides an illustrative comparison between the results of the Models (4)-(6) and the proposed 

model for ranking of DMUs in Example 2 according to the rankings that are shown in Table 6. As can 

be seen in Fig. 2, in all models, DMU1, DMU8, and DMU2 (inefficient DMUs) are ranked 20th, 19th, 

and 18th, respectively. Moreover, the DMU17 and DMU13 as efficient DMU have the first and the 

second rank in the five models, respectively. 
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1 0.4544 0.1503 20 0.2064 20 0.1778 20 0.1996 20 0.2060 20 
2 0.4722 0.2083 18 0.3318 18 0.2670 18 0.2833 18 0.3318 18 
3 0.7530 0.4278 10 0.6345 10 0.5365 12 0.5519 12 0.6345 10 
4 1 0.3483 15 0.3835 17 0.4367 14 0.4186 14 0.3835 17 
5 1 0.5218 5 0.7910 5 0.6067 7 0.6360 8 0.7910 5 
6 1 0.4207 12 0.6253 12 0.5417 11 0.5812 10 0.6263 12 
7 1 0.5982 4 0.8397 4 0.7031 4 0.7659 4 0.8392 4 
8 0.7708 0.1707 19 0.3307 19 0.2182 19 0.2688 19 0.3318 19 
9 0.9723 0.5209 6 0.7667 6 0.6174 5 0.6616 5 0.7665 6 
10 1 0.4237 11 0.7211 9 0.5531 9 0.5907 9 0.7211 9 
11 1 0.6135 3 0.8672 3 0.7458 3 0.8239 3 0.8672 3 
12 1 0.4925 8 0.7380 8 0.6139 6 0.6376 7 0.7379 8 
13 1 0.7306 2 0.9685 2 0.8862 2 0.8835 2 0.9685 2 
14 0.8037 0.3557 13 0.4494 15 0.4409 13 0.4153 15 0.4494 15 
15 1 0.3514 14 0.4118 16 0.4172 16 0.3972 16 0.4119 16 
16 0.6840 0.3404 16 0.4992 13 0.4350 15 0.4531 13 0.4993 13 
17 1 0.7711 1 0.9927 1 0.9915 1 0.9927 1 0.9927 1 
18 0.9476 0.5017 7 0.7387 7 0.6018 8 0.6484 6 0.7385 7 
19 0.7987 0.4520 9 0.6302 11 0.5468 10 0.5755 11 0.6301 11 
20 0.8108 0.2785 17 0.4946 14 0.3124 17 0.3569 17 0.4940 14 
sum  8.6780  12.4208  10.6498  11.1415  12.4211  
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 Table 7. Ranking models correlation test in Example 2. 

 

 

 

 

 

Table 7 shows the value of Spearman's rank correlation coefficients of the five models in Table 6. After the 

Spearman test, the test values of correlations among Models (4)-(8) are all above 0.9. In all the cases, the 

values are statistically significant at the 0.0001 level. Similar to Example 1, the Model (7) and the Model (8) 

have the highest correlation with the Model (6) and Model (5), respectively. Also, the Model (7) has the lowest 

correlation with the Model (4) and the Model (8) has the lowest correlation with the Model (6). 

5 | Conclusion 

Cross-efficiency evaluation is a utility to enhance the power of discriminating efficient DMUs in DEA. 

Although this method is widely used, it also has some drawbacks, such as the existence of multiple optimal 

weights for DEA models. Secondary goals are proposed based on aggressive, benevolent, and neutral 

points of view for overcoming this issue. In this paper, we proposed two models. Based on the neutral 

strategy in DEA, the first model seeks input and output weights that not only undertake the maximum 

self-assessment efficiency of DMU under evaluation but also maximize the sum of output weights. 

Therefore, increasing non-zero weights increases the efficiency of each DMU output under evaluation. 

The second model produces a set of comparable weights. According to these weights and using the matrix 

of cross weights, input and output weights are generated to calculate the efficiency of the DMUs. We 

compare the performance of the proposed models by three well-known models with an optimistic, 

pessimistic and neutral view using two numerical examples. It was found that the first proposed model 

with the same performance has less computational complexity. Also, the second model (matrix of cross-

weights) has the same performance as the optimistic compared model. Existing literature proves that few 

studies have considered ranking DMUs with network structure using cross-efficiency evaluation. 

Therefore, the proposed models can be effectively applied to rank DMUs with network structure in DEA. 
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