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Abstract 

 

1 | Introduction 

Welding operation is extensively used in almost every engineering structure, such as air vehicles, 

marine vehicles, ships, bridges, automobiles, buses, the piping industry, and pressure tanks [1]. 

Flexion, tension, and integrated fatigue loads, which cause the growth of cracks-like defects, generally 

affect welded connections. Defects common in welded joints can be classified as low diffusion of the 

weld, gas pores, undercutting at the weld toe, etc. Therefore, defects give rise to stress concentrations 

by the crack-like. The defects are usually placed at the weld toe [2]. Besides, residual stresses can 

occur in welded joints due to discordant thermal strains caused by increasing and decreasing 

temperature cycles. These stresses, called fatigue, also negatively affect the life of welded structures. 

Tensile residual stress of yield strength is located at the weld toe regions [3]. 

One of the most common welding faults caused by stress is undercutting. Defining the Stress 

Concentration Factor (SCF) is an essential milestone in the fatigue failure analysis of structures. The 
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findings revealed that SCF and its associated factor, the fatigue notch factor (Kf), significantly impact 

the analyses. One of the results of stress concentration in welded components is weld discontinuities. 

Weld geometry parameters such as weld flank angle, weld throat, and weld toe radius also affect stress 

concentration [4]. 

While reviewing the literature, numerical and experimental studies are handled together and separately, 

as shown in the literature summary table (Table 1). In addition, studies using predictive models such as 

Artificial Neural Networks (ANNs), support vector machines, regression methods, Lagrangian 

interpolation methods, and Bayesian methods are few compared to numerical and experimental studies. 

In this study, the effect of different training set ratios and different neuron numbers used in the hidden 

layer on the forecasting performance of ANN, which is a powerful tool in prediction, has been 

investigated and aimed to fill the gap in the literature and to achieve stronger prediction success. 

Table 1. Some studies in literature. 

 

Numerical and experimental analyses derive the results of numerous SCF investigations in the literature. 

There are few AI-supported investigations, and using current mathematical models and conducting 

Reference Year Material Method(s) 
Prediction 
Performance 

Numerical/ 
Experimental/ 
Prediction Model 

Guo et al. 
[5] 

2022 
High-strength 
steel wires 

Finite element method, 
Bayesian method 

95% Exp.+Pred. 

Abbasnia et 
al. [6] 

2021 
Orthotropic 
plate 

A new method based on 
regression analysis 

99% Num. 

Makki et al. 
[7] 

2018 Welded joints Response surface models NA Num. 

Li et al. [8] 2020 
Cable steel 
wire 

Finite element model NA Exp. 

Wang et al. 
[9] 

2020 
Fillet weld 
joints 

Parametric formula NA Num. 

Jiang et al. 
[10] 

2018 
Multi-planar 
tubular DT-
joints 

Parametric equations More than 80% Num. 

Dabiri et al. 
[4] 

2017 T-welded joint Neural network 99.99% Pred. 

Bajić et al. 
[11] 

2017 Pipeline 
Finite element method, 
3D DIC method 

NA Exp. 

Wang et al. 
[12] 

2016 
Cylindrical 
pressure 
vessels 

Extreme learning 
machine 

98.73% Pred. 

Ozkan and 
Toktas [13] 

2016 
Rectangular 
plate 

Analytical model, 
regression analysis, finite 
element analysis, ANN 

96.61% Num.+Exp.+Pred. 

Ji et al. [14] 2015 Corrosion pits 
The least-squares support 
vector machine 

NA Pred. 

Zappalorto  
and Carraro  
[15] 

2015 
Orthotropic 
composite 
plates 

Analytical modeling NA Num. 

Darwish [16] 2012 
Isotropic plate 
with a circular 
hole 

ANSYS parametric design 
language 

94.4%-99.7% Exp. 

Cerit [17] 2013 
Circular 
cylinder 

3D stress analyses, 
torsion formula 

NA Num.+Exp. 

Cerit et al. 
[18] 

2010 
Butt welded 
joint 

Reinforcement metal in 
butt welded joint 

99% Num.+Exp. 

Arola and  
Williams [19] 

2002 
AISI 4130 CR 
steel 

Arola-Ramulu model 98.00% Num. 

Ida and 
Uemura [20] 

1996 
Fillet welded 
joint 

Ushirokawas's and Tsuji’s 
formulae 

NA Num. 

Chang and  
Dover [21] 

1996 
Tubular X and 
DT joints 

Parametric formulae and 
regression analysis 

NA Num.+Pred. 

Guagliano et 
al. [22] 

1993 Crankshaft Bidimensional model 91.4%-93.1% Num. + Exp. 
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experiments is complex and time-consuming. In addition, the studies have been carried out considering 

certain values of the parameters and require new analysis and calculations for different parameter values. 

ANN-based models with high prediction accuracy can process all possible experimental data quickly. The 

company aims to reduce the number of defects and errors caused by welding. When the stress 

concentration value in a significant part of the workpiece is exceptionally high, job safety decreases. 

Controlling the welding seam in welding constructions is critical in this regard. Due to the non-linear 

relationships between the parameters affecting the SCF value, one of the most effective ways to define 

SCF is through modeling. To get more effective results and reduce welding errors, a model is developed 

for SCF. 

Numerous experiments are not required to comprehend the correlations between parameters because of 

the developed ANN model. Because ANN is a technique that does not require any machinery or 

equipment, numerous experiments, and can generate useful results. ANN is one of the most valuable 

methods of diversity areas for researchers [23]. Thus, it avoids the need for experimentation, assures that 

welding faults are identified beforehand, and lowers the rate of defective products, increasing job safety. 

Recent advancements in the field of ANN technology have helped overcome various issues in engineering 

procedures. Because of its effective prediction performance, the ANN technique is selecte for the 

prediction model of the SCF parameter, which is influenced by various parameters [24], [25]. 

Even when the parameters impacting the SCF value fluctuate, an ANN-based model is built into this work 

to calculate the SCF value without the requirement for long-term repeating tests. In this study, an ANN-

based model was developed to determine the SCF value without requiring time-consuming, repetitive 

experiments even when the parameters affect the SCF value change. In addition, it has been investigated 

how constructing the ANN model with different training set ratios and the change in the number of 

neurons in the hidden layer used in the model is effective in estimating the SCF value. 

In summary, the remaining sections of the research cover the following subjects. Section 2 discusses the 

structure and properties of the ANN model, as well as detailed information regarding SCF. The data is 

obtained, normalization procedures are performed, and the data is then integrated into the ANN model in 

Section 3. Then, the prediction performances of six ANN models are evaluated and compared in Section 

4. By considering many statistical error types. Finally, the results and findings are included in the 

conclusions section. 

2 | Methodology 

2.1 | Stress Concentration Factor 

According to experimental results, the stress concentration on welded sections is not uniform. There is no 

uniformity in manufacturing these elements due to cracks, voids, and other loads. Rarely, occurring stress 

could be tallied, unlike medial stress (F/A). Also, some sections' stress may be at the highest level. The 

notch effect occurs when the stress concentration level reaches its maximum value in particular areas, and 

this difference from the average value causes stress concentration. The change is depicted in Fig. 1. 

Fig. 1. View of notch sections cause stress concentrations in some tensile conditions. 
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This situation is calculated mathematically as Eq. (1) where  describes maximum stress,  represents 

the cross-sectional area, and F is force. 

In Eq. (2), the cross-sectional area is stated as  SCF is a coefficient of total stress loads called SCF. All 

along SCF value is bigger than 1. So SCF is a ratio of maximum regional stress ( ) to the average 

value ( ) [7]. 

 

 

 

2.2 | Artificial Neural Networks 

ANN is a tool that has been developed inspired by neural networks in the human brain and is used to 

solve complex problems [4]. More than one artificial neuron interacts with each other in a hierarchical 

structure in ANN [26]. Different elements, such as cells and nodes, exist in this structure, apart from 

neurons. Some links show the relations of the nodes with each other. Each link has a weight and can be 

unidirectional or bidirectional. As in the solution algorithms of traditional programming, the step-by-

step solution approach is replaced by a neural network structure that searches for a solution by itself 

according to the predetermined rules in ANN. This neural network structure generates new rules over 

time and compares the results from these rules with the sample data set results [27]. 

ANN offers a highly effective estimation for many values, including intermediate values for SCF, saving 

time and money over performing experiments for every value of each parameter in the input layer. 

However, the future addition of a new parameter, makes it simpler to analyze its impact. Without this 

model, numerous experiments would be required to add a single parameter. 

ANN is architecturally composed of an input layer, a hidden layer (one or more), and an output layer 

[28]. The network is tested for the input and output layers. Then, the weights required to give the desired 

output are calculated. This calculation is called learning. Three different learning methods are used in 

ANN: supervised learning, unsupervised learning, and reinforcement learning, respectively. The purpose 

of learning is that the actual and ANN outputs are as close as possible. This value also determines the 

successful performance of the network.

In general, ANN is divided into feedforward and feedback networks according to the direction of 

information progression. The input layer, hidden layers, and output layer are in both groups. In 

feedforward networks, weights establish connections between neurons in the layers. Information moves 

unidirectionally from the input to the output layer [29]. There is no connection between units in the 

same layer in feedforward networks. However, neurons are interconnected and have dynamic memory 

in feedback networks. Due to the context layer in feedback networks, the hidden layer outputs are 

weighted back to the input layer and re-enter the hidden layer as input. Therefore, information also 

moves backward in these networks. 

The backpropagation algorithm is one of the most used among many different learning algorithms in 

ANN. The backpropagation algorithm constantly compares the error rates of the actual values in the 

data set with the output values of ANN and updates the weights. If the output values exceed the desired 

value, the ANN returns to the previous step by changing the weight values [4]. 

The input layer, which contains problem-related parameters, gets data processing instructions from 

another cell or the outside. By summing the multiplication of the information received in the cell (X1, 

X2... Xn) and the weights of the cells (W1, W2... Wn), the sum function estimates the cell's net entry 

information [30]. Eq. (3) denotes the sum function where  is the value of input criteria and  is the 

weight. Fig. 2 depicts the structure of ANN. 

 

(1) 

(2) 
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 W2 Net F(Net)

Activation function

Output

 
Fig. 2. The structure of ANN.  

 

3 | Implementation 

The parameters used in the model are determined within the scope of the study. After the data is obtained 

using ANSYS mechanical simulation software, data is normalized, and the ANN models are generated. 

The flow chart of the study is shown in Fig. 3. 

Fig. 3. Flow chart of the study. 

3.1 | Data Acquisition 

In this study, estimations are handled based on a V-welded workpiece. Undercut defects are common after 

an arc welding operation. Fig. 4 shows the parameters that affect the undercut. 

Fig. 4. Undercut sight of work piece. 

The pressure value exposed to the workpiece from the front side to the undercut is 100 MPa. According 

to the parameters below Table 2, different workpieces are created as visuals and analyzed to obtain SCF 

values. A, R, h, and θ1 are affecting parameters for SCF, and Table 3 illustrates some of the experimental 

values for these parameters. These values are calculated using ANSYS Mechanical Simulation Software 

[18]. 

 

 

 

(3) 
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Table 2. Parameters of undercut. 

 

 

 

Table 3. Experimental data values. 

 

 

 

 

  

 

The data normalization procedure utilized in ANN effects positively trains the network [31]. As a result, 

the experimental data are normalized between 0 and 1 using Eq. (4), where  is the normalized data,  

is the experimental data,  is the minimum value of experimental data and  is the maximum value 

of experimental data. 

 

 

3.2 | Developed ANN Models 

This study develops six different ANN models for predicting SCF value. The training dataset used (70-

90 percent) and the number of neurons in the hidden layer (5-10-20) differ among these models. 

Developed ANN models consist of three input variables (Undercut depth (h) / Undercut deep Radius 

(r)), reinforcement angle (Q1), and deep angle of welding seam (Q2), and an output variable as SCF. 

 

Fig. 5. ANN topology of proposed models. 

ANN models have three input layers, a hidden layer, and an output layer, shown in Fig. 5 as a topology 

of models. The features of the developed ANN model are given in Table 4. 

 

h (mm) θ1 (degree) An (mm) r (mm) 
0.5 120 3 0.5 
1 140 4 1 
1.5 160 5 1.5 
2 180   
2.5    

 
h 

θ1 = 180 θ1= 160 θ1= 140 θ1=120 

 SCF 

A:3 R:0.5 

0.5 1 2.83 3.14 3.3 3.36 
1 1.41 4.41 4.72 4.91 4.94 
1.5 1.73 5.07 5.41 5.5 5.56 
2 2 6.08 6.27 6.34 6.41 
2.5 2.23 7 7.27 7.23 7.31 

… … … … … … … 

A:5 R:1.5 

0.5 0.57 2.04 2.17 2.37 3.48 
1 0.81 2.72 2.85 2.93 2.94 
1.5 1 3.23 3.35 3.41 3.43 
2 1.15 3.74 3.83 3.88 3.89 
2.5 1.28 4.17 4.25 4.29 4.3 

. (4) 
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 Table 4. Architecture and functions of the implemented ANN. 

 

 

 

  

4 | Statistical Analysis 

The prediction performances of the models are compared by calculating MAE, MAPE, RMSE, and R2 

values. According to the results, the prediction performance of the ANN model developed using a training 

set ratio of 90% and including five neurons in the hidden layer is better. Forecast performances are 

calculated with the following formulas Eq. (5-8) to indicate  actual values  predicted values. Table 5 is 

obtained with the help of the following formulas by comparing the experimental data with the results of 

the ANN model predictions. 

 

Table 5. Prediction performance of the models. 

 

 

Fig. 6. 70% training dataset used ANN models. 

The blue line represents the experimental (real) data, while the hidden layer's black, red, and green dots 

indicate 5-10-20 neurons in Fig. 6 and Fig. 7, respectively. The prediction performances of three 

Network Feedforward Backpropagation Network 

Training function Levenberg-Marquardt 

Learning function 
Gradient descent with momentum weights 
and bias learning function 

Transfer function Tan sigmoid & Linear transfer function 
Performance function Mean squared error 
Training dataset rate 70%-90% 
Number of neurons in the hidden layer 5-10-20 

(5) 

. (6) 

  (7) 

  (8) 

Training set ratio Number of Neurons in the Hidden Layer MAE MAPE RMSE R2 

70% 5 0.0238 10.87% 0.0318 0.9761 
10 0.0312 16.78% 0.0481 0.94 
20 0.0596 22.42% 0.0955 0.8788 

90% 5 0.0094 2.50% 0.0129 0.9834 
10 0.0243 9.25% 0.0328 0.9818 
20 0.0390 9.95% 0.0733 0.8157 
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constructed ANN models are calculated using linear regression analysis and mean square errors. It is 

clear that the prediction performance of the ANN model, which includes five neurons and is trained 

with both 70% and 90% of the dataset, produces the most realistic and effective results based on the 

SCF value. 

 

Fig. 7. %90 training dataset used ANN models. 

 

5 | Conclusions 

For more reliable welding operations, there should be no defects in the welding seams or within an 

acceptable range in welded constructions. The undercut is one of the most common welding flaws found 

on workpieces generated by butt welding. When the SCF value is determined, it is possible to decide 

whether to accept welding flaws in the case. SCF is influenced by a wide variety of parameters and their 

ranges, making it difficult to calculate a more precise SCF. Due to the many costs and limits of 

experiments, including the necessity for qualified personnel, repeat studies are extremely challenging. 

Traditional models struggle to address problems with such a complex structure. Thus, ANN is 

frequently used in modeling complex systems, providing good estimate performance between prediction 

models. 

In this study, considering the calculation complexity of SCF, six ANN models are developed that differ 

in terms of the number of neurons in the hidden layer and the percentage of the training dataset. 6 ANN 

models, which include three input layers (Undercut depth (h) / Undercut deep Radius (r)), reinforcement 

angle (Q1), and deep angle of welding seam (Q2), a hidden layer which included three different numbers 

of neurons (5-10-20) and an output layer as SCF. 70% and 90% of the dataset is used for the training 

process of ANN models. Prediction performances of 6 developed ANN models are compared 

statistically. The best prediction performance is obtained with the 90% training dataset and five neurons 

in the hidden layer (R2 = 0.9834). This value demonstrates that the SCF value may be obtained with good 

estimation performance without the requirement for experimentation and with a more cost- and time-

effective use of laboratory resources. However, it is possible to determine the result of even a minor 

modification rapidly and accurately in any parameter. The two developed ANN models, which include 

five neurons in the hidden layer, are trained with 70% and 90% training datasets and are most effective 

in predicting SCF value. The increasing number of neurons in the hidden layer is found to have a 

negative impact on the prediction performance of ANN models. Therefore, studies can be made on the 

optimum number of neurons in the hidden layer between 5-10. 

Compared to numerical and experimental studies, there are few studies on welding prediction models. 

It is crucial to thoroughly evaluate the situation and build the properly ANN model while building a 

prediction model. Good results are likely to be attained with a properly built model, saving time on 

experiments. The findings of the current study support that, in contrast to previous estimation studies 

for using specific parameter values, high estimation accuracy may be achieved by using all parameter 

values. The resulting predictions and the numerical experiment results are in good agreement with 
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testing examples, indicating the remarkable performance of ANN in the prediction of SCF of butt welding. 

Finally, numerous quantitative evaluations based on statistical error types validate the accuracy and 

effectiveness of the presented ANN predicting method. 

The findings of this study enable effective welding error reduction without the need for experimentation. 

It makes suggestions for the research to be conducted in increasing job safety so that a useful result can be 

obtained in less time and at a lower cost. It should be mentioned that the model of this study is only 

applicable for variables that affect SCF. However, the proposed approach also provides a workable 

framework for additional problems. Machine learning techniques could also be employed with many 

parameters and experiments in future works. 
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