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Abstract 

   

1 | Introduction  

Job sequencing and scheduling problems are one of the elemental and essential applications of 

operations research [1], [2]. Scheduling problems frequently require the combination of several 

elements and it is an exceptionally perplexing one because of different limitations, for example, 

routing,and assignment [3]. However, significant assumptions that exist in real-world scheduling 

problem are constantly overlooked [4]. Job shop scheduling is an optimization process in which jobs 

are assigned to handle particular cpmplex sequence [5]. Furthermore,  it is an optimization problem 

in which a collection of  jobs should be processed through a collection of  specific machines [6]. 

Each job contains a particular set of operations, that needs to be processed in keeping with a given 

order. When we have 𝑚 number of machines and  number of jobs in production scheduling, then 

there are  number of possible sequences. However, the most optimal sequence minimizes the 
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total elapsed time (makespan) as well as the idle time. Consequently, the sequencing problems are 

concerned with the suitable choice of a sequence of jobs to be given a finite number of machines [7]. 

The integral elements in sequencing and scheduling models are resources (machines) and tasks (jobs). Here 

we are concerned to work with a static system in which the set of tasks available for scheduling does not 

change over time. We presume that each machine executes one job simultaneously, and each job is 

processed by a single machine with no pre-emption. That is, we are considering the non-preemptive flow-

shop scheduling problem. 

It is worth mentioning here that the terms Sequencing and Scheduling are both associated with the job 

shop (machine order varies) and flow shop (machine order is fixed) process. Sequencing is the serial, where 

the jobs (tasks) are executed through the machines (resources). On the contrary, scheduling is the process 

of allocating machines to accomplish a set of jobs over a timeframe. Several notations that we are going to 

use throughout this paper are given in Table 1. 

 Table 1. Mathematical notations used. 

 

 

 

 

 

  

Review work with several existing exact algorithms is conducted here. Although the existing algorithms 

are not recent, the selected algorithms work pretty well in minimizing the makespan and the idle time in a 

flow shop environment. The minimum makespan and idle time are evaluated by applying the four 

prominent exact algorithms in this manuscript. Furthermore, the goodness of these existing algorithms is 

measured by calculating the Lower Bound (LB) which provides a clear idea of their applicability. 

This paper will discuss several exact algorithms to solve flow shop sequencing and scheduling problem 

where the objective is to minimize the total elapsed time and the idle time. The remaining portion of this 

article is presented as follows: in the next section, the previous works have been summarized on the flow 

shop scheduling problem conducted by other authors. Section 3 represents a generic flow shop problem 

along with the mathematical statements. In the following section, the exact algorithm to solve the 

sequencing and scheduling problem has been discussed. An empirical comparison between these 

algorithms is documented in Section 5. Investigation of big data has been introduced as an advanced 

insightful innovation, including the considerable scope and complex applications [8]. A real-life problem 

has been adopted, where data is collected from a local Ready-Made Garments (RMG) manufacturing 

company. Finally, Section 6 represents the findings of the study and Section 7 shows the conclusion and 

future recommendations.  

2 | Literature Review 

Several studies on job sequencing and scheduling have been conducted so far. According to an analysis of 

relevant literature, most of the exact and heuristic algorithms have been developed for makespan 

minimization in a flow shop environment over the past fifty years. The earliest algorithm known as Johnson 

[9] considered the two-machine flow shop scheduling problem to minimize the total elapsed time [10]. 

Notation Description 

Set of jobs, , assigned by  

Set of machines, , assigned by  

No. of jobs to be processed 

No. of machines in a shop 

Job  processing time on machine  

Maximum completion time or makespan 

Upper bound at the beginning 

Lower Bound (LB) of the makespan  

Partial sequence 

Not part of the partial sequence  
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After that, the researchers developed different exact, heuristic, and meta-heuristic algorithms to 

minimize the total elapsed time for 'm' machine problems. 

Palmer [11] utilized 'a single iteration' technique to minimize the total elapsed time. The sequencing was 

conducted depending on the 'Slope Index (SI)' estimation, which is then arranged in the decreasing order 

to get the optimal sequence by Palmer's heuristic technique. The objective was to prioritize the jobs so 

that jobs with processing times that increase from machine to machine can receive higher priority [11]. 

This approach can be used to solve -machine and -job flow shop scheduling problems. Ignall and 

Schrage [12] developed Branch and Bound (B&B) algorithms for the Permutation Flow Shop Problem 

(PFSP) with the objective of makespan minimization. 

Campbell et al. [13] developed a makespan minimization heuristic for scheduling problems in a flow 

shop environment that augments Johnson's rule. It uses several iterations to arrive at the eventual 

solution, unlike the modified Johnson method [13]. This method is known as 'CDS heuristic' and is a 

widely used heuristic. A variety of distinct sequences are constructed here, among which the optimum 

sequence is the one that has the least makespan. Furthermore, Johnson's rule is followed at each 

iteration. Gupta [14] proposed a similar heuristic to Palmer's SI method. He described the SI differently 

by considering some interesting cases regarding the optimality of Johnson's algorithm for a three-

machine scheduling problem [14]. Dannenbring [15] introduced the Rapid Access (RA) procedure which 

incorporates the benefits of both Palmer's SI method and the CDS method. Its objective is to generate 

a suitable solution as rapidly as feasible. Rather than solving  fictitious two-machine problems, it 

uses Johnson's rule to solve only one fictitious problem, with processing times specified by a waiting 

strategy [15]. 

Muhammad et al. [16] designed a framework consisting of the sum of individual job processing times. 

According to this heuristic approach, jobs with a higher total processing time across all machines must 

be prioritized over the jobs with lower total processing times. This approach does not convert the initial 

𝑚-machine scheduling problem into a two-machine fictitious problem. The algorithm constructs the 

eventual sequence, incorporating a new job at each stage and determining the optimal partial sequence 

[16]. They used this idea and proposed the NEH heuristics algorithm, which minimizes the total elapsed 

time.  

Kusiak [17] implemented Johnson's method more efficiently for solving n-job & two-machine flow-

shop scheduling problems. The suggested method is especially effective for scheduling problems 

involving a large number of jobs . 

Rajendran and Chaudhuri [18] devised a heuristic approach for the flow shop scheduling problem to 

minimize the elapsed time, the flow time, the idle time, and many other objectives. The initial sequence 

was derived from the CDS algorithm for this improved heuristic. The heuristic choice correlation is 

suggested and utilized to minimize the search for feasible improvements in various objectives. In 

scheduling, it appears that decision-making objectives are widespread [18]. 

Modrak et al. [19] compared various heuristic algorithms depending on the makespan. Palmer's SI 

method, CDS method, Gupta's algorithm, NEH algorithm, and MOD algorithm are among the 

heuristics that have been selected. Palmer used a single iteration to achieve the feasible solution, whereas 

the NEH approach utilized the maximum number of iterations. Palmer's method was relatively quick; 

however, it was inaccurate, and the solutions acquired from this method do not correspond to the 

optimal solution obtained by the other heuristics algorithms [19].  

Rao et al. [20] demonstrated a deviation procedure to solve the flow shop scheduling problem. The time 

deviation method is a modified heuristic strategy for determining the optimum job sequence and the 

minimum makespan [20]. This heuristic method described the processing of  jobs on 2 machines,  

jobs on 3 machines, and  jobs on  machines.  
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Gupta et al. [21] suggested an approach for generating the ideal job sequence for an -job & -machine 

scheduling problem with the minimum number of iterations. This recent technique is referred to as the 

SAI method. The method adopted for solving a huge variety of scheduling problems is the most effortless. 

It takes the fewest iterations to arrive at the best job sequence [22]. The SAI method finds the optimal job 

sequence by using mathematical reasoning. 

3 | Representation of Flow Shop Problem 

A mathematical statement of the flow shop problem can be made as follows: 

Let  and  be two finite sets. On account of the industrial origins of 

the problem, the  are called 𝑗𝑜𝑏𝑠 and the  are called machines. In a flow shop, processing all jobs 

require machines in the identical order and every job is done by every machine exactly once. An instance 

of a 3-job & 2-machine flow shop scheduling problem is illustrated in Table 2. 

 Table 2. A flow shop scheduling problem with 3 jobs and 2 machines. 

 

  

  

  

Without changing order, each job must first go to  and then . That is, the order of machines to 

process these jobs is the same . 

4 | Methodology 

A flow shop problem assumption is considered during sequencing the jobs and is illustrated in Table 3. 

 Table 3. Assumptions in sequencing problems. 

 

 

 

 

 

 

 

 

4.1 | Johnson’s Algorithm 

Johnson's algorithm is a technique for scheduling tasks in two workstations. Its principal objective is to 

locate an optimum sequence of tasks to reduce 'makespan'. The technique minimizes the makespan and 

idle time in the case of two workstations. Moreover, the method determines the smallest makespan in the 

case of three or more workstations if additional constraints are met [9]. 

Machine (i) 

Job (j) M1 M2 

J1 7 11 

J2 13 3 

J3 5 8 

Hypotheses about jobs 
(job-related assumptions) 

At any time, no more than one machine can process a job. 
Every job must go through the machines in a specific order. 
Depending on the machine order, a job is processed as early as 
possible. 
There are no priorities; therefore, all jobs are equally essential. 

Hypotheses about machines 
(machine-related assumptions) 

Each machine can process a maximum of one job at a time. 

After starting an operation, it has to be completed. 
From each category, there will be only one machine. 
Any machine does not process a job more than once. 

Hypotheses about processing times 
(time-related assumptions) 

Each job's processing time on each machine is independent of 
the sequence in which the jobs are processed. 
Each job on each machine has a predetermined and integer 
processing time. 
The amount of time required to transfer a job from one machine 
to another is nearly negligible. 
Transportation times and setup times are incorporated in the 
processing times. 
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4.1.1 | Johnson’s algorithm for n jobs and 2 machines 

Assume that jobs must be processed through machine 1 first, then through machine 2. The minimum 

makespan (or total elapsed time) is determined using Johnson’s algorithm. 

The steps involved in Johnson’s method are as follows: 

Let  Processing time for job  on machine  

Find the job with the least . 

If  , the job turns into the first job. 

If  , the job turns into the final job. 

Eliminate assigned job from the list and repeat (break ties arbitrarily). 

Calculate the total elapsed time as per the sequence determined and calculate the idle time associated 

with machines. 

4.1.2 | Johnson’s algorithm for n jobs and 3 machines 

Suppose now we have three machines namely,  and  are the processing times in machine 

 and  respectively. Johnson's Algorithm may be expanded to resolve the exceptional cases when at 

least one of the following conditions is met: 

 

Then replace the problem with a similar problem, considering  jobs and two imaginary machines say, 

 and  and corresponding processing time as  and  are defined by  and . 

4.1.3 | Johnson’s algorithm for n jobs and m machines 

Suppose that expected processing times for  Jobs and  machines are represented in Table 4. 

 Table 4. Processing times for n jobs and m machines. 

 

 

  

 

A result for this problem is achievable if and only if any of the following cases are fulfilled: 

I. The least processing time on machine  is greater or equal to the highest processing time 

among machines . 

II. The least processing time on machine  is greater or equal to the highest processing time 

among machines . 

That is,  

Either, , 

 

 

               Machines 
Jobs 
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Or, , 

The following steps are involved in determining the optimal sequence: 

Step 1. Investigate whether it fulfils the previously mentioned case. 

Step 2. If the case is fulfilled, continue further, or else the technique fails. 

Step 3. Convert the  machines problem into an identical two machines problem, say G and H, so that 

  (Excluding the time of the last machine), 

     (Excluding the time of the first machine). 

Step 4. Using Johnson’s method, find the optimal sequence of 𝑛 jobs through twop machines. 

4.2 | B&B Algorithm 

B&B algorithm substitute the initial problem into a group of sub-problems and can be used in minimizing 

the total flow time [23]. As per Ignall and Schrage [12], the initial problem is reformulated into a ‘solution 

tree’, where every node indicates a LB of the desired ‘objective function’ [24]. 

The B&B algorithm was utilized and suggested by Kim [25], where every node indicates the partial 

sequence of the eventual outcome. This partial sequence is termed as |PS|, and the group of jobs that are 

not part of it is termed as |NPS|.  

Once a node gets branched, the partial sequence corresponding to the branched node receives a new job 

from |NPS|, which generates a single sequence or several partial sequences [25]. For each node generated, 

one LB is determined for the total elapsed time [24]. 

Ronconi [26] used the ‘depth-first search’ algorithm to select the branching node, which chooses the node 

in the partial sequence with the most jobs. In the event of a tie, the node with the minimum LB for the 

‘makespan’ is chosen [26].  

Ronconi’s successful implementation of the node selection algorithm in the permutation flow shop with a 

blocking problem was the reason for its selection [24]. Fig. 1 presents the ‘flow chart’ of the B&B algorithm. 

A pseudo-code for this algorithm is shown below. 

B&B Algorithm for the PFSP 

Step 1.  

 

 

Step 2.  
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Step 3.  
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Fig. 1. Flow chart of B&B algorithm for the General Flow Shop Problem (GFSP). 

4.3 | Kusiak’s Algorithm 

Andrew Kusiak introduces this algorithm, which is a more efficient implementation of Johnson’s 

scheduling technique. The steps of the algorithm are as follows: 

Step 1. Set . 

Step 2. For each job, store the least processing time and the corresponding machine number. 

Step 3. Arrange the resultant list with job number, time, or machine number in ascending order of 

processing time. 

Step 4. For every entry in the arranged list: 

If   

 Set the associated job number at the place of 𝑘, 

  

Else 

 Set the associated job number at the place of 𝑙, 

 . 
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End if 

Step 5. Terminate when the complete list of jobs is filled. 

4.4 | SAI Algorithm 

The 'step-wise' iterative technique of SAI algorithm to find out the optimal sequence for 'n jobs' on 'm 

machines' are explained below: 

Step 1. The processing time of  jobs (  to ) on 𝑚 machines (  to ) is illustrated in Table 5. 

Table 5. Processing time of  jobs on  machines. 

 

 

 

 

 

 

 

 

Step 2. Investigate the jobs and choose the least job processing time among all  jobs  for 

each machine and later checked it with  sign. Suppose that the ‘minimum processing time’ is appeared 

at  job on  machine then mathematically, this can be illustrated as; 

 

Step 3. In a similar manner, choose the least processing time among all  machines  for each 

job and later checked it with  sign. Suppose that the ‘minimum processing time’ is appeared at  

machine for the  job then mathematically, this can be illustrated as; 

 

Step 4. Investigate the rows and columns of the table once again, chose the cell with  sign. Suppose 

that the  sign has appeared at the cell that relates to the  machine and  job. Then the  job is 

eliminated from the table and is inserted in the optimal job sequence. 

Step 5. Step 1 to 4 are continued until every one of the jobs are set in the optimal job sequence. There 

might be a circumstance when a tie has happened; 

I. When  appears at more than one cell, the job with 'least processing time' is chosen and is set in the 

optimal job sequence. 

II. When  appears at more than one cell, and the processing time for the assigned jobs is identical. After 

neglecting the other higher-order machines, the job that will process on the lower-order positional 

machine is chosen. 

Step 6. Finally, we compute the idle time and makespan of machines. 

5 | Numerical Experiments 

A practical problem has been considered to minimize the makespan of the n-jobs and m-machines flow 

shop problem. The numerical data is illustrated in Table 6, gathered from a RMG manufacturing 

             Machines            
           Jobs 
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company. The manufacturer has to perform two operations: cutting and sewing on various jobs (products). 

The required time to execute these operations for each job is specified. 

Table 6. 3-jobs and 3-machines flow shop problem. 

 

 

 

Table 7 gives all the possible sequence and the corresponding makespan and idle time. 

Table 7. All possible sequences (flow shop scheduling for three machines). 

 

 

 

 

Fig. 2. Sequences and makespan. 

Fig. 3. Sequences and idle time. 

A 4-jobs and 4-machines flow shop problem is illustrated in Table 8. 

Jobs Cutting (Minutes) Sewing (Minutes) Packing (Minutes) 

J1 3 4 7 

J2 8 5 9 

J3 7 1 5 

Total processing time 18 10 21 

Sequence Makespan (Mins) Idle Time (Mins) 

J1-J2-J3 30 41 

J1-J3-J2 32 47 

J2-J1-J3 34 53 

J2-J3-J1 34 53 

J3-J1-J2 32 47 

J3-J2-J1 36 59 

J1-J2-J3 J1-J3-J2 J2-J1-J3 J2-J3-J1 J3-J1-J2 J3-J2-J1

ET 30 32 34 34 32 36
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 Table 8. 4-jobs and 4-machines flow shop problem. 

 

 

 

 

All possible sequences and the corresponding elapsed time and idle time is tabulated in Table 9. 

 Table 9. All possible sequences (flow shop scheduling for four machines). 

 

 

 

 

 

 

Fig. 4. Sequences and total makespan. 

Fig. 5. Sequences and total idle time. 

 

Jobs Cutting (Mins) Sewing (Mins) Pressing (Mins) Packing (Mins) 

J1 6 5 3 9 

J2 7 6 5 7 

J3 5 4 6 8 

J4 8 3 4 6 

Total processing time 
(in minutes) 

26 18 18 30 

Sequence Makespan (Minutes) 
Idle Time 
(Minutes) 

Sequence Makespan (Minutes) 
Idle Time 
(Minutes) 

J1-J2-J3-J4 45 88 J3-J1-J2-J4 45 88 
J1-J2-J4-J3 45 88 J3-J1-J4-J2 45 88 
J1-J3-J2-J4 44 84 J3-J2-J1-J4 45 88 
J1-J3-J4-J2 44 84 J3-J2-J4-J1 45 88 
J1-J4-J2-J3 47 96 J3-J4-J1-J2 45 88 
J1-J4-J3-J2 44 84 J3-J4-J2-J1 47 96 
J2-J1-J3-J4 48 100 J4-J1-J2-J3 47 96 
J2-J1-J4-J3 48 100 J4-J1-J3-J2 46 92 
J2-J3-J1-J4 48 100 J4-J2-J1-J3 50 108 
J2-J3-J4-J1 48 100 J4-J2-J3-J1 50 108 
J2-J4-J1-J3 48 100 J4-J3-J1-J2 47 96 
J2-J4-J3-J1 48 100 J4-J3-J2-J1 47 96 
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In Figs. 4 and 5, we have shown how the total idle time and total elapsed time vary with sequences' choice. 

In Table 10, we will apply all four algorithms to determine an optimum or nearly optimum sequence. 

 Table 10. Consider following 5-jobs and 3-machines flow shop problem. 

 

 

 

The minimum makespan obtained by the four algorithms are as follows, 

1. Johnson’s Algorithm=44. 

2. B&B Algorithm=44. 

3. Kusiak’s Algorithm=44. 

4. SAI Algorithm=46. 

Goodness of an algorithm measures the error percentage of the algorithm shown in Eq. (1). 

In order to find out how good the algorithm is, we have to determine the LB for the makespan based on 

each of the machines. Now, 

LB based on M1, , 

LB based on M2, , 

LB based on M3, . 

Now out of the 3 LBs the maximum one is the best bound. 

Based on the LB, now we know that the optimum makespan cannot be less than 44. So, the makespan can 

only be 44 or more. The goodness measure in Table 11 shows that for this problem all the three methods 

except SAI give similar result and achieves the best possible sequence with 0% error. Fig. 6 illustrates the 

Gantt chart for optimal sequence. 

Table 11. Goodness measurement of the selected exact algorithms. 

 

 

 

Jobs Cutting (Minutes) Sewing (Minutes) Packing (Minutes) 

J1 3 4 7 
J2 8 5 9 

J3 7 1 5 

J4 5 2 6 
J5 4 3 10 

Total processing time 27 15 37 

(1) 

 

Algorithm/Method 
Optimal 
Sequence 

Makespan 
(Minutes) 

Idle Time 
(Minutes) 

Goodness  

Johnson’s Algorithm J4-J1-J5-J2-J3 44 53 

B&B Algorithm J1-J3-J4-J5-J2 44 53 

Kusiak’s Algorithm J1-J4-J5-J2-J3 44 53 

SAI Method J3-J4-J1-J5-J2 46 59 
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Fig. 6. Gantt chart for optimal sequence (4, 1, 5, 2, 3). 

We further considered several problems and applied the algorithms to find the optimal sequence. In 

Table 12, we have documented some results when the system has identical number of jobs and machines, 

which can also be observed in Fig. 7. 

Table 12. Results obtained by exact methods for identical number of jobs and machines. 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Comparison diagram of the methods for identical number of jobs and machines. 
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6 | Findings and Complexity Analysis 

The following conclusions are made based on the objective of makespan minimization in flow shop 

scheduling problems: 

I. Johnson’s algorithm gives the best optimal sequences with minimum elapsed time for two machines and 

 jobs scheduling problem. In the case of three or more machines, if the condition of using Johnson’s 

algorithm does not hold, then Branch & Bound gives the better solution. 

II. One of the advantages of using the SAI algorithm over Johnson’s method is that no conversion of 

machines is required in the SAI algorithm in the case of three or more machines. 

III. Kusiak’s algorithm works likewise to Johnson’s algorithm. Due to frequent ties, both Johnson’s and 

Kusiak’s algorithms produce more than one sequence. 

IV. The Kusiak algorithm is specifically helpful while dealing the scheduling problems involving a large 

number of jobs. 

V. Though Branch & Bound gives better solutions in some cases but as the number of jobs and number of 

machines increases, the complexity of the B&B algorithm increases. 

For a  job &  machine flow shop problem, number of sequences and computational complexity or time 

complexity evaluated by the exact algorithms are given in Table 13. 

Table 13. Computational complexity of the algorithms for  jobs and  machine. 

 

 

  

7 | Conclusions 

In this paper, several exact algorithms have been analyzed to solve the flow shop problem. The primary 

objective of this study is to identify the most efficient algorithm for solving sequencing and scheduling 

problems in a flow shop environment. The objective is to minimize the total elapsed time and the idle time. 

Four prominent exact algorithms are taken, including Johnson’s Algorithm, B&B Algorithm, Kusiak’s 

Algorithm, and SAI Algorithm, and examined their efficiency by calculating the total completion time and 

the goodness. Numerical results show that Johnson’s Algorithm gives the best result in most cases, but 

when it fails, the B&B algorithm gives a better result than others. A comparison between a stochastic 

methods with the exact algorithms can be performed in future work. A modified and hybrid exact 

algorithm may also be proposed later. Unique ‘tight LBs and meta-heuristic calculations, like the Genetic 

Algorithm (GA), and Tabu Search (TS) can be combined for further research. 

Abbreviation and Nomenclature 
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Exact Algorithms Number of Sequence Computational Complexity 

Johnson’s Algorithm 1 

B&B Algorithm 

Kusiak’s Algorithm 

SAI Algorithm 

B&B B&B GFSP GFSP 

UB Initial Upper Bound LB LB 

ET Elapsed Time IT Idle Time 
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