Document Type : Research Paper

Authors

Department of Mechanical Engineering, Higher Institute of Technological Studies of Sfax, ISET de Sfax, Tunisia.

Abstract

Bending is a sheet forming operation in excess of the elasticity limit of the material. Currently, in the industry, bending operation is carried out by a successive test method in order to have the geometry of the part, which generates the operation quite long and too expensive. In fact, springback brings about geometric changes in the folded parts. This phenomenon affects the angle and radius of curvature and can be primarily influenced by multiple factors. In this work, we predict the springback during the air v-bending procedure with the finite element calculation software ABAQUS to pass the test on the first try. The simulation parameters followed the real setting taking into account the characteristics of the punch and the die of the hydraulic press. The simulation was then checked using experimental tests and analytical models, we study this particular springback in 1050A Aluminum specimens through the analytical models of Gardiner and Queener. As a final result, the springback comparison effect between simulation and experiment is presented, and the evaluation of the experimental results with those of the simulation and theoretical models is conclusive. The simulated data show good agreement with the experimental and the analytical models the Finite Element Method (FEM) is a reliable tool for the analysis and simulation of the air v-bending process of Aluminum 1050 A sheet.

Keywords

Main Subjects

  1. Meslameni, W., & Ben Salem, C. (2021). Modeling of the springback in folding using the experimental design method. Journal of applied research on industrial engineering8(3), 290-308.
  2. Ma, J., & Welo, T. (2021). Analytical springback assessment in flexible stretch bending of complex shapes. International journal of machine tools & manufacture, 160, https://doi.org/10.1016/j.ijmachtools.2020.103653
  3. Miranda, S. S., Barbosa, M. R., Santos, A. D., Pacheco, J. B., & Amaral, R. L. (2018). Forming and springback prediction in press brake air bending combining finite element analysis and neural networks. The journal of strain analysis for engineering design53(8), 584-601.
  4. Sun, Y., Qu, F., Xiong, Z., & Ding, S. (2018). Numerical study on springback prediction of aged steel based on quasi-static strain-hardening material model. Procedia manufacturing15, 730-736.
  5. Wang, J., Verma, S., Alexander, R., & Gau, J. T. (2008). Springback control of sheet metal air bending process. Journal of manufacturing processes10(1), 21-27.
  6. Lee, E. H., Yoon, J. W., & Yang, D. Y. (2018). Study on springback from thermal-mechanical boundary condition imposed to V-bending and L-bending processes coupled with infrared rays local heating. International journal of material forming11(3), 417-433.
  7. Yang, X. M., Dang, L. M., Wang, Y. Q., Zhou, J., & Wang, B. Y. (2020). Springback prediction of TC4 titanium alloy V-bending under hot stamping condition. Journal of central south university27(9), 2578-2591.
  8. Béres, G., Lukács, Z., & Tisza, M. (2020). Springback evaluation of tailor welded blanks at V-die bending made of DP steels. Procedia manufacturing47, 1366-1373.
  9. Thipprakmas, S., & Sontamino, A. (2021). Wiping Z-bending die design for precise part fabrication. Journal of advanced mechanical design, systems, and manufacturing15(1), JAMDSM0012-JAMDSM0012. https://doi.org/10.1299/jamdsm.2021jamdsm0012
  10. Hajbarati, H., & Zajkani, A. (2019). A novel analytical model to predict springback of DP780 steel based on modified Yoshida-Uemori two-surface hardening model. International journal of material forming12(3), 441-455.
  11. Guan, L., Yang, X., Cai, J., Li, Y., Wang, G., & Zhang, Y. (2021). Effects of u‐bending on pitting corrosion of 304l stainless steel. Steel research international92(2), 2000328. https://doi.org/10.1002/srin.202000328
  12. Leu, D. K. (2019). Relationship between mechanical properties and geometric parameters to limitation condition of springback based on springback–radius concept in v-die bending process. The international journal of advanced manufacturing technology101(1), 913-926.
  13. Choi, J., Lee, J., Bong, H. J., Lee, M. G., & Barlat, F. (2018). Advanced constitutive modeling of advanced high strength steel sheets for springback prediction after double stage U-draw bending. International journal of solids and structures151, 152-164.
  14. Hamouda, A. M. S., Khadra, F. A., Hamadan, M. M., Imhemed, R. M., & Mahdi, E. (2004). Springback in V-bending: a finite element approach. International journal of materials and product technology21(1-3), 124-136.
  15. Vorkov, V., Aerens, R., Vandepitte, D., & Duflou, J. R. (2019). Two regression approaches for prediction of large radius air bending. International journal of material forming12(3), 379-390.
  16. Ouled Ahmed Ben Ali, R., & Chatti, S. (2019). Modeling springback of thick sandwich panel using RSM. The international journal of advanced manufacturing technology103(9), 3375-3387.
  17. Sathish, T. (2018). GAC-ANN technique for prediction of spring back effect in wipe bending process of sheet metal. Materials today: proceedings5(6), 14448-14457.
  18. Vorkov, V., García, A. T., Rodrigues, G. C., & Duflou, J. R. (2019). Data-driven prediction of air bending. Procedia manufacturing29, 177-184.
  19. Hosford, W. F., & Caddell, R. M. (2011). Metal forming: mechanics and metallurgy. Cambridge University Press.