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Abstract 

   

1 | Introduction 

One of the ways to study the behavior of physical phenomena is to model them using the equations 

governing these phenomena by mathematical tools, in which differential equations are undoubtedly 

one of the most powerful tools in this regard [1]-[3]. Differential equations as a branch of 

mathematics are powerful tools in many scientific fields such as geology, chemistry, physics, 

engineering and other sciences [4]. 

One method of solving differential equations is the finite difference method [5]. The first application 

of finite difference methods was published in the second decade of the 20𝑡ℎ century by Richardson 

on fluid dynamics. In recent years, many researchers have developed numerical models to solve 

problems in various fields of science using this method. 
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One of the fields studied in the science of heat physics is the thermoelectric phenomenon [6]. This 

phenomenon is in fact the interaction between the current of electricity and the thermal properties of a 

system. In simpler terms, it is a phenomenon in which the direct conversion of a temperature difference 

to voltage occurs. One of the most famous classical equations in this phenomenon is the heat flux equation 

(heat flow density vector) and is as follows: 

where 𝑆 is Seebeck coefficient, 𝑇 is the absolute temperature, 𝑗 is the current density and 𝑘 is the thermal 

conductivity. In fact, Eq. (1) expresses the net cooling power in terms of heat flux vector [7]. Ones can 

write the steady-state of heat diffusion equation as follows [7]: 

where the 𝜑 is the electrical resistivity and as we can see it is a nonlinear differential equation. In Eq. (2) 

the first, second and the third terms are the thermal conduction, the Joule heating and the Thomson heat, 

respectively [7]. It is usually assumed that the Thomson effect does not exist or can be ignored [8]-[10]. 

The fractional calculus raised in the 18th century. It is a branch of mathematics that orders of derivatives 

and integrals are arbitrary. In fact, it is a natural extension of classical mathematics. Really, this matter has 

recently become an increasingly important topic in the literature of many sciences such as applied 

mathematics, engineering, and so on. It has attracted the notice of many scientists in different fields of 

sciences [2], [11], [12]. Different methods have been used to solve this type of equation [13]-[15]. 

The Eq. (2) has been transformed into an ordinary nonlinear differential equation by using dimensionless 

variables as follows [7]: 

Eq. (2) of the fractional order is as follows: 

In this paper, we intend to solve the Eq. (4) by the finite difference method and then observe the effect of 

the fractional order of the derivative of the equation through the change in the order of the derivative. 

Finally, we compare the obtained solutions by drawing their graphs. 

2 | Definitions, Basic Concepts and Formulas 

In this section, we present some basic concepts, definitions, formulas, block pulse functions and the 

fractional calculations. 

Definition 1. When 𝑧(𝑡) ∈ 𝐿1[∘, 𝑏] we will have the fractional derivative in Caputo sense as follows [4]: 

For a constant value, the derivative by means of Caputo is 0, and we have: 

where ⌈𝛼⌉ is the smallest integer number larger from 𝛼 [4]. 

Definition 2 ([4]). The Riemann-Liouville fractional derivative of order 𝛼 where with respect to the 

variable 𝑡 and with the starting point 𝑡 = 𝑎 is  

q⃗ = −k∇⃗T + STj⃗, (1) 

∇. (k∇⃗T) + j2φ − T
dS

dT
j⃗. ∇⃗T =∘, (2) 

y ″ − abyy ′ + a(b − 1)y ′ + c =∘ .     y(∘) = ∘, y(1) = 1 (3) 

y (α) − abyy ′ + a(b − 1)y ′ + c =∘, y(∘) =∘ .       y(1) = 1, 1 < α ≤ 2 (4) 

D αz(t) =
{  
 
   
 
 

In−αDt
nz(t),  n − 1 < α ≤ n,  n ∈ ℕ, t >∘

dn

dt n
z(t).                                                 α = n

 (5) 

Dx
αt n =

{  
 
   
 
 

∘, n ∈ ℕ, n < ⌈α⌉
Γ(n + 1)

Γ(n + 1 − α)
t n−α, n ∈ ℕ, n > ⌈α⌉

 (6) 
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By means of the Riemann-Liouville sense, the fractional integral of order 𝛼 is defined as [4] 

 

The relation between the Caputo operator and Riemann-Liouville is as follows [4] 

 

 

Lemma 1 ([4]). Let 𝛼, 𝛽 ≥∘, 𝑑1, 𝑑2 ∈ ℝ and 𝑘(𝑡), 𝑔(𝑡) ∈ 𝐿1[∘, 𝑝], and then  

 

 

The basic concepts of finite differences are described in detail in various books [5]. Finite differences 

were introduced by Brook Taylor in 1715 and have also been studied as abstract self-standing 

mathematical objects in works by George Boole in 1860, Milne-Thomson in 1933, and Karoly Jordan 

in 1939. Finite differences trace their origins back to one of Jost Burgi's algorithms in 1592 and work by 

others including Isaac Newton [16]. A finite difference is a mathematical expression of the 

form 𝑓 (𝑥 +  𝑏)  −  𝑓 (𝑥 +  𝑎). If a finite difference is divided by 𝑏 −  𝑎, one gets a  difference quotient. 

The approximation of derivatives by finite differences plays a central role in finite difference methods 

for the numerical solution of differential equations, especially boundary value problems. 

The difference operator, commonly denoted ∆ is the operator that maps a function f to the 

function ∆[𝑓] defined by ∆[𝑓](𝑥) = 𝑓(𝑥 + 1) − 𝑓(𝑥). A difference equation is a functional equation that 

involves the finite difference operator in the same way as a differential equation involves derivatives. 

There are many similarities between difference equations and differential equations, especially in the 

solving methods. Certain recurrence relations can be written as difference equations by replacing 

iteration notation with finite differences. In numerical analysis, finite differences are widely used 

for approximating derivatives, and the term "finite difference" is often used as an abbreviation of "finite 

difference approximation of derivatives" [17]-[19]. Finite difference approximations are finite difference 

quotients in the terminology employed above. Three basic types are commonly 

considered: forward, backward, and central finite differences [17]-[19].  

A forward difference, denoted ∆ℎ[𝑓] of a function 𝑓 is a function defined as ∆ℎ[𝑓](𝑥) = 𝑓(𝑥 + ℎ) − 𝑓(𝑥). 

Depending on the application, the spacing ℎ may be variable or constant. When omitted, h is taken to 

be 1; that is ∆1[𝑓](𝑥) = ∆[𝑓](𝑥) = 𝑓(𝑥 + 1) − 𝑓(𝑥). 

A backward difference uses the function values at 𝑥 and 𝑥 −  ℎ, instead of the values at 𝑥 +  ℎ and 𝑥 as 

𝛻ℎ[𝑓](𝑥) = 𝑓(𝑥) − 𝑓(𝑥 − ℎ).  

Finally, the central difference is given by 𝛿ℎ[𝑓](𝑥) = 𝑓 (𝑥 +
ℎ

2
) − 𝑓(𝑥 −

ℎ

2
).  So here are just a few definitions 

needed in this regard. 

D αz(t) =

{  
   
 
   
   
 
 

1

Γ(n − α)

dn

dt n
∫ (t − τ)n−1−α

t

a

z(τ)dτ, ∘≤ n − 1 ≤ α < n

dn

dt n
z(t), ∷ ∷∷  ∷   α = n ∈ ℕ    

 (7) 

Iα (z(t)) =a Dt
−αz(t) =

1

Γ(α)
∫ (t − τ)α−1
t

a
z(τ)dτ.         α >∘         (8) 

     a Dt
αIαz(t) = z(t). (9) 

Iα D α
a z(t) = z(t) −∑z (k)

n−1

k=∘

(a+)
(t − a)k

k!
.      t >∘ (10) 

D α(d1g(t) + d2k(t)) = d1D
αg(t) + d2D

αk(t). (11) 

IαIβg(t) = IβIαg(t), IαIβg(t) = Iα+βg(t). (12) 

https://en.wikipedia.org/wiki/Difference_quotient
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Differential_equation
https://en.wikipedia.org/wiki/Boundary_value_problem
https://en.wikipedia.org/wiki/Difference_operator
https://en.wikipedia.org/wiki/Operator_(mathematics)
https://en.wikipedia.org/wiki/Difference_equation
https://en.wikipedia.org/wiki/Functional_equation
https://en.wikipedia.org/wiki/Differential_equation
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Recurrence_relation#Relationship_to_difference_equations_narrowly_defined
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Finite_difference#Relation_with_derivatives
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Definition 3. The finite-difference grid can be defined as follows: the solutions region in the 𝑥 − 𝑦 space 

is defined by a rectangular grid with dimensions ∆𝑥 and ∆𝑦 along the axes of  𝑥 and 𝑦, respectively. Fig. 1 

shows this grid. 

  

Fig. 1. Finite difference grid. 

In this method, the function and its derivatives are approximated by finite differences. In this paper, we 

use two types of finite difference approximations, which we define below. 

Definition 4. The approximation of the first-order derivative by centered difference is defined as follows: 

where 𝑦𝑛+1 and 𝑦𝑛−1 are the function values at points (𝑛 +  1) and (𝑛 − 1) of the network, respectively . 

Definition 5.  The approximation of the second-order derivative by centered difference is defined as 

follows: 

where 𝑦𝑛+1 ,𝑦𝑛  and 𝑦𝑛−1 are the function values at points (𝑛 +  1), n and (𝑛 − 1) of the network, respectively . 

3 | Numerical Method 

In this section, we first solve the Eq. (4) with the finite difference method. Then, with the same method, 

we solve the mentioned equation with fractional derivative in Caputo sense. 

Case1. Suppose 𝛼 = 2, so the Eq. (4) is as follows: 

Let 𝑡𝑛 = 𝑛ℎ , 𝑛 =∘ ,1,… ,𝑁, 𝑡∘ =∘, 𝑡𝑁 = 1, 𝑦∘ =∘, 𝑦𝑁 = 1, then we approximate the derivatives in equation with 

finite differences as follows: 

By replacing these approximations in the mentioned equation, we have 

y ′(tn) ≃
yn+1 − yn−1

2h
, (13) 

y ″(tn) ≃
yn+1 − 2yn + yn−1

h2
, (14) 

y ″ − abyy ′ + a(b − 1)y ′ + c =∘ .     y(∘) = ∘, y(1) = 1 (15) 

{  
   
   
   
 

y ′(tn) ≈
yn+1 − yn−1

2h
,

y ″(tn) ≈
yn+1 − 2yn + yn−1

h2
.
 (16) 

yn+1 − 2yn + yn−1
h2

− abyn
yn+1 − yn−1

2h
+ a(b − 1)

yn+1 − yn−1
2h

+ c =∘. (17) 
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Now for 𝑛 = 1we get 

And for 2 ≤ 𝑛 ≤ 𝑁 − 2 we have 

Finally, for 𝑛 = 𝑁 − 1 we will have 

As we can see, at any step we can obtain unknowns by using known values . 

Case 2. Suppose 1 < 𝛼 ≤ 2, so the Eq. (4) is as follows: 

By using definition of fractional derivative Eq. (7) we have 

Now, we suppose 𝑡𝑛 = 𝑛ℎ , 𝑛 =∘ ,1, … ,𝑁, 𝑡∘ =∘, 𝑡𝑁 = 1, 𝑦∘ =∘, 𝑦𝑁 = 1, then we calculate the fractional 

derivative in Eq. (22) for 𝑡𝑛+1/2 so we have 

 

 

 

 

By replacing the 𝑦″(𝑠) =
𝑦𝑗+1−2𝑦𝑗+𝑦𝑗−1

ℎ2
 in Eq. (23) we have 

 

 

 

 

By applying the initials and simplifying we obtain 

Now in Eq. (25) we assume the existing integral as follows: 

  

y2 − 2y1
h2

− aby1
y2
2h

+ a(b − 1)
y2
2h

+ c =∘. (18) 

yn+1 − 2yn + yn−1
h2

− abyn
yn+1 − yn−1

2h
+ a(b − 1)

yn+1 − yn−1
2h

+ c =∘. (19) 

1 − 2yN−1 + yN−2
h2

− abyN−1
1 − yN−2

2h
+ a(b − 1)

1 − yN−2
2h

+ c =∘. (20) 

y (α) − abyy ′ + a(b − 1)y ′ + c =∘, y(∘) =∘, y(1) = 1. (21) 

y (α)(t) =
1

Γ(2 − α)
∫ (t − s)1−αy ″(s)ds

t

∘

. (22) 

y (α)(tn+1/2) =
1

Γ(2 − α)
∫ (tn+1/2 − s)

1−α
y ″(s)ds

tn+1/2

∘

= 

1

Γ(2 − α)

(  
   
   
   
   
   
   
   
 
 

∑∫ (t
n+

1
2

− s)

1−α

y ″(s)ds

t
j+
1
2

t
j−
1
2

n

j=1

+

∫ (tn+1/2 − s)
1−α

y ″(s)ds
t1/2

∘

)  
   
   
   
   
   
   
   
 
 

. 

(23) 

y (α)(tn+1/2) ≃
1

Γ(2 − α)

(  
   
   
   
   
   
   
   
   
   
   
  
 

∑∫ (t
n+

1
2

− s)

1−α

 
y j+1 − 2y j + y j−1

h2
ds

t
j+
1
2

t
j−
1
2

n

j=1

+∫ (t
n+

1
2

− s)

1−α

 
y1 − 2y∘ + y−1

h2
ds

t1
2

t
−
1
2

)  
   
   
   
   
   
   
   
   
   
   
  
 

. (24) 

y (α)(tn+1/2) =
1

h2Γ(2−α)

(  
   
   
   
   
   
   
  
 

∑ (y j+1 − 2y j + y j−1)∫ (t
n+

1

2

− s)
1−α

ds

t
j+
1
2

t
j−
1
2

n

j=1

+

y1∫ (tn+1/2 − s)
1−α

ds
t1/2

t−1/2
)  
   
   
   
   
   
   
  
 

. (25) 

dn,j,α = ∫ (tn+1/2 − s)
1−α

ds
tj+1/2

tj−1/2

. (26) 
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Now by solving it we will have 

With simplification Eq. (27) we can write 

And for 𝑗 =∘ we have 

By replacing Eq. (28) in Eq. (25) we get 

In Eq. (30) on the right -hand side, we rewrite the first sentence according to its limits, so we have 

With a little calculation and by simplifying Eq. (31) we have 

By replacing Eq. (32) in Eq. (30) we get 

By replacing 𝑦′(𝑡𝑛+1/2) ≈
𝑦𝑛+1−𝑦𝑛

ℎ
,   𝑦(𝑡𝑛+1/2) ≈

𝑦𝑛+1−𝑦𝑛

2
 and Eq. (33) in Eq. (21) we obtain 

 

dn,j,α = ∫ (tn+1/2 − s)
1−α

ds
tj+1/2

tj−1/2

=
1

2 − α
((tn+1/2 − t j+1/2)

2−α − (tn+1/2 − t j−1/2)
2−α). (27) 

dn,j,α =
h2−α

2 − α
((n − j + 1)2−α − (n − j)2−α). (28) 

dn,∘,α =
h2−α

2 − α
((n + 1)2−α − (n)2−α). (29) 

y (α)(tn+1/2) =
1

h2Γ(2 − α) ( 
   
   
 
 

∑(y j+1 − 2y j + y j−1)dn,j,α

n

j=1

+ y1dn,∘,α)  
   
   
 

. (30) 

∑(y j+1 − 2y j + y j−1)dn,j,α

n

j=1

= dn,1,αy° + (−2dn,1,α + dn,2,α)y1

+ (dn,1,α − 2dn,2,α + dn,3,α)y2 

+(dn,2,α − 2dn,3,α + dn,4,α)y3 +⋯ 

+(dn,n−3,α − 2dn,n−2,α + dn,n−1,α)yn−2 

+(dn,n−2,α − 2dn,n−1,α + dn,n,α)yn−1 + (dn,n−1,α − 2dn,n,α)yn + dn,n,αyn+1.                              

(31) 

∑(y j+1 − 2y j + y j−1)dn,j,α

n

j=1

= dn,1,αy∘ + (−2dn,1,α + dn,2,α)y1 + 

∑ (dn,j−1,α − 2dn,j,α + dn,j+1,α)yj + (dn,n−1,α − 2dn,n,α)yn + dn,n,αyn+1
n−1

j=2
. 

(32) 

         y (α)(tn+1/2) ≈
1

h2Γ(2−α) (  
   
   
 
∑ (dn,j−1,α − 2dn,j,α + dn,j+1,α)yj

n−1

j=1
+

(dn,n−1,α − 2dn,n,α)yn + dn,n,αyn+1
)  
   
   
 

.     (33) 

 

1

h2Γ(2 − α) ( 
   
   
 
 

∑(dn,j−1,α − 2dn,j,α + dn,j+1,α)yj

n−1

j=1

+ (dn,n−1,α − 2dn,n,α)yn

+ dn,n,αyn+1)  
   
   
 

 

−ab
(yn+1 − yn)

2

2h
+ a(b − 1)

yn+1 − yn
h

+ c =∘. 

(34) 
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Now for 𝑛 = 1 we have 

In the following for 2 ≤ 𝑛 ≤ 𝑁 − 2 we have 

 

 

 

 

        Finally, for 𝑛 = 𝑁 − 1 we will have as follows: 

 

Again, as we can see, at any step we can obtain unknowns by using known values . 

4 | Stability 

Let ‖. ‖be the usual 𝐿2 norm. Assume that �̃�𝑛 and �̂�𝑛 are exact and approximation solutions of Eq. (17), 

respectively. Hence, 

 

 

We define the roundoff error 𝑒𝑛 = �̃�𝑛 − �̂�𝑛. From Eq. (17) the following relationship can be obtained 

 

 

 

 

Thus, we have 

 

 

Theorem 1 ([20]). Suppose 𝑓 maps a convex open set 𝐸 ⊆ ℝ𝑚, 𝑓 is differentiable in 𝐸, and there is a real 

nember 𝑀 such that ‖𝑓′′ ‖ ≤ 𝑀 for every 𝑥 ∈ 𝐸. Then 

Also, in this paper we have 

From Eqs. (41), (42) and theorem 1 we obtain 

           
1

h2Γ(2−α)
((d1,∘,α − 2d1,1,α)y1 + d1,1,αy2) − ab

(y2−y1)
2

2h
+ a(b − 1)

y2−y1

h
+ c =∘. (35) 

1

h2Γ(2 − α) ( 
   
   
 
 

∑(dn,j−1,α − 2dn,j,α + dn,j+1,α)yj

n−1

j=1

+ (dn,n−1,α − 2dn,n,α)yn

+ dn,n,αyn+1)  
   
   
 

− ab
(yn+1 − yn)

2

2h
+ a(b − 1)

yn+1 − yn
h

+ c =∘. 

(36) 

  
1

h2Γ(2−α)
(∑ (dN−1,j−1,α − 2dN−1,j,α + dN−1,j+1,α)yj

N−2

j=1
+ (dN−1,N−2,α −

2dN−1,N−1,α)yN−1 + dN−1,N−1,α) − ab
(1−yN−1)

2

2h
+ a(b − 1)

1−yN−1

h
+ c =∘. 

(37) 

 
ỹn+1−2ỹn+ỹn−1

h2
− abỹn

ỹn+1−ỹn−1

2h
+ a(b − 1)

ỹn+1−ỹn−1

h2
+ c = 0. (38) 

ŷn+1 − 2ŷn + ŷn−1
h2

− abŷn
ŷn+1 − ŷn−1

2h
+ a(b − 1)

ŷn+1 − ŷn−1
2h

+ c = 0. (39) 

          
en+1−2en+en−1

h2
−
ab

2h
(ỹn(ỹn+1 − ỹn−1) − ŷn(ŷn+1 − ŷn−1)) + a(b − 1)

en+1−en−1

2h
= 0, 

Or 

(1 +
1

2
ha(b − 1)) en+1 = 2en − (1 −

1

2
ha(b − 1)) en−1 +

1

2
abh(ỹn(ỹn+1 − ỹn−1) −

ŷn(ŷn+1 − ŷn−1)). 

(40) 

          |1 +
1

2
ha(b − 1)| ‖en+1‖ ≤ 2‖en‖ + |1 −

1

2
ha(b − 1)| ‖en−1‖ +

1

2
|ab|h‖(ỹn(ỹn+1 −

ỹn−1) − ŷn(ŷn+1 − ŷn−1))‖. 
(41) 

f(b) − f(a) ≤ M|b − a| for all a ∈ E, b∈ E.  

|‖en‖| = max{‖en−1‖, ‖en‖, ‖en+1‖}. (42) 

|1 +
1

2
ha(b − 1)| ‖en+1‖ ≤ 2‖en‖ + |1 −

1

2
ha(b − 1)| ‖en−1‖ +

1

2
|ab|h|‖en‖|, or 

(43) 
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According to Eq. (42) we know that there is a real number 𝐾 such that |‖. ‖| ≤ 𝐾‖. ‖,  

Therefore, 

So, 

Where 𝐶𝑛 =
𝐾𝑛

|1+
1

2
ℎ𝑎(𝑏−1)|

(2 + |1 −
1

2
ℎ𝑎(𝑏 − 1)| +

1

2
|𝑎𝑏|ℎ). 

From Eq. (45) we have ‖𝑒𝑛+1‖ ≤ 𝐷‖𝑒0‖,  

Where 

Therefore, according to Eq. (46) the scheme in (17) is stable in 𝐿2. 

5 | Illustrative Examples 

As we know, ones use numerical methods are used to approximate the solution of equations generally do 

not have an analytical and exact solution. Eq. (21) is also one of these equations, so in the following 

examples, first, we solve some cases with the method described in the previous section. Then we present 

its accuracy by drawing the graph of the solution and comparing it with the graph of the exact solution (by 

selecting the existing coefficients with specific values). Then we present the error graph resulting from 

using the method along with the error table.  Then, by changing the coefficient values and also changing 

the order of the derivative from integer to fractional, we analyze the solutions based on the graphs. 

Fig. 2. Comparison between numerical and exact solution in example 1. 

|1 +
1

2
ha(b − 1)| ‖en+1‖ ≤ (2 + |1 −

1

2
ha(b − 1)| +

1

2
|ab|h) |‖en‖|, 

Thus, 

‖en+1‖ ≤
1

|1+
1

2
ha(b−1)|

(2 + |1 −
1

2
ha(b − 1)| +

1

2
|ab|h) |‖en‖|. 

‖en+1‖ ≤
Kn

|1 +
1
2
ha(b − 1)|

(2 + |1 −
1

2
ha(b − 1)| +

1

2
|ab|h) ‖en‖. (44) 

‖en+1‖ ≤ Cn‖en‖. (45) 

D = CnCn−1…C0. (46) 
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Example 1. In Eq. (21), we set 𝛼 = 2, 𝑎 =∘, 𝑏 =∘ and 𝑐 = −2 so, in this case we have 𝑦′′ − 2 =∘ . As we 

know, the exact solution of this equation is 𝑦(𝑡) = 𝑡2. Fig. 2 shows a comparison of the graph of the 

solution obtained from the numerical method and the exact solution of the equation. 

As can be seen from Fig. 2, the method has acceptable accuracy. The Table 1 shows the error of method 

at 𝑡 ∈ [0,1] and ℎ = 0.01 Also, Fig. 3 presents the graph of the error. 

Table 1. Values of error for example 1. 

 

 

 

 

 

 

 

Fig. 3. The graph of error in example 1 . 

Now, by changing the order of the derivative from 2 to 1.8 and1.6, respectively, we draw the graphs of 

the solutions in Fig. 4. According to this Figure, the changes made in the graph of the solutions due to 

the change in the order of the derivatives from integer to fractional are quite obvious. From a 

mathematical point of view, the slope of the graph decreases with decreasing order, and in a part of the 

interval (𝑡 < 0.3), negative solutions are obtained. The convergence of the solutions is also easily visible. 

 

 

 

Time Exact Solution Numerical Solution Error 

0 0.00000000000000000 0.00000000000000000 0 

0.1 0.01000000000000000 0.00999999999999987 1.31839E-16 

0.2 0.04000000000000000 0.03999999999999980 2.49800E-16 

0.3 0.09000000000000000 0.08999999999999960 3.88578E-16 

0.4 0.16000000000000000 0.16000000000000000 4.99600E-16 

0.5 0.25000000000000000 0.25000000000000000 4.44089E-16 

0.6 0.36000000000000000 0.36000000000000000 1.66533E-16 

0.7 0.49000000000000000 0.49000000000000000 3.33067E-16 

0.8 0.64000000000000000 0.64000000000000000 2.22045E-16 

0.9 0.81000000000000000 0.81000000000000000 3.33067E-16 

1 1.00000000000000000 1.00000000000000000 0 
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 Fig. 4. Comparison of the graph of the solutions based on the order of derivatives. 

From a physical point of view, the phase graph of a problem, in fact, is the drawing of solutions against 

the derivatives of the equation. So, it is of great importance. Fig. 5 shows the phase diagram of this problem. 

As can be seen from this Figure, the critical points of the graphs are got away from the origin by decreasing 

the order of the derivative. 

 

Fig. 5. The phase graph of example 1. 

Example 2. In Eq. (21), we set 𝛼 = 2, 𝑎 = 2,  𝑏 =∘ and 𝑐 = 1 so, in this case we know that the exact solution 

of this equation is 𝑦(𝑡) =
1

(2𝑒2−2)
(𝑒2𝑡 − 1) +

𝑡

2
. Fig. 6 shows a comparison of the graph of the solution obtained 

from the numerical method and the exact solution of the equation. Again Fig. 6 shows, the method has 

good and acceptable accuracy. 
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Fig. 6. Comparison between numerical and exact solution in example 2. 

The Table 2 shows the error of method at 𝑡 ∈ [0,1] and ℎ = 0.01. Also, Fig. 7 presents the graph of the 

error. 

Table 2. Values of error for example 2. 

 

 

 

 

 

 

 

Fig. 7. The graph of error in example 2. 

Time Exact Solution Numerical Solution Error 

0 0 0 0 

0.1 0.067326719 0.06732602 6.98703931E-07 

0.2 0.138489621 0.13848821 1.41101358E-06 

0.3 0.214338048 0.21433594 2.10870258E-06 

0.4 0.295909389 0.295906638 2.75037861E-06 

0.5 0.384470711 0.384467434 3.27703694E-06 

0.6 0.481569616 0.48156601 3.60629057E-06 

0.7 0.589096348 0.589092724 3.62490871E-06 

0.8 0.709359658 0.709356479 3.17919737E-06 

0.9 0.845179459 0.845177396 2.06263244E-06 

1 1 1 0 
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In the following, in Example 2, we change the derivative order from 2 to 1.9 and 1.7, respectively, and then 

plot the solutions in Fig. 8. It is clear that before the graph of the solutions converges, it can be said that 

with decreasing the order of the derivative, the slope of the related graphs increases. 

Fig. 8. Comparison of the graph of the solutions based on the order of derivatives. 

The phase graph of Example 2 is shown in Fig. 9. As can be seen from this Figure, the slope of the graphs 

decreases with decreasing order of the derivative, or in other words, the speed of the displacement or 

transfer reaction decreases 

 

Fig. 9. The phase graph of example 2. 

Example 3. In Eq. (21) we assume 𝑎 =  1, 𝒃 =  𝟐, 𝒄 =  𝟑 and 𝜶 =  𝟐. With these assumptions, the 

mentioned equation does not have an exact solution, so we approximate the solution for the assumption 

coefficients. Fig. 10 shows the result. 
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Fig. 10. The approximated solutions in example 3. 

By keeping the coefficients of the equation constant, we change the order of the derivative in the 

equation from 2 to 1.9 and 1.7, respectively. Fig. 11 shows the graph of the solutions of the equation 

with the mentioned derivatives. As can be seen from this Figure, the slope of the graph is shown by a 

significant increase with decreasing order. At the beginning of the interval, the rate of increase of this 

slope is very high, but as we move towards the end of the interval, this speed decreases, and in addition, 

at the end of the mentioned interval, the graphs converge around 𝑡 =  1. The phase graph of this 

example is shown in Fig. 12. 

 

Fig. 11. Comparison of the graph of the solutions based on the order of derivatives. 
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Fig. 12. The phase graph of example 3. 

 

6 | Conclusion 

In the presented work, we studied the Fractional Ideal Equation of Thermoelectric Coolers by finite 

difference method, numerically. First, we described the method in this paper. This method translated the 

fractional differential equation to a nonlinear algebraic equations system and then we solved it. We showed 

the efficiency and accuracy of the method with a few examples and by plotting the obtained solutions. In 

each of these examples, we presented the error graph and the table of error values and also examined the 

graph of the changes in the order of the equation from the integer to the fractional, as well as the phase 

graph of the equations. Then we solved the main equation and again examined the results by drawing the 

changes in the order of the equation from the integer to the fractional. The Phase graphs were also 

examined for the main equation of the fractional order. The obtained results show some behaviors of the 

system that can be seen only in the case where the order of equations is fractional. 
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