Document Type : Research Paper


1 Department of Mathematics, Lahijan Branch, Islamic Azad University, Lahijan, Iran.

2 Computer and Information Technology Department, Ahrar Institute of Technology and Higher Education, Rasht, Iran.


Existing systems for diagnosing heart disease are time consuming, expensive, and prone to error. In this regard, a diagnostic algorithm has been proposed for the causes of heart disease based on a frequent pattern with the B-mine algorithm optimized by association rules. Initially, a data set of disease is used to select a feature, so that it deals with a set of training features. Then, association rules are used to classify educational and experimental sets, and then the factors affecting heart disease are analyzed. The numerical results from the experiments of real and standard datasets of cardiac patients show that the average accuracy of the proposed method is approximately 98%, which has been tested on the Cleveland database that includes 76 features in the case of heart disease dataset, 14 features of which are related to heart disease. This paper also uses four common categories such as decision tree to build the model. The data set studied in this article contains 270 records as well as 14 features. The accuracy of predicting the results of the support vector machine classifications, k nearest neighbor, decision tree and simple Bayesian is 81.11%, 66.67%, 59.72% and 19.85%, respectively, which are relatively satisfactory results.


Main Subjects

  1. Shouman, M., Turner, T., & Stocker, R. (2012, March). Using data mining techniques in heart disease diagnosis and treatment. 2012 Japan-Egypt conference on electronics, communications and computers(pp. 173-177). IEEE. DOI: 1109/JEC-ECC.2012.6186978
  2. Soni, J., Ansari, U., Sharma, D., & Soni, S. (2011). Predictive data mining for medical diagnosis: an overview of heart disease prediction. International journal of computer applications17(8), 43-48.
  3. Latha, C. B. C., & Jeeva, S. C. (2019). Improving the accuracy of prediction of heart disease risk based on ensemble classification techniques. Informatics in medicine unlocked16, 100203.
  4. Berka, P., Rauch, J., & Zighed, D. A. (Eds.). (2009). Data mining and medical knowledge management: cases and applications: cases and applications. IGI Global. DOI: 4018/978-1-60566-218-3
  5. Maji, S., & Arora, S. (2019). Decision tree algorithms for prediction of heart disease. Information and communication technology for competitive strategies (pp. 447-454). Springer, Singapore.
  6. Cios, K. J. (2000). From the guest editor medical data mining and knowledge discovery. IEEE engineering in medicine and biology magazine19(4), 15-16. DOI:1109/MEMB.2000.853477
  7. Saraçoğlu, R. (2012). Hidden Markov model-based classification of heart valve disease with PCA for dimension reduction. Engineering applications of artificial intelligence25(7), 1523-1528.
  8. Agrawal, R., & Srikant, R. (1994, September). Fast algorithms for mining association rules. 20th int. conf. very large data bases, VLDB(Vol. 1215, pp. 487-499).
  9. Ordonez, C. (2004). Improving heart disease prediction using constrained association rules. In Seminar presentation at university of Tokyo(Vol. 4).
  10. Yan, H., Jiang, Y., Zheng, J., Peng, C., & Li, Q. (2006). A multilayer perceptron-based medical decision support system for heart disease diagnosis. Expert systems with applications30(2), 272-281.
  11. Domadiya, N., & Rao, U. P. (2019). Privacy preserving distributed association rule mining approach on vertically partitioned healthcare data. Procedia computer science148, 303-312.
  12. Amin, M. S., Chiam, Y. K., & Varathan, K. D. (2019). Identification of significant features and data mining techniques in predicting heart disease. Telematics and informatics36, 82-93.
  13. De Cnudde, S., Martens, D., Evgeniou, T., & Provost, F. (2020). A benchmarking study of classification techniques for behavioral data. International journal of data science and analytics9(2), 131-173.
  14. Gupta, A., Kumar, R., Arora, H. S., & Raman, B. (2019). MIFH: a machine intelligence framework for heart disease diagnosis. IEEE access8, 14659-14674. DOI:1109/ACCESS.2019.2962755
  15. Kirankumar, V., Ramasubbareddy, S., Kannayaram, G., & Nikhil Kumar, K. (2019). Classification of heart disease using support vector machine. Journal of computational and theoretical nanoscience16(5-6), 2623-2627. DOI:
  16. Bajaj, P., & Gupta, P. (2014). Review on heart disease diagnosis based on data mining techniques. International journal of science and research (IJSR)3(5).
  17. Jabbar, M. A. (2017). Prediction of heart disease using k-nearest neighbor and particle swarm optimization.  Res28(9), 4154-4158.
  18. Ani, R., Augustine, A., Akhil, N. C., & Deepa, O. S. (2016). Random forest ensemble classifier to predict the coronary heart disease using risk factors. Proceedings of the international conference on soft computing systems(pp. 701-710). Springer, New Delhi.
  19. Feshki, M. G., & Shijani, O. S. (2016, April). Improving the heart disease diagnosis by evolutionary algorithm of PSO and Feed Forward Neural Network. 2016 artificial intelligence and robotics (IRANOPEN)(pp. 48-53). IEEE. DOI: 1109/RIOS.2016.7529489
  20. Alkeshuosh, A. H., Moghadam, M. Z., Al Mansoori, I., & Abdar, M. (2017, September). Using PSO algorithm for producing best rules in diagnosis of heart disease. 2017 international conference on computer and applications (ICCA)(pp. 306-311). IEEE. DOI: 1109/COMAPP.2017.8079784
  21. Jabbar, M. A., Deekshatulu, B. L., & Chandra, P. (2016). Prediction of heart disease using random forest and feature subset selection. In Innovations in bio-inspired computing and applications(pp. 187-196). Springer, Cham.
  22. Chauhan, R., Jangade, R., & Rekapally, R. (2018). Classification model for prediction of heart disease. In Soft computing: theories and applications(pp. 707-714). Springer, Singapore.
  23. Giudici, P., & Castelo, R. (2003). Improving Markov chain Monte Carlo model search for data mining. Machine learning50(1), 127-158.
  24. Polaraju, K., & Prasad, D. D. (2017). Prediction of heart disease using multiple linear regression model. International journal of engineering development and research5(4), 2321-9939.
  25. Sultana, M., & Haider, A. (2017, March). Heart disease prediction using WEKA tool and 10-Fold cross-validation. In The institute of electrical and electronics engineers(pp. 17-33).
  26. Deepika, K., & Seema, S. (2016, July). Predictive analytics to prevent and control chronic diseases. 2016 2nd international conference on applied and theoretical computing and communication technology (iCATccT)(pp. 381-386). IEEE. DOI: 1109/ICATCCT.2016.7912028
  27. Beyene, C., & Kamat, P. (2018). Survey on prediction and analysis the occurrence of heart disease using data mining techniques. International journal of pure and applied mathematics118(8), 165-174.
  28. Patil, P. B., Shastry, P. M., & Ashokumar, P. S. (2020). Machine learning based algorithm for risk prediction of cardio vascular disease (Cvd). Journal of critical reviews7(9), 836-844.
  29. Gupta, A., Kumar, R., Arora, H. S., & Raman, B. (2019). MIFH: a machine intelligence framework for heart disease diagnosis. IEEE access8, 14659-14674. DOI: 1109/ACCESS.2019.2962755
  30. Saxena, K., & Sharma, R. (2016). Efficient heart disease prediction system. Procedia computer science85, 962-969.
  31. Gomathi, K., & Priyaa, D. D. S. (2016). Multi disease prediction using data mining techniques. International journal of system and software engineering4(2), 12-14.
  32. Reddy, M. P. S. C., Palagi, M. P., & Jaya, S. (2017). Heart disease prediction using ANN algorithm in data mining. International journal of computer science and mobile computing6(4), 168-172.
  33. Ramotra, A. K., Mahajan, A., Kumar, R., & Mansotra, V. (2020). Comparative analysis of data mining classification techniques for prediction of heart disease using the weka and SPSS modeler tools. In Smart trends in computing and communications(pp. 89-97). Springer, Singapore.
  34. Aldhyani, T. H., Alshebami, A. S., & Alzahrani, M. Y. (2020). Soft clustering for enhancing the diagnosis of chronic diseases over machine learning algorithms. Journal of healthcare engineering.
  35. Bahrami, B., & Shirvani, M. H. (2015). Prediction and diagnosis of heart disease by data mining techniques. Journal of multidisciplinary engineering science and technology (JMEST)2(2), 164-168.