Document Type : Research Paper


1 Faculty of Engineering School, Damghan University, Semnan, Iran.

2 Faculty of Management, Department of Industrial Management, University of Tehran, Tehran, Iran.


As manufacturers and technologies become more complicated, manufacturing errors such as machine failure and human error have also been considered more over the past. Since machines and humans are not error-proof, managing the machines and human errors is a significant challenge in manufacturing systems. There are numerous methods for investigating human errors, fatigue, and reliability that categorized under Human Reliability Analysis (HRA) methods. HRA methods use some qualitative factors named Performance Shaping Factors (PSFs) to estimate Human Error Probability (HEP). Since the PSFs can be considered as the acceleration factors in Accelerated Life Test (ALT). We developed a method for Accelerated Human Fatigue Test (AHFT) to calculate human fatigue, according to fatigue rate and other effective factors. The proposed method reduces the time and cost of human fatigue calculation. AHFT first extracts the important factors affecting human fatigue using Principal Component Analysis (PCA) and then uses the accelerated test to calculate the effect of PSFs on human fatigue. The proposed method has been applied to a real case, and the provided results show that human fatigue can be calculated more effectively using the proposed method.


Main Subjects

  1. Grosse, E. H., Glock, C. H., & Neumann, W. P. (2017). Human factors in order picking: a content analysis of the literature. International journal of production research55(5), 1260-1276.
  2. Battini, D., Calzavara, M., Persona, A., & Sgarbossa, F. (2017). Additional effort estimation due to ergonomic conditions in order picking systems. International journal of production research55(10), 2764-2774.
  3. Brynzér, H., & Johansson, M. I. (1995). Design and performance of kitting and order picking systems. International journal of production economics41(1-3), 115-125.
  4. David, G. C. (2005). Ergonomic methods for assessing exposure to risk factors for work-related musculoskeletal disorders. Occupational medicine55(3), 190-199.
  5. Azizi, N., Zolfaghari, S., & Liang, M. (2010). Modeling job rotation in manufacturing systems: The study of employee's boredom and skill variations. International journal of production economics123(1), 69-85.
  6. Aronowitz, S. (2000). The knowledge factory. Boston: Beacon Press.
  7. De Vries, J., Michielsen, H. J., & Van Heck, G. L. (2003). Assessment of fatigue among working people: a comparison of six questionnaires. Occupational and environmental medicine60(suppl 1), i10-i15.
  8. Theorell-Haglöw, J., Lindberg, E., & Janson, C. (2006). What are the important risk factors for daytime sleepiness and fatigue in women? Sleep29(6), 751-757.
  9. Elmaraghy, W. H., Nada, O. A., & ElMaraghy, H. A. (2008). Quality prediction for reconfigurable manufacturing systems via human error modelling. International journal of computer integrated manufacturing21(5), 584-598.
  10. Åhsberg, E. (2000). Dimensions of fatigue in different working populations. Scandinavian journal of psychology41(3), 231-241.
  11. Ulinskas, M., Damaševičius, R., Maskeliūnas, R., & Woźniak, M. (2018). Recognition of human daytime fatigue using keystroke data. Procedia computer science130, 947-952.
  12. Björkstén, M., & Jonsson, B. (1977). Endurance limit of force in long-term intermittent static contractions. Scandinavian journal of work, environment & health, 3(1), 23-27.
  13. Rohmert, W. (1973). Problems in determining rest allowances: part 1: use of modern methods to evaluate stress and strain in static muscular work. Applied ergonomics4(2), 91-95.
  14. Rose, L., Örtengren, R., & Ericson, M. (2001). Endurance, pain and resumption in fully flexed postures. Applied ergonomics32(5), 501-508.
  15. Imbeau, D., & Farbos, B. (2006). Percentile values for determining maximum endurance times for static muscular work. International journal of industrial ergonomics36(2), 99-108.
  16. Ma, L., Chablat, D., Bennis, F., & Zhang, W. (2009). A new simple dynamic muscle fatigue model and its validation. International journal of industrial ergonomics39(1), 211-220.
  17. Fruggiero, F., Fera, M., Lambiase, A., Maresca, P., & Caja, J. (2017). The role of human fatigue in the uncertainty of measurement. Procedia manufacturing13, 1320-1327.
  18. Peternel, L., Fang, C., Tsagarakis, N., & Ajoudani, A. (2019). A selective muscle fatigue management approach to ergonomic human-robot co-manipulation. Robotics and computer-integrated manufacturing58, 69-79.
  19. Li, F., Chen, C. H., Zheng, P., Feng, S., Xu, G., & Khoo, L. P. (2020). An explorative context-aware machine learning approach to reducing human fatigue risk of traffic control operators. Safety science125, 104655.
  20. Whaley, A. M., Xing, J., Boring, R. L., Hendrickson, S. M. L., Joe, J. C., Le Blanc, K. L., & Morrow, S. L. (2016). Cognitive basis for human reliability analysis. U.S. Nuclear Regulatory Commission.
  21. Cacciabue, P. C. (1998). Modelling and simulation of human behaviour for safety analysis and control of complex systems. Safety science28(2), 97-110.
  22. Boring, R. L. (2010). How many performance shaping factors are necessary for human reliability analysis? Idaho National Laboratory (INL).   
  23. Rasmussen, M., & Laumann, K. (2020). The evaluation of fatigue as a performance shaping factor in the Petro-HRA method. Reliability engineering & system safety194, 106187.
  24. Jamshidi, R., & Esfahani, M. M. S. (2014). Human resources scheduling to improve the product quality according to exhaustion limit. Top22(3), 1028-1041.
  25. Mahdavi, I., Aalaei, A., Paydar, M. M., & Solimanpur, M. (2010). Designing a mathematical model for dynamic cellular manufacturing systems considering production planning and worker assignment. Computers & mathematics with applications60(4), 1014-1025.
  26. Cappadonna, F. A., Costa, A., & Fichera, S. (2013). Makespan minimization of unrelated parallel machines with limited human resources. Procedia CIRP12, 450-455.
  27. Taylor, J. C. (2000). The evolution and effectiveness of maintenance resource management (MRM). International journal of industrial ergonomics26(2), 201-215.
  28. Griffith, C. D., & Mahadevan, S. (2011). Inclusion of fatigue effects in human reliability analysis. Reliability engineering & system safety96(11), 1437-1447.
  29. Nelson, W. (1980). Accelerated life testing-step-stress models and data analyses. IEEE transactions on reliability29(2), 103-108. DOI: 1109/TR.1980.5220742
  30. Spencer, F. W. (1991). [Review of the book Statistical methods in accelerated life testing, by R. Viertl]. Technometrics, 33(3), 360-362.
  31. Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and intelligent laboratory systems2(1-3), 37-52.
  32. Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley interdisciplinary reviews: computational statistics2(4), 433-459.
  33. Manzini, R., Gamberi, M., & Regatierri, A. (2006). Applying mixed integer programming to the design of a distribution logistic network. International journal of industrial engineering: theory, applications, and practice13(2), 207-218.
  34. Regattieri, A., Giazzi, A., Gamberi, M., & Gamberini, R. (2015). An innovative method to optimize the maintenance policies in an aircraft: General framework and case study. Journal of air transport management44, 8-20.
  35. Acevedo, P. E., Jackson, D. S., & Kotlowitz, R. W. (2006). Reliability growth and forecasting for critical hardware through accelerated life testing. Bell labs technical journal11(3), 121-135.
  36. Jayatilleka, S., & Okogbaa, G. (2003, January). Use of accelerated life tests on transmission belts for predicting product life, identifying better designs, materials and suppliers. Annual reliability and maintainability symposium, 2003.(pp. 101-105). IEEE. DOI: 1109/RAMS.2003.1181909
  37. Alsina, E. F., Cabri, G., & Regattieri, A. (2016). A neural network approach to find the cumulative failure distribution: modeling and experimental evidence. Quality and reliability engineering international32(2), 567-579.
  38. Jian-ping, Z. & Xin-min, G. (2005). Constant-step stress accelerated life test of VFD under Weibull distribution case. Journal of Zhejiang university-SCIENCE A, 6(7), 722-727. DOI:1007/BF02856179
  39. Gandevia, S. C. (2001). Spinal and supraspinal factors in human muscle fatigue. Physiological reviews, 81(4), 1725-1789.
  40. Giat, Y., Mizrahi, J., & Levy, M. (1993). A musculotendon model of the fatigue profiles of paralyzed quadriceps muscle under FES. IEEE transactions on biomedical engineering40(7), 664-674.
  41. Xia, T., & Law, L. A. F. (2008). A theoretical approach for modeling peripheral muscle fatigue and recovery. Journal of biomechanics41(14), 3046-3052.
  42. Myszewski, J. M. (2010). Mathematical model of the occurrence of human error in manufacturing processes. Quality and reliability engineering international26(8), 845-851.
  43. Michalos, G., Makris, S., & Chryssolouris, G. (2013). The effect of job rotation during assembly on the quality of final product. CIRP journal of manufacturing science and technology6(3), 187-197.
  44. Jamshidi, R., & Seyyed Esfahani, M. M. (2015). Reliability-based maintenance and job scheduling for identical parallel machines. International journal of production research53(4), 1216-1227.
  45. Herbert, R. D., & Gandevia, S. C. (1999). Twitch interpolation in human muscles: mechanisms and implications for measurement of voluntary activation. Journal of neurophysiology82(5), 2271-2283.
  46. Nanthavanij, S. (1992). Quantitative analysis of heart rate recovery profile during recovery from physical work. International journal of industrial ergonomics9(4), 329-342.
  47. Konz, S. (2000). Work/rest: Part II – The scientific basis (knowledge base) for the guide1. In A. Mital, Å. Kilbom, & S. Kumar (Eds.), Ergonomics guidelines and problem solving (401-427). Elsevier.
  48. Boring, R. L., & Blackman, H. S. (2007, August). The origins of the SPAR-H method’s performance shaping factor multipliers. 2007 IEEE 8th human factors and power plants and HPRCT 13th annual meeting(pp. 177-184). IEEE. DOI: 1109/HFPP.2007.4413202
  49. Blackman, H. S., Gertman, D. I., & Boring, R. L. (2008, September). Human error quantification using performance shaping factors in the SPAR-H method. Proceedings of the human factors and ergonomics society annual meeting, 52(21), pp. 1733-1737). Sage CA: Los Angeles, CA: SAGE Publications.