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Abstract 

   

1 | Introduction 

As technology advances in the field of industry, of course, it will lead to intense competition in the 

business world. The company will do various ways to satisfy the consumer by trying to produce a 

high-quality product [1] with a competitive price, provide a good service [2] and the timeliness in 

the delivery. Real-time demand data could further improve the timeliness of deliveries and reduce 

inventory levels [3]. Hence, the company needs to run an effective production system by making 

excellent planning and control start from managing the raw material inventory to the valuable final 

product [4]. Inventory is the stock of any goods or resources used in a company or organization. 

The inventory system is a set of policies and controls that are used in production and logistics 

networks to coordinate supply cycles overseeing the level of inventory to be refilled, the number of 

orders that must be regulated to reduce risks associated with uncertainty [5], [6]. All manufacturing 

industries must have a supply of raw materials for production needs. 
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Aggregate planning is also conducted for better production planning. The results of aggregate planning provide solutions 

to increase the workforce to balance production capacity by the number of demands. Squared Coefficient of Variation 

(SCV) calculations indicates the demand follows a static pattern. Therefore, the appropriate lot sizing method is the 

Economic Order Quantity (EOQ) to carry out the production needs. Finally, this paper uses capacity planning using 

Rough-Cut Capacity Planning (RCCP) and Capacity Requirement Planning (CRP) methods. As a result, the capacity 

meets the Master Production Schedule (MPS) as well as MRP and they are feasible to be implemented. 
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The importance of inventory management in industrial applications derives from the effect of out-of-stock 

in the levels of customer satisfaction and the impact of stock in the economic balance of companies [6]. It 

is also useful to satisfy safety requirements, in cases where the availability of hazardous raw materials can 

be replaced with inventory of its products [6]. Furthermore, inventory also plays an important role in the 

coordination of maintenance turnarounds between various facilities across a site [6]. 

This research is conducted in the company producing the instant noodle. The manufacturing industry 

produces a wide range of brands and flavor variants. The company has 6 brands of products with 18 

flavors. Instant noodle consists of some raw materials such as raw noodle that comes from flour. Flour is 

the main raw material in the instant noodles manufacturing, along with spices, seasoning oil, and package 

which are the compilers and complementary materials. A real-world problem may deal with an inventory 

shortage [7]. Currently, the company still have the raw materials issue caused by the delay in raw materials 

receipt (backlog) and the realization of the delivery of raw materials is not following the planned number. 

This condition implies the overstock and losses on high costs incurred. The backlog and overstock data 

for all 18 flavor variants in 2017 are shown in Fig. 1. 

 

Fig. 1. Backlog and overstock. 

The previous research showed that the over-supply or over-demand should be avoided and recommended 

a strong need for a precise forecasting [8]. In the supply chain, it is assumed that each member of the chain 

owns a warehouse and uses a specific replenishment policy to control inventory to meet the demands of 

its customers appropriately [9]. To address the mismatch between supply availability, service time, and 

demand in integrated production networks, inventory is held at different stages of the process [6], [10], 

[11]. The uncertainties increase the required practical production planning decisions [12]. However, in 

practice warehouses are actually managed in terms of policies, which are simple rules that dictate when to 

replenish an inventory with the corresponding amount [10]. The inventory policies considered are the (r,Q) 

and (s,S) policies [10]. On one hand, the (r,Q) inventory policy and order for Q units is placed every time 

the inventory level reaches level r [10] to minimize the expected cost of replenishment and out-of-stock 

[6]. On the other hand, the (s,S) policy the inventory is reviewed in predefined intervals [10]. 

Previous research utilized Material Requirement Planning (MRP) as the predetermined input by ant colony 

optimization to improve manufacturing performance [13]. The good manufacturing performance means 

to produce items with satisfactory and superior quality, accelerate delivery time and offer excellent after-

sales service [13]. 

In short, it is important to make sure the production flow on the shop floor is streamlined. The raw material 

should be treated as an economical commodity, so the improvement related to the raw material is never 

ignored by the whole supply chain stakeholders. 
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2 | Literature Review 

A previous study suggested to utilize the green manufacturing including the inventory control process 

to achieve environmentally-friendly activities and achieve better performance as well [14]. The ABC 

classification is an effective technique to develop a mechanism for identifying inventory items that not 

only has a significant impact on the total inventory cost [15]. This technique classifies items into three 

classes, A, B, and C depends on certain characteristics. Previous research utilized the ABC classification 

in dynamic storage assignment problem and used the order frequency as the criterion [16]. Meanwhile, 

a research classified them according to the item’s annual consumption value [17]. Another paper 

classified the inventories into A, B, and C types, based on picking frequency [18]. In this paper, a 

percentage of stored goods are used. 

Several studies combined and improved this technique. A study improved this technique in determining 

weights using Shannon entropy [15]. A periodic review policy based on the ABC classification was 

conducted in order to control the raw materials inventory [17].  

Since the expected service time is normally much smaller than the production lead time, the demand of 

a customer must be anticipated through a forecast [10]. An accurate forecast results in establishing 

appropriate operational practices where the forecast inaccuracies have significant implications [19]. But, 

the main difficulty is that a forecast is an estimation since demands are uncertain [10], which leads to 

both out-of-stock and excessive stock situations [20].  

This uncertainties issue has been tackled through stochastic programming model to point out the nature 

of inventory policy [6]. Seasonal future demand was estimated using the multiplicative seasonal method 

[12]. Previous study tried to estimate and predict the demand of new product through machine learning 

[21]. Other study presented a forecasting model to estimate the demand based on big data technologies 

[22]. Three stages were used such as a cluster analysis to classify traffic patterns, and a relational analysis 

to identify influential factors, and a decision tree to establish classification criteria [22]. Other study 

utilized the Root Mean Squared Error (RMSE) to measure the demand accuracy [8], while this paper 

use Mean Absolute Percentage Error (MAPE), Mean Absolute Deviation (MAD), and Mean Squared 

Deviation (MSD) at the same time. 

Aggregate planning is a fundamental decision model in supply chain management, refers to the 

determination of production, inventory, capacity and labor usage levels in the medium term [23]. In 

general, the benefits of inventories derive from their ability to reduce the interdependence of processing 

units, to mitigate the effects of bottlenecks, and to facilitate capacity utilization [6]. In this paper, the 

demand as well as the production capacity for this aggregate product in different periods of the planning 

horizon is given [11]. To plan the aggregate accurately, the first decision is the detail forecasts of each 

product [21]. One challenge we must address that arises from this decision is how to apply inventory 

constraints [21], such as production and resources capacity [6]. An aggregate planning model is 

developed to balance the demand and production capacity simultaneously [11]. The aggregate planning 

should make sure the objective and the constraints are satisfied by adjusting output rates, inventory 

levels, backorders and the other controllable variables [11]. The controllable variables are inventory 

costs, ordering costs, training costs, and worker hiring and firing costs [24]. Another study added some 

important variables such as transportation cost of the vehicles and the energy cost to keep the cold 

storage temperature [25]. These variables are the important factors in terms of conversion of raw 

materials into final products, their maintenance, and distribution to end customers [26]. Therefore, 

aggregate planning plays a major role in shaping the Master Production Scheduling (MPS) and 

consequently the shop floor scheduling operations [27].  

MPS is generally specifies the production quantity of each finished good during each planning horizon 

period of multiple weeks and is based on estimated or known demands [20], [28]. The MPS is 

constrained by the decisions regarding capacity and the targets in terms of inventory levels [29]. To be 
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able to cope with the differences between the forecast and the actual orders, overtime is allowed [29]. Since 

overtime is limited, we also consider backorders as well ensuring feasibility [29]. Because MPS does not 

plan product types but product family, the target inventory level has to be disaggregated [29]. 

Although other research tried to integrate the aggregate production planning and MPS [29], this paper 

solve them gradually. This paper constantly pay attention to the quality of solution by making sure they are 

feasible to run in minimizing inventory costs [30]. 

Making good use of the material requirements plan result can increase inventory turnover, improve 

procurement quality, increase productivity, and increase customer satisfaction [13]. As a result, the rapid 

and correct implementation of the material requirement plan will have a better effect on the efforts of the 

whole company [13]. 

According to the structure of the MRP system, it must complete the following three main functions: parts 

demand calculation, inventory calculation, and purchase calculation [13]. By using product structure (of 

the raw material list, product material list) and the scheduled completion date of each component 

combination, the MRP system could complete these three functions after getting the amount of product 

demand [13]. To accomplish these three functions, the input items of the MRP system are product 

structure, inventory status, lot sizing rule, and Master Production Schedule (MPS) [13]. The output items 

are the number of components that should be ordered, the capacity demands and the manufacturing 

demands [13]. 

The demand deployment of the MRP system is based on the final project [13]. It calculates from top to 

bottom and traces back from the bottom to top to meet the production of the final project and obtains 

the number of components needed [13]. 

In the MRP system, the material requirement file is established for each item of the main production 

schedule, and the final product requirement in MPS is converted to the gross requirement [13]. The net 

requirement is calculated from the gross requirement [13]. Then, the planned order receipts for each period 

of the total product or material are obtained by production or purchase, and the lot size of each item in 

each period must be calculated by the batch rule [13]. The planned order quantity for each period of the 

material item is equal to the planned order quantity for each period of the material item unless the lead 

time for each period of the material item is non-zero [13]. The gross demand at the next level of the 

structure is determined by the number of planned orders issued during each period of the material items 

[13].  

Bill of Material (BOM), also known as the product structure table or material structure, which is the most 

paramount foundation to compose the product information [13]. It records all parts of the component and 

interrelated information of a product, such as the kind of component and the required quantity to meet 

the final production from the BOM [13]. Generally, BOM data contain various attributes such as part 

number, quantity, and specification, etc. [13].  

The Squared Coefficient of Variation (SCV) calculations are utilized to measure the variability of the 

demand pattern. SCV formula can be seen in the Eq. (1) [31]. If SCV < 0.2, use a simple EOQ and utilize 

a heuristic if SCV ≥ 0.2 [31]. The total cost can be obtained from Eq. (2) [32]. 

 

SCV =
Variance of demand per period

Square of average demand per period
. (1) 

Total cost = (D)(C) + (
D

Q ∗
) (S) + (

Q ∗

2
) H. (2) 
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where: 

D: Annual demand of the product. 

C: Cost per unit of product. 

Q*: EOQ. 

S: Fixed cost incurred per order. 

H: Holding cost per unit per year. 

3 | Research Methodology 

This paper tries to solve the problem of excess or shortage of raw materials through serial stages, starting 

from the ABC classification, along with forecasting, aggregate planning, and capacity planning. ABC 

analysis is a technique for prioritizing the management of inventory as shown in Fig. 2. Inventories are 

categorized into three classes - A, B, and C. Most management efforts and oversights are expended on 

managing A items while C items get the least attention and B items are in-between [33]. Forecasting 

predicts the demands which are a crucial step in production planning schedule to satisfy customer needs 

on time [34]. At this stage, the Holt-Winters exponential smoothing is used as an appropriate and 

popular approach for predicting seasonal time series. The discussion continues on the aggregate 

planning stage. Aggregate planning is a process which helps companies to provide better service level 

with smaller preparations, to shorten customer lead times, to stabilize production levels, and to give 

control from top management in managing the business [5]. MPS is a production planning with a 

planned time to produce each finished product [5]. The production capacity is closely related to the 

MPS, which describes what and how many items should be produced in a given period. The problem 

that often occurs is a delay in raw material shipment. This is due to the lack of careful planning for the 

production process. To overcome these problems, we require production capacity planning using Rough 

Cut Capacity Planning (RCCP). RCCP is the second priority in the planning hierarchy, and is used to 

evaluate the resource usage of the MPS [35]. Material Requirements Planning (MRP) is a well-known 

approach to inventory management of dependent demand items. Items that are independently 

demanded are typically finished goods, while dependently demanded items are typically components and 

subassemblies that are related to an end item by a BOM [13]. CRP is increasingly close to the success of 

planning and capacity measurement due to the existence of time standards and route information 

settings. CRP usually does not provide information to change the MPS because it is easier to change 

capacity by using overtime, subcontract and additional manpower. At the end, the objective function is 

to minimize the cost [11]. The two types of data used in this research are primary and secondary data. 

The primary data was obtained verbally in the interview session with the supervisor, mentor, operators, 

and administrators. The secondary data was obtained from written documents such as company data, 

companies’ documents, journals, articles, and others. 

4 | Result and Discussion 

In this section, the discussion covers the ABC classification and followed by the most appropriate 

forecasting method. After that, aggregate planning is performed before heading to the stage of making 

a MPS. The production capacity at the MPS stage will be checked using Rough-Cut Capacity Planning 

(RCCP). The output from the MPS is treated as the input for MRP. The production capacity on the 

MRP is then checked using the Capacity Requirement Planning (CRP). 
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Primary Data

Interview, Production Processes, Product Structure

Secondary Data:

Holding Cost, Set up Cost, Product Price

ABC Classification

Holt-Winter s Forecasting

Aggregate Planning

Master Production Schedule

Material Requirements Planning

Rough-cut Capacity Planning

Capacity Requirements Planning

Planned Order Release

 

Fig. 2. Research flow chart. 

 

4.1 | ABC Classification 

There are 18 product variants and four of them are classified as the “A” category, coded in IGB, ISM, 

IAB, and IKA as shown in Table 1. These items are classified as the “A” category because they serve 20% 

of storage. Six items coded in IGRS, PMAB, PMBS, IKALA, and ISL are classified as the “B” category 

since the company holds them as 30% of the whole inventory. Finally, the rest are classified as the “C” 

items as they occupy 50% of the storage. Hence, the attention in terms of inventory is focused on the “A” 

category. Later, these items are forecasted to predict their future demand. 

Table 1. ABC classification result. 

 

 

 

 

 

  

 

 

 

4.2 | Holt-Winters Forecasting Analysis 

The historical data patterns on each product can be seen from Fig. 3 to Fig. 6. June and December are the 

common peak seasons in all the “A” products. In detail, the data pattern for product IGB has peak seasons 

in March, June, and December as shown in Fig. 3. Fig. 4 tells us the peak seasons for product IAB are in 

May, June, September, November, and December. Meanwhile, product ISM has only peak seasons in two 

months, which are June and December as manifested in Fig. 5. Lastly, Fig. 6 denotes the peak seasons for 

product IKA in five months, such as February, May, June, November, and December. Besides, in terms 

No. Flavor Variants Available Inventory Percentage of Stored Goods 

1 IGB 19200 20% 
2 IAB 16400 
3 ISM 14600 
4 IKA 10800 
5 IGRS 9600 30% 
6 PMAB 4480 
7 PMBS 3920 
8 IKALA 7200 
9 ISL 7000 
10 MTK 5400 50% 
11 SAB 4788 
12 SUSD 3564 
13 SAK 2142 
14 PMMAB 2415 
15 SUAB 1836 
16 SUGOPANG 1404 
17 SAGOR 750 
18 SAKBS 300 
Total  115799  
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of trend analysis, these products also indicate uptrend throughout the year. Therefore, this paper 

proposes that the forecasting method should consider seasonality and trend conditions. A previous study 

have shown that the Holt-Winters exponential smoothing method is able to provide suitable forecasts 

on seasonal and trend demand patterns [36]. This paper also presents the Holt-Winters exponential 

smoothing as an appropriate method. This paper runs nine different scenarios in terms of smoothing 

constant, as shown in Table 2. It turns out that different smoothing constant works divergently. The 

results show that product IGB, IAB, and IKA performs well with the smoothing constant α = 0.9, γ = 

0.1, β = 0.1. The performance indicator is MAPE and MAD. Regarding these three products, the 

forecasted data fluctuates with the higher α results in the smaller MAPE and MAD. The other product, 

which is ISM, fits with the smoothing constant α = 0.1, γ = 0.1, β = 0.1 and follows the lower α results 

in the smaller MAPE and MAD. Table 3 refers the forecasting results that have been selected based on 

the most suitable smoothing constant on the product IGB, ISM, IAB, and IKA. These data are the 

inputs for aggregate planning stage. 

  

Fig. 3. Seasonal pattern and trend analysis for IGB. 

  

Fig. 4. Seasonal pattern and trend analysis for IAB. 
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Fig. 5. Seasonal pattern and trend analysis for ISM. 

 

 

 

 

 

 

 

Fig. 6. Seasonal pattern and trend analysis for IKA. 

Table 2. Smoothing constant scenarios. 

 

 

 

 

 

Table 3. Forecasting results. 

 

 

 

 

 

 

  

  

Scenario Smoothing Constant Fit for Specific Product 

1 α = 0.1 γ = 0.1 β = 0.1 ISM 
2 α = 0.2 γ = 0.1 β = 0.9  
3 α = 0.3 γ = 0.9 β = 0.1  
4 α = 0.4 γ = 0.9 β = 0.9  
5 α = 0.5 γ = 0.1 β = 0.1  
6 α = 0.6 γ = 0.1 β = 0.9  
7 α = 0.7 γ = 0.9 β = 0.1  
8 α = 0.8 γ = 0.9 β = 0.9  
9 α = 0.9 γ = 0.1 β = 0.1 IGB, IAB, IKA 

Month 
Forecast 2018 Products and Flavor Variants 
IGB ISM IAB IKA 

January 5060530 2881919 2527841 1233181 
February 5226143 3156213 2755404 1403308 
March 5725059 3199771 2326878 1379124 
April 5136889 3039112 2779493 1358891 
May 6138679 3334205 3052584 1492097 
June 6836712 3705005 3648850 1668667 
July 6340171 3509641 3354610 1554897 
August 6659845 3514955 2908532 1533844 
September 6573141 3251536 3229894 1417749 
October 6879614 3720932 3318849 1597274 
November 7058026 3841887 3758560 1674710 
December 7271099 3947656 4041331 1713318 
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4.3 | Aggregate Planning 

After performing the forecasting analysis, the next step is to conduct the aggregate planning. This step 

aims to plan production quantities based on forecasting results and to determine the number of workers 

to minimize related costs production. At this stage, this paper performs linear programming to produce 

the global optimal aggregate planning subject to cost structure as shown in Table 4. From there, the 

process proceeds to the total cost calculation for 1 year ahead. The total cost for product IGB, IAB, 

ISM, and IKA are IDR 143,010,336,000, IDR 71,604,692,000, IDR 77,286,664,000, and IDR 

34.385.446.000 respectively. 

Table 4. Cost structure. 

 

 

 

 

4.4 | MPS and RCCP 

The succeeding stage is to create a MPS which will be implemented based on the production lot sizes 

and the remaining stock from the previous period. In this paper, the MPS is made for 52 weeks from 

January to December 2018. Table 5 shows the MPS raw data of each flavor variant. Table 6 denotes an 

example of the calculation for the IGB flavor variant. 

Table 5. MPS data. 

 

 

The MPS is further tested with the RCCP method to check the feasibility and make headway to the 

MRP stage. If the RCCP results in the available capacity are greater than the required capacity, it means 

MPS deserves to be continued to the MRP stage. For simplicity, the calculation is done only for IGB at 

this stage. For the first six months, Table 7 presents its available capacity while Table 8 and Table 9 

together point its required capacity using two different approaches. Table 8 and Table 9 utilize the 

Capacity Planning Overall Factor (CPOF) and Bill of Labor Approach (BOLA) respectively. Altogether, 

the favorable outcome shows the capacity available for IGB, ISM, IAB, and IKA is satisfactory, indicates 

the MPS is feasible to run. 

4.5 | Material Requirements Planning and CRP 

Based on the forecasting results, the SCV calculations are performed to measure the variability of the 

demand pattern. SCV formula can be seen in Eq. (1) [31]. Table 10 shows the future demand for all “A” 

items are static because of SCV < 0.2, meaning the EOQ method can be applied. 

IGB has four components of raw materials at once forming its BOM such as TPG, ETK, BM, and 

MBM, as presented in Fig. 7. Table 11 shows the cost of MRP calculation results. TPG is processed 

through the serial process on work station 1B, 2B, 3B, 4B, 5B, 6B, and 3A. ETK processing is completed 

by using work station 2A, while BM and MBM go to work station 1A. The highest EOQ is presented 

Cost (IDR) 

Regular Cost 5500000/month 
Overtime 230000/overtime 
Hiring 500000/hiring 
Layoff 3000000/layoff 
Inventory Cost 100/pcs 
Backorder 800/pcs 
Cost of Goods Sold 2000/pcs 
Subcontract 2200/pcs 

Product IGB ISM IAB IKA 

Lead Time 0 0 0 0 
On Hand 3538490 2550000 1977690 898087 
Lot Size 1000000 500000 500000 250000 
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by ETK as it has the highest total inventory. From the total cost point of view, MBM denotes the highest 

value. 

Table 6. MPS calculation for January and February. 

 

Table 7. Available capacity for IGB. 

 

Table 8. Required capacity for IGB using CPOF. 

 

 

 

 

 

Table 9. Required capacity for IGB using Bill of Labor Approach (BOLA). 

 

 

 

 

Month 
(2018) 

Past January February 

Week   1 2 3 4 5 6 7 8 
Sales 
Forecast 

  1265133 1265133 1265132 1265132 1306536 1306536 1306536 1306535 

Actual 
Orders 

   1645850 1645850 1645850 1645850 1599748 1599748 1599748 1599748 

Projected 
Available 
Balances 
(PAB) 

3538490 3538490 1892640 246790 600940 955090 355342 755594 155846 

Available 
to 
Promise 
(ATP) 

      600940 955090 355342 755594 155846 556098 

MPS       1399060 1044910 644658 1244406 844154 1443902 
MPS with 
LS 

      2000000 2000000 1000000 2000000 1000000 2000000 

Work Center (WC) 
Month (Working Days) 
January (26) February (23) March (25) April (24) May (24) June (20) 

WC-1 (units) 2742.01 2425.63 2636.55 2531.09 2531.09 2109.24 
WC-2 (units) 1371.01 1212.81 1318.28 1265.54 1265.54 1054.62 
WC-3 (units) 2742.01 2425.63 2636.55 2531.09 2531.09 2109.24 
WC-4 (units) 1371.01 1212.81 1318.28 1265.54 1265.54 1054.62 
WC-5 (units) 2742.01 2425.63 2636.55 2531.09 2531.09 2109.24 
WC-6 (units) 5484.02 4851.25 5273.10 5062.18 5062.18 4218.48 
WC-7 (units) 2742.01 2425.63 2636.55 2531.09 2531.09 2109.24 

Work Center 
(WC) 

Historical 
Proportion 

Month (Working Days) 
January 
(26) 

February 
(23) 

March 
(25) 

April 
(24) 

May 
(24) 

June 
(20) 

WC-1 0.22 950 1425 1425 1187.5 1425 1662.5 
WC-2 0.03 111.11 166.67 166.67 138.89 166.67 194.44 
WC-3 0.21 888.89 1333.33 1333.33 1111.11 1333.33 1555.56 
WC-4 0.01 55.56 83.33 83.33 69.44 83.33 97.22 
WC-5 0.20 833.33 1250 1250 1041.667 1250 1458.33 
WC-6 0.20 833.33 1250 1250 1041.667 1250 1458.33 
WC-7 0.13 555.56 833.33 833.33 694.44 833.33 972.22 

Work Center 
(WC) 

Historical 
Proportion 

Month (Working Days) 
January 
(26) 

February 
(23) 

March 
(25) 

April 
(24) 

May 
(24) 

June 
(20) 

WC-1 0.010 950 1425 1425 1187.5 1425 1662.5 
WC-2 0.001 111.11 166.67 166.67 138.89 166.67 194.44 
WC-3 0.009 888.89 1333.33 1333.33 1111.11 1333.33 1555.56 
WC-4 0.001 55.56 83.33 83.33 69.44 83.33 97.22 
WC-5 0.008 833.33 1250 1250 1041.67 1250 1458.33 
WC-6 0.008 833.33 1250 1250 1041.67 1250 1458.33 
WC-7 0.006 555.56 833.33 833.33 694.44 833.33 972.22 
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MRP needs to be verified whether the number of orders with the existing lead time satisfactory or not. 

If the available resource capacity is greater of the required capacity, then MRP can be implemented, as 

shown in Table 12. 

Table 10. SCV results. 

 

 

Finished Product

MM ETK BM MBM 

TPG 
 

               Fig. 7. Product structure. 

Table 11. Total inventory costs for IGB. 

 

Table 12. CRP for IGB. 

 

 IGB IAB ISM IKA 

Variance of Demand per Period (5.59) (1011) (2.43) (1011) (1.03) (1011) (2.00) (1010) 
Squared of Average Demand per period (3.90) (1013) (9.87) (1012) (1.17) (1013) (2.26) (1010) 
SCV 0.014 0.025 0.009 0.009 

Component 
Name 

W
C 

EOQ 
Total 
Inventory 

Total 
Planned 
Order 

Material 
Cost (Rp) 

Ordering 
Cost (Rp) 

Holding 
Cost (Rp) 

Total 
Cost (Rp) 

TPG 1B 
2B 
3B 
4B 
5B 
6B 
3A 

612 21374 11628 1,150 12,500 800 30,708,900 

ETK 2A 122,720 35,698,000 75,000,000 250. 10,000 100 22,320,300,000 
BM 1A 86,780 35,360,000 75,000,000 350 10,000 200 33,322,500,000 
MBM 1A 86,780 35,360,000 75,000,000 400 10,000 200 37,072,500,000 

Work 
Center 

Capacity 
Months (Working Days) 
January 
(26) 

February (23) March (25) April (24) May (24) June (20) 

1B Available  2742.012 2425.626 2636.55 2531.088 2531.088 2109.24 
Required  1666.875 1190.625 1428.75 1428.75 1428.75 1666.875 

2B Available  1371.006 1212.813 1318.275 1265.544 1265.544 1054.62 
Required  198.8194444 142.0138889 170.4166667 170.4166667 170.4166667 198.8194444 

3B Available  2742.012 2425.626 2636.55 2531.088 2531.088 2109.24 
Required  1559.930556 1114.236111 1337.083333 1337.083333 1337.083333 1559.930556 

4B Available  1371.006 1212.813 1318.275 1265.544 1265.544 1054.62 
Required  101.5972222 72.56944444 87.08333333 87.08333333 87.08333333 101.5972222 

5B Available  2742.012 2425.626 2636.55 2531.088 2531.088 2109.24 
Required  1462.708333 1044.791667 1253.75 1253.75 1253.75 1462.708333 

6B Available  5484.024 4851.252 5273.1 5062.176 5062.176 4218.48 
Required  1462.708333 1044.791667 1253.75 1253.75 1253.75 1462.708333 

3A Available  2742.012 2425.626 2636.55 2531.088 2531.088 2109.24 
Required  976.5972222 697.5694444 837.0833333 837.0833333 837.0833333 976.5972222 

2A Available  1828.008 1617.084 1757.7 1687.392 1687.392 1406.16 
Required  441.875 315.625 378.75 378.75 378.75 441.875 

1A Available  1828.008 1617.084 1757.7 1687.392 1687.392 1406.16 
Required  927.5 662.5 795 795 795 927.5 
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5 | Conclusion 

The ABC classification results of 18 taste variants are IGB, ISM, IAB, and IKA for class A with the 

percentage of goods saved by 20%. IGRS, PMAB, PMBS, IKALA, and ISL for class B with the percentage 

of goods stored by 30%. MTK, SAB, SUSD, SAK, PMMAB, SUAB, SUGOPANG, SAGOR and SAKBS 

for class C with the percentage of goods stored at 50%. So, the attention and the inventory control are 

preferred for class “A” namely IGB, ISM, IAB, and IKA. The forecasting method is applied using Triple 

Exponential Smoothing (TES) because the data has a trend and seasonal with the smallest error rate that 

is α = 0.9, γ = 0.1 and β = 0.1 for three products, such as IGB, IAB, and IKA. The value of α = 0.1, γ = 

0.1 and β = 0.1 is fit for ISM. The results of aggregate planning can run efficiently while balancing the 

workforce and the amount of production. The aggregate planning indicates that the company should 

require a lot workforce to balance the amount of production with the production capacity of labor. The 

total cost for product IGB, IAB, ISM, and IKA are IDR 143,010,336,000, IDR 71,604,692,000, IDR 

77,286,664,000, and IDR 34.385.446.000 respectively. RCCP under CPOF and BOLA both indicates that 

MPS is feasible to be implemented because the available capacity in each production line is enough to fulfill 

the required demand. RCCP is based on MPS lot size data with lot size already according to the lot size 

determined by the 52 weeks made up to 12 months, machine time processing data and historical 

proportions machine. Based on the SCV analysis and calculations, Economic Order Quantity (EOQ) is 

the selected lot-sizing technique to perform the MRP calculation. The CRP result shows the MRP is 

feasible for product all “A” products. CRP is based on planned order release data from MRP each raw 

material for 52 weeks which is made 12 months based on lot size, data setup time, run time, operation time 

and setup time/lot size. 

Future study could utilize the regression tree since it was claimed more effective than other regression 

methods in predicting demand [21]. Under uncertainty where statistical data are either not that reliable or 

not even available, MPS model can be developed [37] as one of the unique characteristics in the further 

study. 

References 

 Tannady, H., Gunawan, E., Nurprihatin, F., & Wilujeng, F. R. (2019). Process improvement to reduce 

waste in the biggest instant noodle manufacturing company in South East Asia. Journal of applied 

engineering science, 17(2), 203-212. https://doi.org/10.5937/jaes17-18951  

 Tannady, H., Nurprihatin, F., & Hartono, H. (2018). Service quality analysis of two of the largest retail 

chains with minimart concept in Indonesia. Business: theory and practice, 19, 177-185. 

https://doi.org/10.3846/BTP.2018.18  

 Kauppila, O., Valikangas, K., & Majava, J. (2020). Improving supply chain transparency between a 

manufacturer and suppliers: a triadic case study. Management and production engineering review, 11(3), 84–

91. https://doi.org/10.24425/mper.2020.134935  

 Tannady, H., & Maimury, Y. (2018). Increasing the efficiency and productivity in the production of low 

voltage switchboard using resource constrained project scheduling. Journal of industrial engineering and 

management (JIEM), 11(1), 1-33. https://doi.org/https://doi.org/10.3926/jiem.2228  

 Jacobs, F. R., & Chase, R. B. (2018). Operations and supply chain management (15th ed.). McGraw-Hill 

Education. https://www.amazon.com/Operations-Supply-Management-Robert-Jacobs/dp/1259666107  

 Garcia-Herreros, P., Agarwal, A., Wassick, J. M., & Grossmann, I. E. (2016). Optimizing inventory 

policies in process networks under uncertainty. Computers & chemical engineering, 92, 256-272. 

https://doi.org/10.1016/j.compchemeng.2016.05.014  

 Ejlali, B., Bagheri, S. F., & Ghaziyani, K. (2019). Integrated and periodic relief logistics planning for 

reaction phase in uncertainty condition and model solving by PSO algorithm. International journal of 

research in industrial engineering, 8(4), 294-311. https://doi.org/10.22105/riej.2020.219060.1120  

 Ke, J., Zheng, H., Yang, H., & Chen, X. M. (2017). Short-term forecasting of passenger demand under on-

demand ride services: a spatio-temporal deep learning approach. Transportation research part c: emerging 

technologies, 85, 591-608. https://doi.org/10.1016/j.trc.2017.10.016  

https://doi.org/10.5937/jaes17-18951
https://doi.org/10.3846/BTP.2018.18
https://doi.org/10.24425/mper.2020.134935
https://doi.org/https:/doi.org/10.3926/jiem.2228
https://www.amazon.com/Operations-Supply-Management-Robert-Jacobs/dp/1259666107
https://doi.org/10.1016/j.compchemeng.2016.05.014
https://doi.org/10.22105/riej.2020.219060.1120
https://doi.org/10.1016/j.trc.2017.10.016


 

 

344 

N
u

rp
ri

h
a
ti

n
 e

t 
al

.|
In

t.
 J

. 
R

e
s.

 I
n

d
. 
E

n
g

. 
10

(4
) 

(2
0
21

) 
33

2
-3

4
5

 

 Nielsen, P., & Michna, Z. (2018). The impact of stochastic lead times on the bullwhip effect–an 

empirical insight. Management and production engineering review, 9(1), 65-70.  

 Brunaud, B., Laínez‐Aguirre, J. M., Pinto, J. M., & Grossmann, I. E. (2019). Inventory policies and 

safety stock optimization for supply chain planning. AIChE journal, 65(1), 99-112. 

https://doi.org/10.1002/aic.16421  

 Modarres, M., & Izadpanahi, E. (2016). Aggregate production planning by focusing on energy saving: 

A robust optimization approach. Journal of cleaner production, 133, 1074-1085. 

https://doi.org/10.1016/j.jclepro.2016.05.133  

 Mahmoud, A. A., Aly, M. F., Mohib, A. M., & Afefy, I. H. (2020). A two-stage stochastic programming 

approach for production planning system with seasonal demand. Management and production 

engineering review, 11, 31-42. https://doi.org/10.24425/mper.2020.132941  

 Ke, G., Chen, R. S., Chen, Y. C., Wang, S., & Zhang, X. (2020). Using ant colony optimisation for 

improving the execution of material requirements planning for smart manufacturing. Enterprise 

information systems, 1-23. https://doi.org/10.1080/17517575.2019.1700552  

 Barzegar, M., Ehtesham Rasi, R., & Niknamfar, A. H. (2018). Analyzing the drivers of green 

manufacturing using an analytic network process method: a case study. International journal of research 

in industrial engineering, 7(1), 61-83. https://doi.org/10.22105/riej.2018.108563.1031  

 Zheng, S., Fu, Y., Lai, K. K., & Liang, L. (2017). An improvement to multiple criteria ABC inventory 

classification using Shannon entropy. Journal of systems science and complexity, 30(4), 857-865. 

https://doi.org/10.1007/s11424-017-5061-8  

 Li, J., Moghaddam, M., & Nof, S. Y. (2016). Dynamic storage assignment with product affinity and 

ABC classification—a case study. The international journal of advanced manufacturing technology, 84(9), 

2179-2194. https://doi.org/10.1007/s00170-015-7806-7  

 Nallusamy, S., Balaji, R., & Sundar, S. (2017). Proposed model for inventory review policy through 

ABC analysis in an automotive manufacturing industry. International journal of engineering research in 

Africa, 29, 165-174. https://doi.org/10.4028/www.scientific.net/JERA.29.165  

 Srisuk, K., & Tippayawong, K. Y. (2020). Improvement of raw material picking process in sewing 

machine factory using lean techniques. Management and production engineering review, 11(1), 79–85. 

https://doi.org/10.24425/mper.2020.132946  

 Boroojeni, K. G., Amini, M. H., Bahrami, S., Iyengar, S. S., Sarwat, A. I., & Karabasoglu, O. (2017). A 

novel multi-time-scale modeling for electric power demand forecasting: from short-term to medium-

term horizon. Electric power systems research, 142, 58-73. https://doi.org/10.1016/j.epsr.2016.08.031  

 Englberger, J., Herrmann, F., & Manitz, M. (2016). Two-stage stochastic master production scheduling 

under demand uncertainty in a rolling planning environment. International journal of production 

research, 54(20), 6192-6215. https://doi.org/10.1080/00207543.2016.1162917  

 Ferreira, K. J., Lee, B. H. A., & Simchi-Levi, D. (2016). Analytics for an online retailer: demand 

forecasting and price optimization. Manufacturing & service operations management, 18(1), 69-88. 

https://doi.org/10.1287/msom.2015.0561  

 Arias, M. B., & Bae, S. (2016). Electric vehicle charging demand forecasting model based on big data 

technologies. Applied energy, 183, 327-339. https://doi.org/10.1016/j.apenergy.2016.08.080  

 Türkay, M., Saraçoğlu, Ö., & Arslan, M. C. (2016). Sustainability in supply chain management: 

aggregate planning from sustainability perspective. PloS one, 11(1), e0147502. 

https://doi.org/10.1371/journal.pone.0147502  

 Ahmed, S. M., Biswas, T. K., & Nundy, C. K. (2019). An optimization model for aggregate production 

planning and control: a Genetic algorithm approach. International journal of research in industrial 

engineering, 8(3), 203-224. https://doi.org/10.22105/riej.2019.192936.1090  

 Garside, A. K. (2019). An optimization model for cold chain food distribution. International journal of 

research in industrial engineering, 8(3), 243-253. https://doi.org/10.22105/riej.2019.202178.1097  

 Ghahremani Nahr, J., & Zahedi, M. (2021). Modeling of the supply chain of cooperative game between 

two tiers of retailer and manufacturer under conditions of uncertainty. International journal of research 

in industrial engineering, 10(2), 95–116. (In Persian). https://doi.org/10.22105/RIEJ.2021.276520.1190  

 Nour, A., Galal, N. M., & El-Kilany, K. S. (2017, April). Energy-based aggregate production planning 

for porcelain tableware manufacturer in Egypt. Proceedings of the international conference on industrial 

engineering and operations management (pp. 2351-2358), Rabat, Morocco. 

https://doi.org/10.1002/aic.16421
https://doi.org/10.1016/j.jclepro.2016.05.133
https://doi.org/10.24425/mper.2020.132941
https://doi.org/10.1080/17517575.2019.1700552
https://doi.org/10.22105/riej.2018.108563.1031
https://doi.org/10.1007/s11424-017-5061-8
https://doi.org/10.1007/s00170-015-7806-7
https://doi.org/10.4028/www.scientific.net/JERA.29.165
https://doi.org/10.24425/mper.2020.132946
https://doi.org/10.1016/j.epsr.2016.08.031
https://doi.org/10.1080/00207543.2016.1162917
https://doi.org/10.1287/msom.2015.0561
https://doi.org/10.1016/j.apenergy.2016.08.080
https://doi.org/10.1371/journal.pone.0147502
https://doi.org/10.22105/riej.2019.192936.1090
https://doi.org/10.22105/riej.2019.202178.1097
https://doi.org/10.22105/RIEJ.2021.276520.1190


345 

 

Im
p

ro
vi

n
g

 t
h

e 
p

e
rf

o
rm

a
n

ce
 o

f 
p

la
n

n
in

g
 a

n
d

 c
o

n
tr

o
ll

in
g

 r
aw

 m
a
te

ri
al

 i
n

ve
n

to
ry

 i
n

 f
o

o
d

 i
n

d
u

st
ry

 

 
 Díaz-Madroñero, M., Mula, J., Jiménez, M., & Peidro, D. (2017). A rolling horizon approach for material 

requirement planning under fuzzy lead times. International journal of production research, 55(8), 2197-2211. 

https://doi.org/10.1080/00207543.2016.1223382  

 Vogel, T., Almada-Lobo, B., & Almeder, C. (2017). Integrated versus hierarchical approach to aggregate 

production planning and master production scheduling. OR spectrum, 39(1), 193-229. 

https://doi.org/10.1007/s00291-016-0450-2  

 Herrera, C., Belmokhtar-Berraf, S., Thomas, A., & Parada, V. (2016). A reactive decision-making 

approach to reduce instability in a master production schedule. International journal of production 

research, 54(8), 2394-2404. https://doi.org/10.1080/00207543.2015.1078516  

 Silver, E. A., Pyke, D. F., & Thomas, D. J. (2016). Inventory and production management in supply chains. 

CRC Press. 

 Chopra, S., & Meindl, P. (2016). Supply chain management: strategy, planning, and operation (6th Ed.). 

Pearson Education. 

 Ravinder, H., & Misra, R. B. (2014). ABC analysis for inventory management: bridging the gap between 

research and classroom. American journal of business education, 7(3), 257–264. 

https://doi.org/10.19030/ajbe.v7i3.8635  

 Tirkeş, G., Güray, C., & Çelebi, N. (2017). Demand forecasting: a comparison between the holt-winters, 

trend analysis and decomposition models. Technical gazette, 24(2), 503–509. https://doi.org/10.17559/TV-

20160615204011  

 Baydoun, G., Haït, A., Pellerin, R., Clément, B., & Bouvignies, G. (2016). A rough-cut capacity planning 

model with overlapping. OR spectrum, 38, 335–364. https://doi.org/10.1007/s00291-016-0436-0  

 Nurprihatin, F., Jayadi, E. L., & Tannady, H. (2020). Comparing heuristic methods’ performance for pure 

flow shop scheduling under certainand uncertain demand. Management and production engineering review, 

11(2), 50-61. https://doi.org/10.24425/mper.2020.133728  

 Martín, A. G., Díaz-Madroñero, M., & Mula, J. (2020). Master production schedule using robust 

optimization approaches in an automobile second-tier supplier. Central European journal of operations 

research, 28(1), 143-166. https://doi.org/10.1007/s10100-019-00607-2  

https://doi.org/10.1080/00207543.2016.1223382
https://doi.org/10.1007/s00291-016-0450-2
https://doi.org/10.1080/00207543.2015.1078516
https://doi.org/10.19030/ajbe.v7i3.8635
https://doi.org/10.17559/TV-20160615204011
https://doi.org/10.17559/TV-20160615204011
https://doi.org/10.1007/s00291-016-0436-0
https://doi.org/10.24425/mper.2020.133728
https://doi.org/10.1007/s10100-019-00607-2

