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Abstract 

   

1 | Introduction  

Assignment Problem (ASP) [6] is a problem to find an optimal assignment in which'' 𝑛 '' jobs are 

allocated to '' 𝑛'' workers and each worker accepts exactly one job so that the total assignment cost 

must be minimum. Many authors have introduced approaches for solving the ASP problem (for 

instance, [11], [14]-[17], [19]). 

In many scientific areas, such as system analysis and operators research, a model has to be setup-using 

data, which is only approximately known. Fuzzy sets theory, introduced by Zadeh [20] makes this 

possible. Fuzzy numerical data can be represented by means of fuzzy subsets of the real line, known 

as fuzzy numbers. Dubois [4] extended the use of algebraic operations on real numbers to fuzzy 

numbers by use of a fuzzification principle. In spite of having a vast decision making experience, the 

decision maker cannot always articulate the goals precisely. Decision-making in a fuzzy environment, 

developed by Bellman and Zadeh [2] improved and a great help in the management decision 

problems.  
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Zimmermann [21] proposed the fuzzy set theory and its applications. Neuromas approaches have 

applied for solving MOASP in uncertainty environment (see, [5], [7], [9], [12], [13], [18]). Bao et al. [1] 

solved MOASP problem by converting it into a single objective ASP based on the 0 − 1 programming 

method. Jayalakshmi and Sujatha [10] solved the MOASP using the optimal flowing method obtaining 

the set of all efficient solutions of the problem. 

In this paper, a new approach for solving an (𝛾, 𝛿) interval- valued fuzzy multiobjective assignment 

problem is proposed. This approach is based on the Hungarian method. The advantages of this 

approach is easy for applying and solving, and it helps the decision maker who are handling the MOASP 

in the real life situation. 

The rest of the paper is outlined as follows: 

Fig. 1. Layout of remaining paper. 

In order to discuss our problem conveniently, basic concepts and results related to fuzzy number,(𝛼, 𝛽) 

interval- valued fuzzy number and its arithmetic operations are recalled. 

Definition 1 ([20]). A fuzzy set 𝐴̃ defined on the set of real numbers ℝ is said to be fuzzy numbers if 

its membership function 

𝜇𝐴̃(𝑥):  ℝ → [0,1], have the following properties: 

− 𝜇𝐴̃(𝑥) is an upper semi- continuous membership function. 

− �̃� is convex fuzzy set, i.e., 𝜇𝐴̃(𝑤 𝑥 + (1 − 𝑤) 𝑦) ≥ 𝑚𝑖𝑛{𝜇𝐴̃(𝑥), 𝜇𝐴̃(𝑦) }  for all 𝑥, 𝑦 ∈ ℜ; 0 ≤ 𝑤 ≤ 1. 

− �̃� is normal, i.e., ∃ 𝑥0 ∈ ℜ for which 𝜇𝐴̃(𝑥0) = 1.  

− 𝑆𝑢𝑝𝑝 (�̃�) = {𝑥 ∈ ℜ: 𝜇�̃�(𝑥) > 0 } is the support of �̃� , and the closure 𝑐𝑙(𝑆𝑢𝑝𝑝(�̃�)) is compact set. 

Definition 2 ([8]). If the membership function of the fuzzy set 𝐴̃ on ℜ is 

 

where 0 < 𝛾 ≤ 1 then 𝐴̃ is called a level 𝛼 fuzzy number and it is denoted as 𝐴̃ = (𝑟, 𝑠, 𝑡; 𝛾). 

μÃ(x) =

{  
   
   
 
   
   
   
 
 
γ (x − r)

(s − r)
, r < x ≤ s

γ (t − x)

(t − s)
, s ≤ x < t

0,      otherwise

  

Section 2
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preliminaries and 
notation needed.
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•.

Section 5

Gives an example for 
illustration.

Section 6

Gives conclusion with 
future works.



207 

 

A
 s

ig
n

e
d

 d
is

ta
n

c
e
 f

o
r 

(γ
,δ

) 
in

te
rv

a
l-

va
lu

e
d

 f
u

z
z
y
 n

u
m

b
e
rs

 t
o

 s
o

lv
e
 m

u
lt

i 
o

b
je

c
ti

ve
 a

ss
ig

n
m

e
n

t 
p

ro
b

le
m

s 
w

it
h

 f
u

z
z
y
 p

a
ra

m
e
te

rs
 

 
Definition 3 ([8]). An interval- valued fuzzy set 𝐴̃ on ℜ is given by: 

𝐴̃ ≜ {(𝑥, [𝜇𝐴−(𝑥), 𝜇𝐴+(𝑥) ]): 𝑥 ∈ ℜ}, where 𝜇𝐴̃−(𝑥), 𝜇𝐴̃+(𝑥) ∈ [0, 1], and 𝜇𝐴̃−(𝑥) ≤  𝜇𝐴̃+(𝑥); 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ ℜ and is 

denoted as 𝐴̃ = [𝐴−̃, 𝐴̃+]. Let 

  

 

 

Then 𝐴̃− = (𝑟, 𝑠, 𝑡; 𝛾), and 𝐴̃+ = (𝑎, 𝑠, 𝑏;  𝛿). 

It is clear that 0 < 𝛾 ≤ 𝛿 ≤ 1, and 𝑎 < 𝑟 < 𝑠 < 𝑡 < 𝑏. Then the (𝛾, 𝛿) interval-valued fuzzy set is defined as: 

𝐴̃ ≜ {(𝑥, [𝜇𝐴−(𝑥), 𝜇𝐴+(𝑥) ]): 𝑥 ∈ ℜ}, is denoted as 𝐴̃ = [(𝑟, 𝑠, 𝑡; 𝛾), (𝑎, 𝑠, 𝑏; 𝛿)] = [𝐴−̃, 𝐴+̃]. 

𝐴̃ is called a level (𝛾, 𝛿) interval-valued fuzzy number as shown in the following Fig.1 ([8]). 

Fig. 2. Level (𝛄, 𝛅) interval- valued fuzzy number. 

Property 1 ([8]). Let,𝐹𝐼𝑉𝐹(𝛾, 𝛿) = {[(𝑟, 𝑠, 𝑡; 𝛾), (𝑎, 𝑠, 𝑏;  𝛿)]: 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑎 < 𝑟 < 𝑠 < 𝑡 < 𝑏}, 0 < 𝛾 ≤ 𝛿 ≤ 1 be the 

family of (𝜸, 𝜹) interval- valued fuzzy numbers. 

Let, �̃� = [(𝑟, 𝑠, 𝑡; 𝛼), (𝑎, 𝑠, 𝑏; 𝛾)] ∈ 𝐹𝐼𝑉𝐹(𝛾, 𝛿), and�̃� = [(𝑟1, 𝑠1, 𝑡1; 𝛾), (𝑎1, 𝑠1, 𝑏1; 𝛿)] ∈ 𝐹𝐼𝑉𝐹(𝛾, 𝛿). Then: 

− �̃�(+)�̃� = [(𝑟 + 𝑟1, 𝑠 + 𝑠1, 𝑡 + 𝑡1; 𝛾), (𝑎 + 𝑎1, 𝑠 + 𝑠1, 𝑏 + 𝑏; 𝛿)]. 

− �̃�(−)�̃� = [(𝑟 − 𝑡1, 𝑠 − 𝑠1, 𝑡 − 𝑟1; 𝛾), (𝑎 − 𝑏1, 𝑠 − 𝑠1, 𝑏 − 𝑎1; 𝛿)]. 

− 𝑘. �̃� =
{  
 
   
 
 
[(𝑘𝑟, 𝑘𝑠, 𝑘𝑡; 𝛾), (𝑘𝑎, 𝑘𝑠, 𝑘 𝑏; 𝛿)], 𝑘 > 0,
[(𝑘𝑡, 𝑘𝑠, 𝑘𝑟; 𝛾), (𝑘𝑏, 𝑘𝑠, 𝑘 𝑎; 𝛿)], 𝑘 < 0,

[(0,0,0; 𝛾), (0, 0,0 ; 𝛿)], 𝑘 = 0.
 

Definition 4 ([8]). Let �̃� = [(𝑟, 𝑠, 𝑡; 𝛾), (𝑎, 𝑠, 𝑏; 𝛿)] ∈ 𝐹𝐼𝑉𝐹(𝛾, 𝛿), 0 < 𝛾 ≤ 𝛿 ≤ 1. The signed distance ranking of 

�̃� from 0̃ is given as 

 

μÃ−(x) =

{  
   
 
   
   
 
 γ (x−r)

(s−r)
, r < x ≤ s

γ (t−x)

(t−s)
, s ≤ x < t

0, otherwise

        μÃ+(x) =

{  
   
 
   
   
 
 
δ (x−a)

(s−a)
, a < x ≤ s

δ (b−x)

(b−s)
, s ≤ x < c

0, otherwise

  

d0(P,̃ 0̃) =
1

8
[6s + r + t + 4a + 4b + 3(2s − a − b)

γ

δ
].  
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Remark 1. �̃� = [(𝑎, 𝑎, 𝑎; 𝛾), (𝑎, 𝑎, 𝑎; 𝛿)], then  𝑑0(𝑃,̃ 0̃) = 2𝑎. 

Definition 5 ([8]). Let�̃�, �̃� ∈ 𝐹𝐼𝑉𝐹(𝛾, 𝛿), the ranking of level(𝛾, 𝛿) interval- valued fuzzy numbers in 

𝐹𝐼𝑉𝐹(𝛾, 𝛿) using the distance function 𝑑0 is defined as 

Property 2 ([8]). Let �̃� = [[(𝑟, 𝑠, 𝑡; 𝛾), (𝑎, 𝑠, 𝑏; 𝛿)]] and �̃� = [(𝑟1, 𝑠1, 𝑡1; 𝛾), (𝑎1, 𝑠1, 𝑏1; 𝛿)] be (𝛾, 𝛿) interval- 

valued fuzzy numbers in𝐹𝐼𝑉𝐹(𝛼, 𝛽). Then 

− 𝑑0(�̃� ⊕ 𝑄,̃ 0̃) = 𝑑0(�̃�, 0̃) + 𝑑0(𝑄,̃ 0̃), 

− 𝑑0(𝑘 �̃�, 0̃) = 𝑘 𝑑0(�̃�, 0̃), 𝑘 > 0. 

2 | Problem Formulation and Solution Concepts 

2.1 | Assumptions, Index and Notation 

2.1.1 | Assumptions 

Assume that there are 𝑛 jobs must be performed by and 𝑛 persons, where the costs depend on the 

specific assignments. Each job must be assigned to one and only one person and each person has to 

perform one and only one job. 

2.1.2 | Index 

𝑖: Persons. 

𝑗: Jobs. 

2.1.3 | Notation 

𝒄�̃�𝒋
𝒌  : (𝜸, 𝜹) Interval- valued fuzzy numbers of  𝑖𝑡ℎ person assigned to 𝑗𝑡ℎ job. 

𝑥𝑖𝑗: Number of  𝑗𝑡ℎ jobs assigned to 𝑖𝑡ℎ person. 

A multiobjective assignment problem with costs represented by(𝛾, 𝛿) interval- valued fuzzy numbers can 

be formulated as follows: 

 

 

 

Q̃ ≺ P̃⟺ d0 ( Q̃, 0̃ )< d0(P̃, 0), 

Q̃ ≈ P̃⟺ (Q̃, 0̃ )= d0(P̃, 0). 

 

(FMOASP) min Z̃k(x) =∑ ∑ c̃ij
kxij

n

j=1

n

i=1
, k = 1,K. 

Subject to 

∑ xij
n
I=1 = 1, j = 1, n (Only one person would be assigned the jth job). 

∑ xij = 1, i = 1, n n
j=1 (Only one job selected by ith person). 

xij = {
 1, if i th person is assigned j th work

0, otherwise
 

(1) 
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Where �̃�𝑘(𝑥) =  {�̃�1(𝑥), �̃�2(𝑥), … , �̃�𝐾(𝑥)} is a vector of 𝐾  objective functions. It is assumed that all the 

objective functions fuzzy coefficients  𝑐�̃�𝑗
𝑘    are characterized by (𝛾, 𝛿) Interval- valued fuzzy numbers (i.e. 

𝑐�̃�𝑗
𝑘 = [(𝑐𝑖𝑗

𝑘 − 𝛹3𝑖𝑗
𝑘 , 𝑐𝑖𝑗

𝑘 , 𝑐𝑖𝑗
𝑘 +𝛹4𝑖𝑗

𝑘  ;  𝛾 ), (𝑐𝑖𝑗
𝑘 − 𝛹1𝑖𝑗

𝑘 , 𝑐𝑖𝑗
𝑘 , 𝑐𝑖𝑗

𝑘 + 𝛹2𝑖𝑗
𝑘  ; 𝛿)], 0 < 𝛹3𝑖𝑗

𝑘 < 𝛹1𝑖𝑗
𝑘 < 𝑐𝑖𝑗

𝑘 , 0 < 𝛹4𝑖𝑗
𝑘 < 𝛹2𝑖𝑗

𝑘 , 𝑖, 𝑗 =

1, 𝑛; 𝑘 = 1, 𝐾. 1̃ = [(1,1, 1; 𝛾 ), (1, 1, 1;  𝛿)]. 

Definition 6. A point 𝑥 ∈ 𝑋 = {𝑥𝑖𝑗: 𝑖, 𝑗 = 1, 𝑛 } is said to be fuzzy feasible solution to 𝐹𝑀𝑂𝐴𝑆𝑃 (1) if 𝑥 

satisfies the constraints in it. 

Definition 7 ([3]). A fuzzy feasible point 𝑥 = {𝑥𝑖𝑗: 𝑖, 𝑗 = 1, 𝑛 } is said to be a fuzzy efficient solution to 

𝐹𝑀𝑂𝐴𝑆𝑃 if there is no 𝑥 ∈ 𝑋  such that �̃�𝑘(𝑥) ≤ �̃�𝑘(𝑥) for all 𝑘 = 1, 𝐾  with strict inequality holds for at 

least one 𝑘. 

Based on the signed distance ranking defined in Definition4, 𝐹𝑀𝑂𝐴𝑆𝑃 is converted into the following 

crisp problem as 

 

3 | Solution Method 

In this section, a new method for solving 𝐹𝑀𝑂𝐴𝑆𝑃 is introduced as in the following steps: 

Step 1. Consider 𝐹𝑀𝑂𝐴𝑆𝑃. 

Step 2. Convert the 𝐹𝑀𝑂𝐴𝑆𝑃 into the crisp 𝑀𝑂𝐴𝑆𝑃 based on the signed distance ranking of the (𝛾, 𝛿) 

Interval-valued fuzzy numbers. 

Step 3. Test whether the 𝑀𝑂𝐴𝑆𝑃 is balanced or not. If it balanced go to step 5, otherwise go to step 4. 

Step 4. Add dummy row/ column with zero cost in the 𝑀𝑂𝐴𝑆𝑃. 

Step 5. Solve 𝑀𝑂𝐴𝑆𝑃 individually with respect to the given constraints to find the optimal assignment, 

say, 𝑋𝑙
∗, 𝑙 = 1, 𝐾 with minimum cost 𝑍𝑙

∗. 

Step 6. Apply the optimal solution of the problem that is obtained from step 5 in the 𝑀𝑂𝐴𝑆𝑃. 

Step 7. Repeat the step 5 for all the problems in 𝑀𝑂𝐴𝑆𝑃 that is provides all the efficient solutions of the 

MOASP.  

(MOASP)  minZk(x) =∑ ∑ cij
kxij

n

j=1

n

i=1
, k = 1,K. 

Subject to 

∑ xij
n
I=1 = 1, j = 1, n (Only one person would be assigned the jth job). 

∑ xij = 1, i = 1, n n
j=1 (Only one job selected by ith person). 

xij = {
 1, if i th person is assigned j th work

0, otherwise
 

(2) 
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4 | Numerical Examples 

Consider the following 𝐹𝑀𝑂𝐴𝑆𝑃 as 

where the values of 𝑐�̃�𝑗
1  for 𝑖 = 1, 2, 3,  and , 𝑗 = 1,3. 

 

 

 

 

 

The crisp model for problem Eq. (3) is 

 

 

 

 

 

 

Solve the𝑍1(𝑥) and 𝑍2(𝑥) individually with respect to the constraints in Eq. (4) to obtain the optimal 

assignment as: 

 

(FMOASP) min Z̃k(x) =∑ ∑ c̃ij
kxij, k = 1, 2.

5

j=1

3

i=1
 

Subject to 

∑xij

3

I=1

= 1, j = 1,3 

∑xij = 1, i = 1, 2, 3

3

j=1

 

xij = {
 1, if i th person is assigned j th work

0, otherwise
 

(3) 

c̃11
1 = [(7,6,9; 0.6), (3,6,11; 0.9)], c̃12

1 = [(2,3,4; 0.6), (1,3,13; 09)], 

c̃13
1 = [(6,7,8; 0.6), (5,7,17; 09)], c̃21

1 = [(7,10,11; 0.6), (1,10,12; 09)], 

c̃22
1 = [(2,11,12; 0.6), (1,11,13; 09)], c̃23

1 = [(2,4,8; 0.6), (1,4,10; 09)], 

c̃31
1 = [(3,7,13; 0.6), (2,7,15; 09)], c̃32

1 = [(5,13,15; 0.6), (3,13,18; 09)], 

c̃33
1 = [(3,4,7; 0.6), (2,4,9; 09)], c̃11

2 = [(4,6,8; 0.6), (2,6,14; 09)], 

c̃12
2 = [(3,7,13; 0.6), (2,7,15; 09)], c̃13

2 = [(2,3,4; 0.6), (1,3,13; 09)], 

c̃21
2 = [(3,5,7; 0.6), (2,5,8; 09)], c̃22

2 = [(9,10,11; 0.6), (8,10,12; 09)], 

c̃23
2 = [(4,5,8; 0.6), (3,5,14; 09)], c̃31

2 = [(3,7,13; 0.6), (2,7,15; 09)], 

c̃32
2 = [(3,5,7; 0.6), (2,5,8; 09)], c̃33

2 = [(5,6,7; 0.6), (3,6,9; 09)]. 

 

minZ1(x) = 13x11 + 8x12 + 16x13 + 18x21 + 19x22 + 9x23 + 15x31 + 24x32 + 9x33, 

minZ2(x) = 13x11 + 15x12 + 8x13 + 10x21 + 20x22 + 12x23 + 15x31 + 10x32
+                      +12x33, 

Subject to 

∑xij

3

I=1

= 1, j = 1,3 

∑xij = 1, i = 1, 2, 3 

3

j=1

 

xij = {
 1, if i th person is assigned j th work

0, otherwise
 

(4) 
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Global optimal solution found. 

Objective value: 9.000000. 

 

 

 

 

 

 𝑚𝑖𝑛 𝑍2(𝑥) = 8.000000. 

Global optimal solution found. 

Objective value: 8.000000. 

 

 

 

 

 

𝑋1
∗ = (0, 0, 0,0, 0, 1, 0, 0, 0) with 𝑍1∗ = 9, and �̃�1∗ = [(2,4,8; 0.6), (1,4,10; 09)], and 

𝑋2
∗ = (0, 0, 1, 0, 0, 0, 0, 0, 0) with 𝑍2∗ = 8, and �̃�2∗ = [(2,3,4; 0.6), (1,3,13; 09)].    

Using the optimal assignment of𝑍1(𝑥) with given constraints in problem 𝑍2(𝑥) with the same constraints, 

its efficient solution is 

𝑍1, 𝑍2 = (9, 12), and   �̃�1, �̃�2 = ([(2,4,8; 0.6), (1,4,10; 09)], [(4,5,8; 0.6), (3,5,14; 09)] ).  

Using the optimal assignment of  𝑍1(𝑥) with given constraints in problem 𝑍2(𝑥) with the same constraints, 

its efficient solution is 

𝑍1(𝑥), 𝑍2 = (8,16), and �̃�1, �̃�2 = ([(2,3,4; 0.6), (1,3,13; 09)], [(6,7,8; 0.6), (5,7,17; 09)] ).  

 Hence, the ideal assignment is 𝑍1∗, 𝑍2∗ = (9, 8), ideal fuzzy assignment is 

�̃�1∗, �̃�2∗ = ([(2,4,8; 0.6), (1,4,10; 09)], [(2,3,4; 0.6), (1,3,13; 09)] ), the set of all efficient solutions are  𝑍1, 𝑍2 =

(9, 12) and (8,16). In addition, the set of all fuzzy efficient solutions is �̃�1, �̃�2 =

([(2,4,8; 0.6), (1,4,10; 09)], [(4,5,8; 0.6), (3,5,14; 09)] ) and ([(2,3,4; 0.6), (1,3,13; 09)], [(6,7,8; 0.6), (5,7,17; 09)] ).  

It is obvious that the solution obtained by the proposed method is less than the obtained by Jayalakshmi 

and Sujatha [10]. 

Variable Value Reduced Cost 

 X11 0.000000 13.00000 
 X12 0.000000 0.000000 
 X13 0.000000 7.000000 
 X21 0.000000 9.000000 
 X22 0.000000 19.00000 
 X23 1.000000 0.000000 
 X31 0.000000 6.000000 
 X32 0.000000 16.00000 
 X33 0.000000 9.000000 

Variable Value Reduced Cost 

 X11 0.000000 13.00000 
 X12 0.000000 5.000000 
 X13 1.000000 0.000000 
 X21 0.000000 2.000000 
 X22 0.000000 20.00000 
 X23 0.000000 4.000000 
 X31 0.000000 7.000000 
 X32 0.000000 0.000000 
 X33 0.000000 12.00000 
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5 | Conclusions and Future Works 

In this paper, a new algorithm has proposed to solve the FMOASP based purely on the Hungarian 

method. The method yields the ideal solution and the set of all efficient solutions. The advantages of 

this method is easy to solve and apply to any problems in uncertain environment. In addition, with this 

method the decision maker able to handle the MOASP in the real world applications. In the future work 

might include the advance extension of this study to other fuzzy- similar structure (i. e. interval- valued 

fuzzy set, Neutrosophic set, Pythagorean fuzzy set, Spherical fuzzy set etc. with more discussion and 

suggestive comments. 
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