Document Type : Research Paper


Department of MCA, School of Computer Science and IT, Jain (deemed-to-be) University, Bengaluru, India.


Breast cancer has been the riskiest malignancy among ladies around the world. Nearly 2 million new cases were diagnosed in 2018. The main problem in the detection of breast cancer is to find how tumors turn into malignant or benign and we can do this with the help of machine learning techniques as they provide an appropriate result. According to research, an experienced physician can diagnose cancer with 79% accuracy while using machine learning techniques provides an accuracy of 91%. In this work, machine learning techniques have been applied which include K-Nearest Neighbors algorithm (KNN), Support Vector Machine (SVM), and Decision Tree Classifier (DT). To predict whether the cause is benign or malignant we have used the breast cancer dataset. The SVM classifier gives more accurate and precise results as compared to others, and this classifier is trained with the larger datasets.


Main Subjects

Broumi, S., Dey, A., Talea, M., Bakali, A., Smarandache, F., Nagarajan, D., ... & Kumar, R. (2019). Shortest path problem using Bellman algorithm under neutrosophic environment. Complex & intelligent systems5(4), 409-416.
Kumar, R., Dey, A., Broumi, S., & Smarandache, F. (2020). A study of neutrosophic shortest path problem. In Neutrosophic graph theory and algorithms (pp. 148-179). IGI Global.
Kumar, R., Edalatpanah, S. A., Jha, S., Broumi, S., Singh, R., & Dey, A. (2019). A multi objective programming approach to solve integer valued neutrosophic shortest path problems. Infinite Study.
Kumar, R., Edalatpanah, S. A., Jha, S., & Singh, R. (2019). A novel approach to solve gaussian valued neutrosophic shortest path problems. Infinite study.
Kumar, R., Edaltpanah, S. A., Jha, S., Broumi, S., & Dey, A. (2018). Neutrosophic shortest path problem. Infinite Study.
Pratihar, J., Kumar, R., Dey, A., & Broumi, S. (2020). Transportation problem in neutrosophic environment. In Neutrosophic graph theory and algorithms. IGI Global.
Kumar, R., Edalatpanah, S. A., Jha, S., & Singh, R. (2019). A Pythagorean fuzzy approach to the transportation problem. Complex & intelligent systems5(2), 255-263.
Pratihar, J., Kumar, R., Edalatpanah, S. A., & Dey, A. (2020). Modified Vogel’s approximation method for transportation problem under uncertain environment. Complex & intelligent systems, 1-12.
Gayen, S., Jha, S., Singh, M., & Kumar, R. (2019). On a generalized notion of anti-fuzzy subgroup and some characterizations. International journal of engineering and advanced technology8, 385-390.
Gayen, S., Smarandache, F., Jha, S., & Kumar, R. (2020). Interval-valued neutrosophic subgroup based on interval-valued triple t-norm. In Neutrosophic sets in decision analysis and operations research (pp. 215-243). IGI Global.
Gayen, S., Smarandache, F., Jha, S., Singh, M. K., Broumi, S., & Kumar, R. (2020). Introduction to plithogenic subgroup. In Neutrosophic graph theory and algorithms (pp. 213-259). IGI Global.
Gayen, S., Smarandache, F., Jha, S., Singh, M. K., Broumi, S., & Kumar, R. (2020). Soft Subring Theory Under Interval-valued Neutrosophic Environment. Neutrosophic sets and systems36(1), 16.
Gayen, S.; Smarandache, F.; Jha, S.; Kumar, R (2020). Introduction to interval-valued neutrosophic subring. Neutrosophic sets and systems, 36, pp 220-245.
Gayen, S., Smarandache, F., Jha, S., Singh, M. K., Broumi, S., & Kumar, R. (2020). Introduction to plithogenic hypersoft subgroup. Neutrosophic sets and systems33(1), 14.
Kumar, R., Edalatpanah, S. A., & Mohapatra, H. (2020). Note on “Optimal path selection approach for fuzzy reliable shortest path problem”. Journal of intelligent & fuzzy systems, (Preprint), 1-4.
Kumar, R., Jha, S., & Singh, R. (2020). A different approach for solving the shortest path problem under mixed fuzzy environment. International journal of fuzzy system applications (IJFSA)9(2), 132-161.
Kumar, R., Jha, S., & Singh, R. (2017). Shortest path problem in network with type-2 triangular fuzzy arc length. Journal of applied research on industrial engineering4(1), 1-7.
Kumar, R., Edalatpanah, S. A., Jha, S., Gayen, S., & Singh, R. (2019). Shortest path problems using fuzzy weighted arc length. International journal of innovative technology and exploring engineering8(6), 724-731.
Singh, A., Kumar, A., & Appadoo, S. S. (2019). A novel method for solving the fully neutrosophic linear programming problems: Suggested modifications. Journal of intelligent & fuzzy systems37(1), 885-895.
Mohapatra, H., Panda, S., Rath, A., Edalatpanah, S., & Kumar, R. (2020). A tutorial on powershell pipeline and its loopholes. International journal of emerging trends in engineering research8(4), 975-982.
Mohapatra, H., Rath, S., Panda, S., & Kumar, R. (2020). Handling of man-in-the-middle attack in wsn through intrusion detection system. International journal of emerging trends in engineering research, 8, 1503-1510.
Mohapatra, H., Debnath, S., & Rath, A. K. (2019). Energy management in wireless sensor network through EB-LEACH. International journal of research and analytical reviews (IJRAR), 56-61.
Mohapatra, H., Rath, A. K., Landge, P. B., Bhise, D., Panda, S., & Gayen, S. A. (2020). Comparative analysis of clustering protocols of wireless sensor network. International journal of mechanical and production engineering research and development, 10, 8371-8386.
Mohapatra, H., & Rath, A. K. (2020). A survey on fault tolerance based clustering evolution in wsn. IET Networks, 9(4), 145-155.
Mohapatra, H., Debnath, S., Rath, A. K., Landge, P. B., Gayen, S., & Kumar, R. (2020). An efficient energy saving scheme through sorting technique for wireless sensor Network. International journal8(8), 4278-4286.
Mohapatra, H., & Rath, A. K. (2020). Fault tolerance in WSN through uniform load distribution function. International journal of sensors, wireless communications and control , 10.
Mohapatra, H., & Rath, A. K. (2019). Fault tolerance through energy balanced cluster formation (EBCF) in WSN. In Smart innovations in communication and computational sciences (pp. 313-321). Springer, Singapore.
Mohapatra, H., & Rath, A. K. (2019). Fault tolerance in WSN through PE-LEACH protocol. IET wireless sensor systems, 9 (6), 358-365(7).
Mohapatra, H (2018). C Programming: Practice.Amazon.
Mohapatra, H., & Rath, A. K. (2020). Fundamentals of software engineering. BPB.
Mohapatra, H. (2009). HCR by using neural network (Master's thesis; M.Tech_s Desertion, Govt. College of Engineering and Technology, Bhubaneswar).
Panda, M., Pradhan, P., Mohapatra, H., & Barpanda, N. K. (2019). Fault tolerant routing in heterogeneous environment. International journal of scientific & technology research8, 1009-1013.
Nirgude, V. N., Nirgude, V. N., Mahapatra, H., & Shivarkar, S. A. (2017). Face recognition system using principal component analysis & linear discriminant analysis method simultaneously with 3d morphable model and neural network BPNN method. Global journal of advanced engineering technologies and sciences, 4, 1-6.
Mohapatra, H., & Rath, A. K. (2020, October). Nub Less Sensor Based Smart Water Tap for Preventing Water Loss at Public Stand Posts. In 2020 IEEE Microwave Theory and Techniques in Wireless Communications (MTTW) (Vol. 1, pp. 145-150). IEEE.
Mohapatra, H., & Rath, A. K. (2020). IoT-based smart water. In IOT Technologies in Smart-Cities: From Sensors to Big Data, Security and Trust (pp. 63-82). DOI: 10.1049 /PBCE128E_ch3
Mohapatra, H. (2020). Offline drone instrumentalized ambulance for emergency situations. International journal of robotics and automation, 9, 251-255.
Mohapatra, H., & Rath, A. K. (2019). Detection and avoidance of water loss through municipality taps in India by using smart taps and ICT. IET wireless sensor systems9(6), 447-457.
Panda, H., Mohapatra, H., & Rath, A. K. (2020). WSN-Based Water Channelization: An Approach of Smart Water. In smart cities—opportunities and challenges (pp. 157-166). Springer, Singapore.
Rout, S. S., Mohapatra, H., Nayak, R. K., Tripathy, R., Bhise, D., Patil, S. P., & Rath, A. K. (2020). Smart Water Solution for Monitoring of Water Usage Based on Weather Condition. International journal8(9).
Barrett, A. H., Myers, P. C., & Sadowsky, N. L. (1977). Detection of breast cancer by microwave radiometry. Radio science12(6S), 167-171.
Martin, J. E., Moskowitz, M., & Milbrath, J. R. (1979). Breast cancer missed by mammography. American journal of roentgenology132(5), 737-739.
Chi, C. L., Street, W. N., & Wolberg, W. H. (2007). Application of artificial neural network-based survival analysis on two breast cancer datasets. In AMIA annual symposium proceedings (Vol. 2007, p. 130). American Medical Informatics Association.
Cheng, H. D., Shan, J., Ju, W., Guo, Y., & Zhang, L. (2010). Automated breast cancer detection and classification using ultrasound images: A survey. Pattern recognition43(1), 299-317.
Gershon-Cohen, J., & Berger, S. M. (1961). Detection of breast cancer by periodic X-ray examinations: a five-year survey. JAMA176(13), 1114-1116.
Stevens, G. M., & Weigen, J. F. (1966). Mammography survey for breast cancer detection. A 2‐year study of 1,223 clinically negative asymptomatic women over 40. Cancer19(1), 51-59.
Li, X., & Hagness, S. C. (2001). A confocal microwave imaging algorithm for breast cancer detection. IEEE Microwave and wireless components letters, 11, 130–132.
Zou, Y., & Guo, Z. (2003). A review of electrical impedance techniques for breast cancer detection. Medical engineering & physics, 25, 79–90.
Dhahri, H., Al Maghayreh, E., Mahmood, A., Elkilani, W., & Faisal Nagi, M. (2019). Automated breast cancer diagnosis based on machine learning algorithms. Journal of healthcare engineering.
Hussain, L., Aziz, W., Saeed, S., Rathore, S., & Rafique, M. (2018). Automated breast cancer detection using machine learning techniques by extracting different feature extracting strategies. 17th IEEE international conference on trust, security and privacy in computing and communications/12th IEEE international conference on big data science and engineering (TrustCom/BigDataSE) (pp 327–331).
Chaurasia, V., & Pal, S. (2017). A novel approach for breast cancer detection using data mining techniques. International journal of innovative research in computer and communication engineering (An ISO 3297: 2007 Certified Organization) Vol2.
Bazazeh, D., & Shubair, R. (2016). Comparative study of machine learning algorithms for breast cancer detection and diagnosis. 5th international conference on electronic devices, systems and applications (ICEDSA) (pp. 1–4).
Alarabeyyat, A., & Alhanahnah, M. (2016, August). Breast cancer detection using k-nearest neighbor machine learning algorithm. 9th international conference on developments in esystems engineering (DeSE) (pp. 35-39). IEEE.
Aruna, S., & Rajagopalan, S. P. (2011). A novel SVM based CSSFFS feature selection algorithm for detecting breast cancer. International journal of computer applications31(8).
Kelly, K. M., Dean, J., Comulada, W. S., & Lee, S. J. (2010). Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts. European radiology20(3), 734-742.
Adam, A., & Omar, K. (2006). Computerized breast cancer diagnosis with Genetic Algorithm and Neural Network. Proc. of the 3rd international conference on artificial intelligence and engineering technology (ICAIET) (pp. 22-24).
Mu, T.; Nandi, A. K (2005). Detection of breast cancer using v-SVM and RBF networks with self-organized selection of centres. 3rd IEE international seminar on medical applications of signal processing (47-52).
Yao, X., & Liu, Y. (1999, July). Neural networks for breast cancer diagnosis. Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406) (Vol. 3, pp. 1760-1767). IEEE.
Colak, S. B., Van der Mark, M. B., t Hooft, G. W., Hoogenraad, J. H., Van der Linden, E. S., & Kuijpers, F. A. (1999). Clinical optical tomography and NIR spectroscopy for breast cancer detection. IEEE Journal of selected topics in quantum electronics5(4), 1143-1158.
Reeder, S., Berkanovic, E., & Marcus, A. C. (1980). Breast cancer detection behavior among urban women. Public health reports95(3), 276.
Gershon‐Cohen, J., & Hermel, M. B. (1969). Modalities in breast cancer detection: Xeroradiography, mammography, thermography, and mammometry. Cancer24(6), 1226-1230.