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A B S T R A C T 

In this paper, we aim at developing a model for option pricing to reduce the risks associated with 

Ethiopian sesame price fluctuations. The White Humera Gondar Sesame Grade 3 (WHGS3) price, 

which is recorded from 5 November 2010 to 30 March 2018 at Ethiopia Commodity Exchange (ECX) 

market, is used to analyze the price fluctuation. The nature of log-returns of the price is asymmetric 

(positively skewed) and exhibits high kurtosis. We used jump diffusion models for modeling and 

option pricing of sesame price. The method of maximum likelihood is applied to estimate the 

parameters of the models. We used the Root Mean Square Error (RMSE) to test the goodness of 

fitting for the two models to the data. This test indicates that the models fit the data well. The 

techniques of analytical and Monte Carlo simulation are used to find the call option pricing of 

WHGS3 sesame price. From the results, we concluded that Double Exponential Jump Diffusion 

(DEJD) model is more efficient than Merton’s model for modeling and option pricing of this sesame 

price. 

Keywords: Jump diffusion model, Option pricing, Kurtosis, Skewness, Risk-neutral measure, 

WHGS3 sesame price. 
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1. Introduction 

Oilseed, which is one of the export commodities in Ethiopia, has great contribution to the growth 

of Ethiopian economy. It is rapidly growing to meet both local and foreign demand and it plays 

a vital role in generating foreign exchange earnings and income for the country. Sesame is the 

main oilseed crop in terms of production value. The cultivation of sesame has been grown 

gradually and has owed to its high value on the export market and good adaptability in the 

country. Sesame occupied 0.62% of the total area covered by grain crops and 1.61% of the total 

grains produced during 2010/11 [8]. The total area cultivated, production and productivity in 

Ethiopia during 2012 was 337,505 hectares, 44783 tons and 7.253 quintal/hectare, respectively 

[11]. It is mainly harvested by small-scale farmers as a major cash crop in the northern and 
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northwestern lowlands of Ethiopia. Some of the major producing areas are found in and around 

the locations of Humera, Metema, Benshungul Gumuz, and Wellega [18]. The Whitish Humera 

sesame type has great demands in world markets than any other sesame in Ethiopia [24]. 

The international market demand for Ethiopian sesame seed has increasingly grown due to its 

new seed buyers coming to the market and it also implies the prospect for sesame production 

growth and market expansion in the future [9]. Ethiopian export share, 1.5% in volume and 1.9% 

in value to world market in 1997, had grown to 8.9% and 8.3% in 2004 [1]. 

The major destinations for Ethiopian sesame seed are China, Israel, Turkey, Japan, and other 

European countries [18]. It contributes the highest market values from the oilseeds exports. It is 

remarkable that 80% of the export earning of oilseeds comes from sesame seeds and it has 

become a major foreign currency earning next to coffee [1]. Thus, Sesame plays a significant 

role for the development of the economy of the country as well as for the livelihood of sesame 

growing farmers. To this effect, the Ethiopian ministry of agriculture has developed a master plan 

to enhance market oriented production for priority crops. Sesame is one of the priority crops 

identified in the plan for accelerated and sustainable development to end poverty. 

Ethiopia was among the top five sesame producing countries in the world ranked at fourth place 

in the fiscal year 2011/2012 [11]. Moreover, it is the third largest exporter of sesame seed after 

India and Sudan [2]. The sesame market price is inherently noisy in nature and is volatile too [19, 

24]. The sesame export has been fluctuated tremendously by volume and value in the country 

and this leads to high risk for the income of the country as well as for those who depend on 

sesame for their livelihood [21]. Therefore, it is of great importance to develop a model for option 

pricing to reduce the risks associated with WHGS3 price fluctuations.  

To capture the behavior of market prices various, authors used different models. The first to 

mention is the Black-Scholes model based on Brownian motion and normal distribution. 

However, the empirical phenomena have received much attention recently on the asymmetric 

leptokurtic features that is the return distribution has fat tails and high kurtosis than those of the 

normal distribution. It is widely recognized that the implied volatility is not constant as in Black-

Scholes model, but it is a convex function of the strike price resembling a smile. Thus, many 

models have been proposed in order to reflect the above phenomena under a market measure. 

However, the leptokurtic feature under risk-neutral measure leads to the volatility smile in option 

pricing. 

In Merton model [20], the asset return follows a Brownian motion with drift punctuated by jumps 

arriving according to a compound Poisson process with constant intensity and with normally 

distributed jump sizes. Due to normality of the jump size distribution, Merton was able to obtain 

explicit analytical solutions for European style call options in this model. Kou [15] recently 

proposed a double exponential jump-diffusion model where jump sizes are double exponentially 

distributed. This model has a memoryless property inherited from the exponential distribution 

[15]. This property explains the reason why analytical or approximated solutions for different 
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option pricing problems are viable with this model. Both Merton’s and double exponential jump-

diffusion models are used to model hedge fund indices in continuous time [23]. Thus, these 

models are proposed to reflect the asymmetric leptokurtic features of asset prices which lead to 

determine the call option pricing of some asset prices to reduce risks associated with price 

fluctuations under a risk neutral measure. 

However, no study has been done on option pricing of Ethiopian sesame price using jump 

diffusion models. Therefore, we used Merton’s and double exponential jump diffusion models 

for modeling and call option pricing of WHGS3 price to reduce the risk caused by price 

fluctuation under risk neutral measure. The method of maximum likelihood is used to estimate 

the parameters for these models. Based on the results, we compared the models fitting them to 

the empirical data. Here, we also used the RMSE, the Q-Q plot and non-parametric fit with 

normal kernel to test the validation of these models. Finally, we investigated the option pricing 

formula to compute the European style call option pricing of Ethiopian sesame price. 

2. Analysis of WHGS3 Sesame Price Data 

The WHGS3 sesame price, which is recorded from 5 November 2010 to 30 March 2018 at ECX 

market, is considered to study its price movement. The price unit in Ethiopian agricultural 

commodity market price is Birr per kilogram. 

 

Figure 1. The WHGS3 sesame price from 2010 to 2018. 

Assume that St is to represent WHGS3 sesame prices. We focus on the dynamic behavior of 

sesame price by analyzing log-return price, which is defined as: xt = ∆ ln(St) = ln(St) − ln (St−1). 

The descriptive statistics of  xt are shown in Table 1. We plot the graph of the log-return of sesame 
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price in Figure 2. This graph indicates that spikes are observed significantly in the empirical data. 

We also plot the Quantile-Quantile (Q-Q) and histogram of the daily log-return price as shown 

in Figure 3 and Figure 4, respectively. These indicate the presence fat tails and high kurtosis in 

the empirical distribution of WHGS3 sesame price. Thus, based on the analysis, we conclude that 

the sesame price is not normally distributed. 

 

Figure 2. Log-return WHGS3 sesame price from 2010 to 2018. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.3. The histogram and normal density of log-return WHGS3 price from 2010 to 2018. 
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Figure 4. The Q-Q plot of log-return WHGS3 price from 2010-2018. 

 

Table 1. Descriptive statistics of log-return  WHGS3 sesame price. 

Descriptive statistics Value 

  
Mean 0.00144 

  
Standard Deviation 0.02421 

  
Skewness 0.05762 

  
Kurtosis 6.59725 

  

 

3. Jump Diffusion Models 

Based on the empirical findings discussed in the previous section, namely the presence of 

skewness and kurtosis in the empirical distribution of the sesame prices returns; an adequate 

model for the sesame prices would be a jump diffusion model. In fact, Merton’s work [20], 

recognizing the presence of jumps in asset prices and more accurate option pricing, proposed 

modeling the prices as a jump diffusion process instead of a pure diffusion model. Pure diffusion 

based models could not adequately explain the smile effect in short-dated option prices and 

emphasized the importance of adding a jump component in modeling asset price dynamics [4]. 

Models with jumps generically lead to significant skews for short-term maturities. More 

generally, adding jumps to returns in diffusion based stochastic volatility model, the resulting 
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model can generate sufficient variability and asymmetry in the short-term returns to match 

implied volatility skews for short term maturities [3].  

3.1. Merton Jump Diffusion Model 

Under Merton jump diffusion model, the sesame price process St with the physical probability 

measure P is assumed to follow the stochastic differential equation: 

dSt

St−
= μdt + σdBt + (yt − 1)dNt, (1) 

where μ is instantaneous expected return, σ is the instantaneous volatility of the price return and 

St− is the value of price process before the jump whenever jump occurs. The continuous 

component is given by a standard Brownian motion, Bt, distributed as dBt~ (0, dt). The 

discontinuities of the price process are described by a Poisson counter Nt, characterized by its 

intensity, λ  and jump size yt. The assumption is that the Brownian motion Bt, the Poisson process 

Nt and the jump size yt are independent. The intensity of the Poisson process describes the mean 

number of arrivals of abnormal information per unit of time dt and is expressed as:  

Prob[dNt = 1] = λdt and Prob[dNt = 0] = 1 − λdt.  (2) 

The sesame price St− is the value of price process before the jump whenever the price jumps from  

St− to  St = ytSt−  in a small time interval dt. The percentage change is measured by (yt − 1). The 

price St  presents log-normal jumps yt on each random time t which represents the moments of 

jumping of a Poisson process [13, 14]. Introduction of the jump diffusion model adds three extra 

parameters (β,  δ2,  λ) to the Black-Sholes process model which contains two parameters (μ,   σ2). 

Merton assumes that the log-price jump size Yt = ln (yt) is normal random variables. Letting  Xt =

ln (St) and using Ito’s lemma, the log-price return process becomes: 

dXt = (μ −
σ2

2
) dt + σdBt + YtdNt. (3) 

Discretized over [t,  t + Δt] this model takes the form: 

ΔXt = (μ −
σ2

2
) Δt + σΔBt + ∑ Yj

ΔNt

j=0

, (4) 

where ΔBt = Bt+Δt − Bt  ~ N(0,  ∆t) and ΔNt = Nt+Δt − Nt   is the number of jumps occurring 

during the time interval [t,  t + Δt] and Yt are independently and identically distributed as 

Yt ~ N(β, δ2) with probability density: 

f(y) =
1

√2πδ2
 exp [−

(y − β)2

2δ2
] ,   yϵℝ. (5) 
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The log-return, xt = ΔXt, therefore includes the sum of two independent components: a diffusion 

component with drift and a jump component. The probability density of ΔXt can be expressed [3] 

as: 

fΔt(x) = ∑
(λ∆t)ne−λΔt

n!

∞

n=0

[
1

√2π(σ2Δt + nδ2)
exp (−

(x − (μ −
1
2 σ2) Δt − nβ)2

2(σ2Δt + nδ2)
)], (6) 

with n = 0,1,2, ….   

Putting Δt = 1 that is the time interval is [t, t + 1], the density function becomes: 

f(x) = ∑
λne−λ

n!

∞

n=0

[
1

√2π(σ2 + nδ2)
exp (−

(x − (μ −
1
2

σ2) − nβ)
2

2(σ2 + nδ2)
)]. (7) 

3.2. Double Exponential Jump Diffusion Model 

The model that we also used for the price of WHGS3 sesame consists of two parts, a continuous 

part driven by a geometric Brownian motion and a jump part, with the logarithm of jump sizes 

having a double exponential distribution and the jump times corresponding to the event times of 

a Poisson process. Thus, under the physical probability measure P, the dynamics of the sesame 

price is assumed to follow the stochastic differential equation: 

dSt

St−
= μ1dt + σ1dBt + d (∑(Vi − 1)

Nt

i=1

), (8) 

where Bt  is a standard Brownian motion, Nt is a Poisson process with rate λ1 and {Vt} is sequence 

of independent identically distributed nonnegative random variables such that Υt = ln(Vt) has an 

asymmetric double exponential distribution with density: 

f(y) = pη1e−η1y1{y≥0} + qη2eη2y1{y<0} ,     η1 > 1,   η2 > 0,  

where p,  q ≥ 0,   p + q = 1 are constants and represent the probabilities of upward and downward 

jumps, respectively. This can be put in other way: 

Υt =  {
ξ+,    with probability p

−ξ−,    with probability q  
, (9) 

where ξ+  and  ξ−  exponentially random variables with mean  
1

η1
 and  

1

η2
 , respectively. 

The random variables Nt, Bt and Υt are assumed to be independent and identically distributed in 

the model. It is proposed that the drift μ1 and the volatility 𝜎1 are constants, while the Brownian 
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motion and jumps are one-dimensional [15]. The solution of the stochastic differential Eq. (8) 

using Ito’s formula which gives the dynamics of the sesame price can be expressed as: 

St = S0exp ((μ1 −
1

2
σ1

2) t + σ1Bt + ∑ Υj

Nt

j=0

), (10) 

where E[Υt] =
p

η1
−

q

η2
, Var[Υt] = pq (

1

η1
+

1

η2
)

2
+ (

p

η1
2 +

q

η2
2) and E[Υt] = E[eΥt] = (p

η1

η1−1
+

q
η2

η2+1
) ,   η1 > 1,  η2 > 0. Here, η1 > 1 guarantees for E[Υt] < ∞ and E[St] < ∞. This means that 

the average upward jump cannot greater than 100%, which is quite reasonable [16]. 

Based on Eq. (10), the rate of sesame price return over the time interval ∆t  is given by: 

∆St

St
=

St+∆t

St
− 1 = exp ((μ1 −

1

2
σ1

2) ∆t + σ1∆Bt + ∑ Υj

∆Nt

j=0

) − 1.  

If  ∆t becomes small enough, by neglecting the terms with order higher than ∆t , the daily sesame 

price return can be approximated in distribution using expansion ex ≈ 1 + x +
1

1
x2  by: 

∆St

St
≈ μ1Δt + σ1Z√Δt + RΥt , (11) 

where Z is standard normal and R is Bernoulli random variable with P(R =  1)  = λΔt, 

P(R =  0) = 1 − λΔt  and Υt is given by Eq. (9). The density function g of the right side of Eq. (11) 

which is  an approximation of the sesame price return  
∆St

St
  is given by: 

g(x) =
1 − λ1Δt

σ1√Δt
ϕ (

1 − λ1Δt

σ1√Δt
) + λ1Δt [pη1e

σ1
2η1

2Δt
2 e−(x−μ1Δt)η1 × Φ (

x − μ1Δt − σ1
2η1Δt

σ1√Δt
)] 

+λ1Δt [qη2e
σ1

2η2
2Δt

2 e−(x−μ1Δt)η2 × Φ (
x − μ1Δt + σ1

2η2Δt

σ1√Δt
)]. 

(12) 

Setting  Δt =  1, this density function can also be written as: 

g(x) =
1 − λ1

σ1
ϕ (

1 − λ1

σ1
) + λ1 [pη1e

σ1
2η1

2

2 e−(x−μ1)η1 × Φ (
x − μ1 − σ1

2η1

σ1
)] 

+λ1 [qη2e
σ1

2η2
2

2 e−(x−μ1)η2 × Φ (
x − μ1 + σ1

2η2

σ1
)], 

(13) 

where ϕ(. ) is density function of standard normal and Φ(. ) is its distribution function. 
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Using Le’vy-Khintchine theorem, the characteristic function of the double exponential jump 

diffusion process of the log-return sesame price ∆ln (St) = XΔt over the time interval [t, t + 1]  is 

represented by: 

ϕXΔt
(u) = E[eiuXΔt] = exp [iuμ1 −

σ1
2u2

2
+ λ1 (

pη1

η1 − iu
+

qη2

η2 + iu
− 1)]. (14) 

4. Parameter Estimation 

The parameter vectors, which are associated with the sesame price process, are denoted by θ =

(μ,  σ,   β,  δ,   λ) and Θ = (μ1,  σ1,  η1,  η2,  p,  λ1). The method of Maximum Likelihood Estimation 

(MLE) is used to estimate the parameters for Merton’s and DEJD models by maximizing the 

likelihood function specified in Eq. (7) and  the likelihood function is obtained by applying 

inverse Fourier transform on characteristic function specified in Eq. (14), respectively. We 

considered 70% of the log-return WHGS3 sesame price for parameters estimation and 30% for 

testing purpose that is for validation of these models. We truncate the number of jumps at n = 10 

to estimate the parameter values as it is pointed out by [5]. In this paper, the parameters are 

estimated with corresponding 95% confidence intervals using the method. The error and variance 

for the parameters come from a maximum likelihood estimate. The variance is approximately 

equal to the inverse of Fisher's information matrix, evaluated at the estimates. The standard error, 

which is the square root of this variance, is estimated corresponding to each parameter using the 

method to check the reliability of the estimation. Finally, the estimated values are shown in Table 

2 and Table 3. Lb and Ub are used to denote the lower and upper bound of confidence intervals, 

respectively. 

Table 2. Estimated parameters associated with WHGS3 sesame price under Merton’s model. 

  95%   Confidence Interval  

Parameters Values Lb Ub 
Standard 

Error 

𝜇 -0.00073335 -0.00146962 0.00000292 0.00037565 

𝜎 0.00954214 0.00868980 0.01039448 0.00043487 

𝛽 0.00332072 -0.00118924 0.00783069 0.00023011 

𝛿 0.03737942 0.03155192 0.04320692 0.00297326 

𝜆 0.26558969 0.19341604 0.33776333 0.03682396 
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Table 3. Estimated parameters associated with WHGS3 sesame price under DEJD model. 

  95%  Confidence Interval  

Parameters Values Lb Ub Standard Error 

𝜇1 -0.00098422 -0.00197702 0.00000857 0.00050653 

𝜎1 0.00886518 0.00791537 0.00981499 0.00048460 

𝜂1 45.32141145 34.57828814 56.06453475 2.48128608 

 𝜂2 45.29452607 32.54639635 58.04265580 3.50426733 

𝑝 0.56407188 0.443179541 0.68496422 0.06168089 

𝜆1 0.39925769 0.27624844 0.52226695 0.06276097 

 

5. Model Simulation 

In this section, we used the Euler discretized version of DEJD and Merton’s models to simulate 

the sesame price. The discretized form of the Merton’s model specified in Eq. (2) over the time 

interval (t,  t + Δt) can be expressed as:  

Xt+Δt = Xt + (μ −
σ2

2
) Δt + σΔBt + ∑ Yj

ΔNt

j=0

, (15) 

where ΔBt = √ΔtZ and Z ~ N(0, 1).  

Putting ∆t = 1 and replacing ln(St) for  Xt  and  ln(St+1) for Xt+1, we obtain: 

ln(St+1) = ln(St) + (μ −
σ2

2
) Δt + σΔBt + ∑ Yj

ΔNt

j=0

. (16) 

This implies that: 

St+1 = Stexp ((μ −
σ2

2
) + σ Z + ∑ Yj

Nt

j=0

 ). (17) 

Moreover, the discretized form of DEJD model specified in Eq. (8) over the time interval [t, t +

∆t] and using Ito’s lemma is given by: 

ln(St+1) = ln(St) + (μ1 −
σ1

2

2
) Δt + σ1ΔBt + ∑ Υj

ΔNt

j=0

, (18) 

where ΔBt = √ΔtZ  and  Z ~ N(0, 1).  
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Setting ∆t = 1, we get: 

ln(St+1) = ln(St) + (μ1 −
1

2
σ1

2) + σ1Z + ∑ Υj.

Nt

j=0

 (19) 

This expression can be also written as: 

St+1 = Stexp ((μ1 −
1

2
σ1

2) + σ1Z + ∑ Υj

Nt

j=0

  ). (20) 

We used the models specified in Eqs. (16)-(20) for the simulation of the sesame price. The fitted 

values from the simulations are plotted against the observed sesame price in Figure 6 and Figure 

7. 

 

Figure 5. Simulated price fitted to WHGS3 log-price (Upper panel) and WHGS3 price (Lower panel) under 

Merton’s model from 2016 to 2018. 
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Figure 6. Simulated price fitted to WHGS3 log-price (Upper panel) and WHGS3 price (Lower panel) under DEJD 

model from 2016 to 2018. 

In this paper, the RMSE, Q-Q plot and non-parametric fit with normal kernel are used to test the 

goodness of fit of the Merton’s and DEJD distributions to the dynamic behavior of the sesame 

price. From the results, we conclude that the models perform well. However, DEJD model has 

better fitness to sesame data than Merton’s model as shown in Figures (7)-(9) and Table 4 below. 

 

Figure 7. The Q-Q plot of DEJD model simulated WHGS3 sesame price. 
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Figure 8. The Q-Q plot of Merton’s model simulated WHGS3 sesame price. 

 

 

Figure 9. The probability densities of the models fitted with the log-return of WHGS3 price. 
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Table 4. RMSE values under DEJD and Merton’s models. 

Sesame price RMSE: DEJD model RMSE: Merton’s model 

WHGS3 price 0.08616489 0.09320617 

 

6. Option Pricing 

6.1. Option Pricing Using Merton Jump Diffusion Model 

In this section, we used Merton jump diffusion model to determine the call option price for 

WHGS3 sesame price. However, this model which is to the contrary of Black-Scholes model, is 

incomplete. So, there are many possible choice to define a risk neutral measure Q equivalent to 

the physical probability measure P such that the discounted sesame price, e−rtSt is a martingale 

where r is a risk free interest rate. Moreover, in order to make the discounted sesame price a 

martingale, the drift parameter μ must be set to μ = r − λκ , defining the risk neutral measure. 

The stochastic differential equation which represents the dynamics of the sesame price can be 

expressed under the risk neutral measure Q as: 

dSt

St−
= (r − λκ )dt + σdB̃t + (yt − 1)d, (21) 

where B̃t is a standard Brownian motion under a risk neutral probability measure Q and  

E[yt − 1] = exp (β +
δ2

2
) − 1 = κ.  λκdt  is the expected relative price change E [

dSt

St
] from the jump 

part dNt in the time interval dt. This is the predictable part of the jump. This is why the 

instantaneous expected return under the risk neutral probability measure rdt  is adjusted by −λκdt 

in the drift term of the jump diffusion process to make the jump part unpredictable innovation. 

Solving the stochastic differential (Eq. (21)) gives the dynamics of sesame price under a risk 

neutral probability measure Q: 

St = S0exp ((r −
σ2

2
− λκ) t + σ B̃t + ∑ Yi

Nt

i=0

)  ,        0 ≤ t ≤ T, (22) 

where Yt = ln(yt) is the log-return sesame price jump size. Assuming that the jumps are log-

normally distributed that is Yt ~N(β,  δ2). The sesame price of the European style call option for 

the given strike price K, spot price S0 at time t0 and the terminal price ST at maturity time T can 

be expressed [7, 20] as:  

C(S0, T) = ∑
(λ̂T)

n
e−λ̂ T

n!

∞

n=0

EQ[e−rT(ST − K)+|St = S0], (23) 
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C(S0, T) = ∑
(λ̂T)

n
e−λ̂ T

n!

∞

n=0

[S0Φ(d1, n) − Ke−rnTΦ(d2, n)], (24) 

where λ̂ = λ(1 + κ),  σn = √σ2 +
nδ2

T
, rn = r − λκ + n

ln(1+κ)

T
, d1, n =

ln(
S0
K

)+(rn+
1

2
σ2)

σn√T
,  d2, n = d1, n −

σn√T. 

6.2. Option Pricing Using Double Exponential Jump Diffusion Model 

Here, we used double exponential jump diffusion model to find the call option price of WHGS3 

sesame price. However, this model is not complete because of its jump component. We 

considered the rational expectations arguments with a hyperbolic absolute risk aversion type 

utility function for the representative agent, as it is suggested by [17]. So, one can choose a risk 

neutral probability measure Q̂ equivalent to the physical probability measure P so that the 

equilibrium price of an option is given by the rational expectation of the discounted option payoff 

with this risk neutral measure. The sesame price St still follows a double exponential jump 

diffusion process under the a risk neutral probability measure. The stochastic differential 

equation which describes the dynamic behavior of the sesame price under this measure is given 

by: 

dSt

 St−
= (r − λ̂1ζ̂)dt + σ1dB̂t + d (∑(V̂t − 1)

N̂t

i=1

). (25) 

Letting Xt = ln (
St

S0
) and using Ito’s lemma, the log-return sesame price over the time interval  

[0, t],  can be written as: 

Xt = (r −
σ1

2

2
− λ̂1ζ̂) t + σ1B̂t + ∑ Υ̂i,    X0 = 0,

N̂t

i=0

 (26) 

where B̂t is a standard normal Brownian motion, N̂t is a poison process with intensity 𝜆̂1 and the 

log-jump size Υ̂t which forms a sequence of random variables with a new double exponential 

density function f̂(y) that are under the measure Q̂. More precisely, this function can be written 

as: 

f̂(y) = p̂η̂1e−η̂1y1{y≥0} + q̂η̂2eη̂2y1{y<0}, (26) 

where  p̂,  q ̂ ≥ 0, λ̂1 > 0,  p̂ + q̂ = 1,   η̂1 > 1,   η2 > 0 are constants and ζ̂: = E[V̂t] − 1 = p̂
η1̂

η̂1−1
+

q̂
η̂2

η̂2+1
− 1 the expected relative jump size in the DEJD model under Q̂. For simplicity, we omit 

the superscript ˆ in the parameters and processes as we focus on option pricing. It is assumed that 

the sources of randomness, Nt , Bt , and Υt are independent under Q̂. 
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In this paper, we also used the method of Monte Carlo simulation to obtain an approximate 

solution to the call option sesame price. This method is one of the most popular numerical 

methods for pricing financial options because of the current advances in applying the tool [6, 22]. 

The method is mainly used to find an approximate solution to a complex financial problem, 

particularly European-style and exotic options for which no analytical pricing formula is 

available [10]. A Monte Carlo method is a technique that involves using random numbers and 

probability to solve problems and simulates paths for asset prices [12]. Since, the dynamic of the 

sesame price is modeled by double exponential jump diffusion model under a risk neutral 

measure, we used this method to find the expectation of the discount payoff of sesame price. We 

consider a call option giving an opportunity for the holder the right to buy the sesame at a fixed 

price K and fixed time T in the future. If at time T the sesame price ST exceeds the strike price K 

, the holder exercises the option for a profit of  (ST − K)+, otherwise the option expires worthless. 

Thus, the payoff to the option holder at time T is given by (ST − K)+ = max(ST − K,  0). The 

solution which represents the daily return of sesame price as specified in Eq. (25) can be expressed 

by: 

St = S0exp ((r −
σ1

2

2
− λ1ζ) t + σ1Bt + ∑ Υi

Nt

i=0

)  ,        0 ≤ t ≤ T. (27) 

It is assumed that S0 is the current price of the sesame at t = 0, the random variable Bt =

√T Z,  Z ~ N(0, 1) , and the log-jump size Υt having double exponential distributed. So, the 

terminal sesame price ST over the time interval [0, T] can be represented as: 

ST = S0exp [(r −
σ1

2

2
− λ1ζ) T + σ1√T Z + ∑ Υi

Nt

i=0

]. (28) 

We considered the first 10,000 sample paths simulation of the sesame price ST and we used the 

following algorithm to estimate the expectation  E[e−rT(ST − K)+]: 

Take n =  10; 000; 
for j =  1, … , n 
generate Zj and  Υj from the respective distribution, 

set   ST(j) = S0exp [(r −
σ1

2

2
− λ1ζ) T + σ1√T Z(j) + ∑ Υi

Nt(j)

i=0 ] , 

set  C(j) = e−rTmax(S0 − K, 0) 

set Ĉn =
C1+C2+C3+⋯+Cn

n
. 

For ≥ 1, the estimator Ĉn is unbiased which implies that its expectation E[Ĉn] = C ≡

E[e−rT(ST − K)+] and it is consistent meaning that as  n → ∞ ,  Ĉn → C  with probability 1.  

Thus, we applied Monte Caro simulation technique to determine the call option prices of WHGS3 

sesame price under DEJD and Merton’s models. We used spot price S0 = 23, strike price K and 
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interest rate r =  0.07 to calculate the call option prices at maturity time T = 0.2535 and these are 

indicated in Figures (10)-(12) and Table 5 below. 

 

Figure 10. Call option WHGS3 price under Merton’s model. 

 

Figure 11. Call option WHGS3 price under DEJD model. 
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Figure 12. Call option WHGS3 price under DEJD and Merton’s models. 

 

Table 5. Call option WHGS3 price values estimated by MC simulation under DEJD and Merton’s models. 

Strike price K 17 18 19 20 21 22 23 24 25 

MC-DEJD M. 7.161 6.177 5.191 4.216 3.226 2.247 1.271 0.337 0.0361 

MC-Merton M. 7.158 6.171 5.190 4.210 3.222 2.246 1.269 0.329 0.0334 

 

7. Comparison of Models 

We used DEJD and Merton’s models for modeling and call option pricing of sesame price. These 

models are applied to describe the dynamic behavior the price to capture heavy skewness and 

high kurtosis of the WHGS3 price. The RMSE, Q-Q plot and the method of non-parametric fit 

with normal kernel are used to test the goodness of fit of the models with to the observed WHGS3 

sesame price. The tests indicate that these two models perform well to describe the dynamic 

behavior of sesame price. However, DEJD model shows good performance than Merton’s model. 

The call option prices of sesame price under double exponential jump diffusion model is over 

estimated in the money option contracts when we compared to Merton’s model as shown in 

Figure 12 and Table 5. Finally, from the results, we conclude that the models show good 

performance for modeling and option pricing of the WHGS3 price to reduce. But, the double 

exponential jump diffusion model is comparatively more efficient than Merton’s model.  
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8. Result and Discussion 

In this paper, we used the daily recorded WHGS3 sesame price from 31 November 5, 2010 to 30 

March 2018 at ECX market. The method of maximum likelihood is being used to estimate the 

parameters for DEJD and Merton’s model as shown in Table 2 and Table 3, respectively. This 

result indicated that the dynamics of the sesame price process were influenced by both diffusion 

and jump components, however, the price was dominated by a jump component with large 

discontinuities occurring at high intensity. The high volatility of the jump component reflects the 

presence of jumps of large magnitude and was in accordance with excess kurtosis in the empirical 

distribution of the data. The WHGS3 price simulated under the models are as shown in Figure 5 

and Figure 6. The RMSE, Q-Q plot and the method of non-parametric fit with normal kernel 

used, test the goodness for fitting of the models to the historical price as shown in Table 4 and 

Figures (7)-(9), respectively. The Q-Q plot is used to compare the quantile of simulated WHGS3 

price under the models to the quantile of historical sesame price. Furthermore, the method of 

non-parametric fit with normal kernel is used to plot the graphs of the probability density 

functions of the models to assess the goodness of fit of distributions of the models to the dynamic 

behavior of the price. Thus, the tests indicate that the models perform well. Analytical and Monte 

Carlo simulation method under Merton’s model and Monte Carlo simulation technique under 

double exponential jump diffusion model are used to find the call option pricing of WHGS3 

sesame price. So, the call option prices of WHGS3 sesame price, which are determined at a 

maturity time under these models, are plotted as shown in Figures (10)-(12) and Table 5. As a 

result, the comparison between call price values of the Merton’s and double exponential jump 

diffusion models is indicated in Figure 12 and Table 5. 

9. Conclusion 

WHGS3 sesame price from 2010 to 2018 are characterized by large fluctuations in value. The 

nature of log-returns of the sesame price exhibits fat tails and high kurtosis. We used Merton’s 

and double exponential jump diffusion models for modeling and option pricing of WHGS3 

sesame price to reduce the price fluctuation associated with the price. The method of maximum 

likelihood is applied to estimate the parameters under the models. The Q-Q plot is used to 

compare the quantile of simulated WHGS3 price under the models to the quantile of historical 

sesame price and the graph of simulated prices approximately lie on the line y = x. The method 

of non-parametric fit with normal kernel is applied to assess the goodness of fit of the models by 

comparing the estimated probability density functions of the models to the historical density 

function of WHGS3 price. The RMSE is used to test the validation of models. The tests show 

that the models perform well. The method of analytical and Monte Carlo simulation under 

Merton’s model and Monte Carlo simulation technique under the double exponential jump 

diffusion model are applied to find the call option prices of WHGS3 sesame price. Finally, from 

the results, we conclude that the models are suitable for modeling and option pricing of the 
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WHGS3 price to reduce the risk associated with the price fluctuation, though, the double 

exponential jump diffusion model is relatively more efficient than Merton’s model.  
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