
 

 

 

 

Factual Power Loss Reduction by Augmented Monkey Optimization 

Algorithm  

L. Kanagasabai 

Department of EEE, Prasad V. Potluri Siddhartha Institute of Technology, Kanuru, Vijayawada. 

 

 

A B S T R A C T 

This paper presents Augmented Monkey Optimization Algorithm (AMOA) applied to solve optimal 

reactive power problem. Communal behaviour of monkeys has been utilized to model the algorithm. 

Normally, group monkeys assess the distance from the source to food for foraging behaviour. Local 

leader renews its most excellent location inside the group, when the food source is not rationalized 

then the group will start probing in different directions for the food sources. Two most important 

control parameters are Global Leader Limit (GLlimit) and Local Leader Limit (LLlimit) which give 

appropriate way to global and local leaders correspondingly. Levy flight has been intermingled in the 

algorithm to enhance the search ability. Proposed AMOA accelerates the exploitation ability that has 

been tested in standard IEEE 14, 30, 57,118,300 bus test systems. The simulation results show the 

projected algorithm reduced the real power loss comprehensively. 

Keywords:  Optimal reactive power, Transmission loss, Augmented monkey optimization algorithm. 

Article history: Received:  04 October 2019                 Revised: 12 January 2020                  Accepted: 17 February 2020   

 

1. Introduction 

Reactive power problem plays a key role in secure and economic operations of power system.  

Optimal reactive power problem has been solved by variety of types of methods [1-6]. 

Nevertheless, numerous scientific difficulties are found while solving problem due to an 

assortment of constraints. Evolutionary techniques [7-16] are applied to solve the reactive power 

problem, but the main problem is the many algorithms get stuck in local optimal solution and fail 

to balance the exploration and exploitation during the search of global solution. In this paper, 

AMOA has been applied to solve the optimal reactive power problem. Communal behavior of 

monkeys has been utilized to model the algorithm. Normally, group monkeys assess the distance 

from the source to food for foraging behavior. Based on the distance from the foods source, the 
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group members will modernize their location and estimation will be done again from the food to 

the source. Local leader renews its most excellent location inside the group, when the food source 

is not rationalized, then the group will start probing in different directions for the food sources. 

Two most important control parameters are GLlimit and LLlimit which give appropriate way to 

global and local leaders correspondingly. Levy flight has been intermingled in the algorithm to 

enhance the search ability. Proposed AMOA accelerates the exploitation ability. Proposed 

algorithm has been tested in standard IEEE 14, 30, 57,118,300 bus test system and simulation 

results show the projected algorithm reduced the real power loss extensively. 

2. Problem Formulation  

Objective of the problem is to reduce the true power loss: 

F = PL = ∑   gkk∈Nbr (Vi
2 + Vj

2 − 2ViVjcosθij).         (1) 

Voltage deviation given as follows: 

F = PL + ωv × Voltage Deviation.         
(2) 

Voltage deviation given by: 

 Voltage Deviation = ∑ |Vi − 1|Npq
i=1 ,         

(3) 

Constraint (equality): 

PG = PD + PL, (4) 

Constraints (inequality):  

Pgslack
min ≤ Pgslack ≤ Pgslack

max , (5) 

Qgi
min ≤ Qgi ≤ Qgi

max , i ∈ Ng, (6) 

Vi
min ≤ Vi ≤ Vi

max , i ∈ N, 
(7) 

Ti
min ≤ Ti ≤ Ti

max , i ∈ NT, (8) 

Qc
min ≤ Qc ≤ QC

max , i ∈ NC. (9) 

3. Augmented Monkey Optimization Algorithm  

Communal behavior of monkeys has been utilized to model the algorithm. Normally, group 

monkeys assess the distance from the source to food for foraging behavior. Based on the distance 

from the foods source, the group members will modernize their location and estimation will be 

done again from the food to the source. Local leader renews its most excellent location inside the 

group, when the food source is not rationalized then the group will start probing in different 
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directions for the food sources [17]. Two most important control parameters are GLlimit and 

LLlimit which give appropriate way to global and local leaders correspondingly.  

Population Initialization. Primary population of “N” monkeys where each monkey SMi (i = 1, 

2, ..., N) is a vector of dimension D. Every monkey (SMi) is initialized by: 

SMij = SMmin j + ∅ × (SMmax j − SMmin j).         (10) 

Local Leader Phase (LLP). For new-fangled location, the fitness value will be computed. 

Updating of locations will be done based on the fitness value.  

SMnewij = SMij + ∅1 × (LLkj − SMij) + ∅2 × (SMrj − SMij),         (11) 

where ∅1 ∈ (0,1)and ∅2 ∈ (−1,1). 

Global Leader Phase (GLP). In this phase all the SMs modernize their location by Global 

Leader and local group member’s indulgent and done by: 

SMnewij = SMij + ∅1 × (GLj − SMij) + ∅2 × (SMrj − SMij),         (12) 

where ∅1 ∈ (0,1)and ∅2 ∈ (−1,1). 

In GLP phase, monkey’s (SMi) locations are rationalized based on probability pi and computed 

by: 

pi = 0.90 ×
fitnessi

fitnessmaximum
+ 0.10.         (13) 

Global Leader Learning (GLL) Phase. Global leader location is rationalized by applying the 

voracious selection procedure in the population, the stupendous fitness in the population is 

chosen as the rationalized location of the global leader. Additionally, when global leader is not 

updated then global limit count is incremented by 1.  

Local Leader Learning (LLL) Phase. Local leader position is rationalized by employing the 

greedy selection, the rationalized location of the local leader is evaluated by comparing with the 

older one; when the local leader is not rationalized then the local limit count is incremented by 

1. 

Local Leader Decision (LLD) Phase. All members of group renew their locations by capricious 

initialization when the local leader position is not modernized, 

SMnewij = SMij + ∅ × (GLj − SMij) + ∅ × (SMij − LLkj), (14) 

where ∅ ∈ (0,1). 
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Global Leader Decision (GLD) Phase. Global leader split the population into smaller groups 

when the position of global leader is not modernized and at first population is alienated into two 

groups, then three groups and so on until maximum number of groups are formed. Every time in 

GLD segment, LLL process is instigate to make a decision on the local leader in the newly formed 

groups.  

Levy flight is a rank of non-Gaussian random procedure whose capricious walks are haggard 

from levy stable distribution. Allocation by L(s) ~ |s|-1-β  where 0 < ß < 2 is an index, scientifically 

defined as: 

L(s, γ, μ) = { √
γ

2π
             

0    if s ≤ 0  

exp [−
γ

2(s−μ)
]

1

(s−μ)3 2⁄     if 0  < μ < s < ∞. 
(15) 

In terms of Fourier transform, the levy distribution defined as: 

F(k) = exp[−α|k|β], 0 < β ≤ 2, 
(16) 

fresh state is calculated as: 

Xt+1 = Xt + α ⊕ Levy (β), 
(17) 

Xt+1 = Xt + random (size(D)) ⊕ Levy(β), 
(18) 

non-trivial scheme of engendering step size is defined by: 

Xt+1 = Xt + random (size(D)) ⊕ Levy(β)~0.01
u

|v|1 β⁄ (xj
t − gb), (19) 

u~N(0, σu
2)   v~N(0, σv

2), (20) 

with 

σu = {
Г(1+β)sin(πβ/2)

Г[(1+β)/2]β2(β−1)/2}
1

β⁄
 , σv = 1. 

(21) 

Here Г is standard Gamma function. One of the important points to be considered while 

performing distribution by levy flights is the value taken by the β parameter and it substantially 

affects distribution. 

To accelerate the exploitation ability of the monkey algorithm, a Levy Flight Based Local Search 

(LFLS) scheme is integrated with it. 

In LFLS scheme step size is computed as: 

Step_size = 0.002 × s(t) × (xbestj − xkj) × U(0,1), (22) 
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position renewal of the most excellent individual inside the present population is found by: 

xbestj
′ (t + 1) = xbestj(t) + Step_size(t). (23) 

Key in the optimization function Min f(x) and β; 
Choose the most excellent solution xbest, 

Initialize t = 1, 𝜎𝑣 = 1, 

Compute σu = {
Г(1+β)sin(πβ/2)

Г[(1+β)/2]β2(β−1)/2}
1

β⁄
, 

While (t <∈) do, 

Calculate the step size by; Stepsize = 0.002 × s(t) × (xbestj − xkj) × U(0,1), 

Engender a new-fangled solution xbest
′ , 

Compute f(xbest
′ ); when f(xbest

′ ) = f(xbest) then xbest = xbest
′ , 

End if, 
t = t + 1; 

End while. 

 

Levy flight has been intermingled in the algorithm to enhance the search ability. Proposed 

AMOA accelerates the exploitation ability. 

Parameters values are initialized; 
While stop criteria do; 

Step a. Apply Local Leader phase. 
Step b. Apply Global Leader phase. 

Step c. Apply Local Leader Learning phase. 
Step d. Apply Global Leader Learning phase. 
Step e. Apply Local Leader Decision phase. 
Step f. Apply Global Leader Decision phase. 

Step g. Apply Levy Flight based Local Search Strategy 
End while. 

Print the most excellent solution. 

4. Simulation Results  

At first, in standard IEEE 14 bus system, the validity of the proposed AMOA has been tested, 

Table 1 shows the constraints of control variables Table 2 shows the limits of reactive power 

generators and comparison results are presented in Table 3.  

Table 1. Constraints of control variables.  

System Variables Minimum (PU) Maximum (PU) 

Generator Voltage 0.95 1.1 

Transformer Tap o.9 1.1 

VAR Source 0 0.20 
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Table 2. Constrains of reactive power generators. 

System Variables Q Minimum (PU) Q Maximum (PU) 

1 0 10 

2 -40 50 

3 0 40 

6 -6 24 

 8 -6 24 

 

Table 3. Simulation results of IEEE −14 system. 

Control 

variables 
Base case MPSO [19] PSO [19] EP [19] 

SARGA 

[19] 
AMOA 

𝑉𝐺−1 1.060 1.100 1.100 NR* NR* 1.010 

𝑉𝐺−2 1.045 1.085 1.086 1.029 1.060 1.031 

𝑉𝐺−3 1.010 1.055 1.056 1.016 1.036 1.022 

𝑉𝐺−6 1.070 1.069 1.067 1.097 1.099 1.030 

𝑉𝐺−8 1.090 1.074 1.060 1.053 1.078 1.014 

𝑇𝑎𝑝 8 0.978 1.018 1.019 1.04 0.95 0.902 

𝑇𝑎𝑝 9 0.969 0.975 0.988 0.94 0.95 0.910 

𝑇𝑎𝑝 10 0.932 1.024 1.008 1.03 0.96 0.950 

𝑄𝐶−9 0.19 14.64 0.185 0.18 0.06 0.161 

𝑃𝐺 272.39 271.32 271.32 NR* NR* 272.06 

𝑄𝐺 (Mvar) 82.44 75.79 76.79 NR* NR* 75.02 

Reduction 

in PLoss 

(%) 

0 9.2 9.1 1.5 2.5 16.9 

Total PLoss 

(Mw) 
13.550 12.293 12.315 13.346 13.216 11.256 

NR* - Not reported. 

Then the proposed AMOA has been tested in IEEE 30 bus system. Table 4 shows the constraints 

of control variables, Table 5 shows the limits of reactive power generators, and comparison results 

are presented in Table 6. 

Table 4. Constraints of control variables. 

System Variables Minimum (PU) Maximum (PU) 

Generator Voltage 0.95 1.1 

Transformer Tap o.9 1.1 

VAR Source 0 0.20 
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Table 5. Constrains of reactive power generators. 

System Variables Q Minimum (PU) Q Maximum (PU) 

1 0 10 

2 -40 50 

5 -40 40 

 8 -10 40 

 11 -6 24 

 13 -6 24 

 

Table 6. Simulation results of IEEE −30 system. 

Control variables Base case MPSO [19] PSO [19] EP [19] SARGA [19] AMOA 

𝑉𝐺−1 1.060 1.101 1.100 NR* NR* 1.023 

𝑉𝐺−2 1.045 1.086 1.072 1.097 1.094 1.046 

𝑉𝐺−5 1.010 1.047 1.038 1.049 1.053 1.078 

𝑉𝐺−8 1.010 1.057 1.048 1.033 1.059 1.015 

𝑉𝐺−12 1.082 1.048 1.058 1.092 1.099 1.059 

VG-13 1.071 1.068 1.080 1.091 1.099 1.061 

Tap11 0.978 0.983 0.987 1.01 0.99 0.901 

Tap12 0.969 1.023 1.015 1.03 1.03 0.932 

Tap15 0.932 1.020 1.020 1.07 0.98 0.901 

Tap36 0.968 0.988 1.012 0.99 0.96 0.910 

QC10 0.19 0.077 0.077 0.19 0.19 0.082 

QC24 0.043 0.119 0.128 0.04 0.04 0.139 

𝑃𝐺 (MW) 300.9 299.54 299.54 NR* NR* 299.01 

𝑄𝐺 (Mvar) 133.9 130.83 130.94 NR* NR* 131.06 

Reduction in PLoss (%) 0 8.4 7.4 6.6 8.3 10.6 

Total PLoss (Mw) 17.55 16.07 16.25 16.38 16.09 15.68 
NR* - Not reported. 

Then the proposed AMOA has been tested in IEEE 57 bus system. Table 7 shows the constraints 

of control variables, Table 8 shows the limits of reactive power generators, and comparison results 

are presented in Table 9. 

 Table 7. Constraints of control variables.  

 

 

 

 

 

 

 

System Variables Minimum (PU) Maximum (PU) 

Generator Voltage 0.95 1.1 

Transformer Tap 0.9 1.1 

VAR Source 0 0.20 
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Table 8. Constrains of reactive power generators. 

System Variables Q Minimum (PU) Q Maximum (PU) 

1 -140 200 

2 -17 50 

3 -10 60 

 6 -8 25 

 8 -140 200 

 9 -3 9 

 12 -150 155 

 

Table 9. Simulation results of IEEE −57 system. 

Control variables Base case MPSO [19] PSO [19] CGA [19] AGA [19] AMOA 

𝑉𝐺 1 1.040 1.093 1.083 0.968 1.027 1.010 

𝑉𝐺 2 1.010 1.086 1.071 1.049 1.011 1.021 

𝑉𝐺 3 0.985 1.056 1.055 1.056 1.033 1.043 

𝑉𝐺 6 0.980 1.038 1.036 0.987 1.001 1.021 

𝑉𝐺 8 1.005 1.066 1.059 1.022 1.051 1.043 

𝑉𝐺 9 0.980 1.054 1.048 0.991 1.051 1.001 

𝑉𝐺 12 1.015 1.054 1.046 1.004 1.057 1.063 

𝑇𝑎𝑝 19 0.970 0.975 0.987 0.920 1.030 0.961` 

𝑇𝑎𝑝 20 0.978 0.982 0.983 0.920 1.020 0.940 

𝑇𝑎𝑝 31 1.043 0.975 0.981 0.970 1.060 0.932 

𝑇𝑎𝑝 35 1.000 1.025 1.003 NR* NR* 1.010 

𝑇𝑎𝑝 36 1.000 1.002 0.985 NR* NR* 1.001 

𝑇𝑎𝑝 37 1.043 1.007 1.009 0.900 0.990 1.000 

𝑇𝑎𝑝 41 0.967 0.994 1.007 0.910 1.100 0.991 

𝑇𝑎𝑝 46 0.975 1.013 1.018 1.100 0.980 1.014 

𝑇𝑎𝑝 54 0.955 0.988 0.986 0.940 1.010 0.982 

𝑇𝑎𝑝 58 0.955 0.979 0.992 0.950 1.080 0.961 

𝑇𝑎𝑝 59 0.900 0.983 0.990 1.030 0.940 0.973 

𝑇𝑎𝑝 65 0.930 1.015 0.997 1.090 0.950 1.012 

𝑇𝑎𝑝 66 0.895 0.975 0.984 0.900 1.050 0.976 

𝑇𝑎𝑝 71 0.958 1.020 0.990 0.900 0.950 1.013 

𝑇𝑎𝑝 73 0.958 1.001 0.988 1.000 1.010 1.001 

𝑇𝑎𝑝 76 0.980 0.979 0.980 0.960 0.940 0.972 

𝑇𝑎𝑝 80 0.940 1.002 1.017 1.000 1.000 1.001 

𝑄𝐶 18 0.1 0.179 0.131 0.084 0.016 0.170 

𝑄𝐶 25 0.059 0.176 0.144 0.008 0.015 0.172 

𝑄𝐶 53 0.063 0.141 0.162 0.053 0.038 0.141 

𝑃𝐺 (MW) 1278.6 1274.4 1274.8 1276 1275 1261.4 

𝑄𝐺 (Mvar) 321.08 272.27 276.58 309.1 304.4 270.84 

Reduction in PLoss (%) 0 15.4 14.1 9.2 11.6 18.5 

Total PLoss (Mw) 27.8 23.51 23.86 25.24 24.56 22.642 
NR* - Not reported. 

Then the proposed AMOA has been tested in IEEE 118 bus system. Table 10 shows the 

constraints of control variables and comparison results are presented in Table 11. 
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Table 10. Constraints of control variables. 

System Variables Minimum (PU) Maximum (PU) 

Generator Voltage 0.95 1.1 

Transformer Tap 0.9 1.1 

VAR Source 0 0.20 

 

Table 11. Simulation results of IEEE −118 system. 

Control 

variables 
Base case MPSO [19] PSO [19] PSO [19] CLPSO [19] AMOA 

𝑉𝐺 1 0.955 1.021 1.019 1.085 1.033 1.024 

𝑉𝐺 4 0.998 1.044 1.038 1.042 1.055 1.040 

𝑉𝐺 6 0.990 1.044 1.044 1.080 0.975 1.020 

𝑉𝐺 8 1.015 1.063 1.039 0.968 0.966 1.013 

𝑉𝐺 10 1.050 1.084 1.040 1.075 0.981 1.027 

𝑉𝐺 12 0.990 1.032 1.029 1.022 1.009 1.018 

𝑉𝐺 15 0.970 1.024 1.020 1.078 0.978 1.014 

𝑉𝐺 18 0.973 1.042 1.016 1.049 1.079 1.039 

𝑉𝐺 19 0.962 1.031 1.015 1.077 1.080 1.015 

𝑉𝐺 24 0.992 1.058 1.033 1.082 1.028 1.028 

𝑉𝐺 25 1.050 1.064 1.059 0.956 1.030 1.048 

𝑉𝐺 26 1.015 1.033 1.049 1.080 0.987 1.036 

𝑉𝐺 27 0.968 1.020 1.021 1.087 1.015 0.925 

𝑉𝐺31 0.967 1.023 1.012 0.960 0.961 0.949 

𝑉𝐺 32 0.963 1.023 1.018 1.100 0.985 0.961 

𝑉𝐺 34 0.984 1.034 1.023 0.961 1.015 1.024 

𝑉𝐺 36 0.980 1.035 1.014 1.036 1.084 1.018 

𝑉𝐺 40 0.970 1.016 1.015 1.091 0.983 0.979 

𝑉𝐺 42 0.985 1.019 1.015 0.970 1.051 1.019 

𝑉𝐺 46 1.005 1.010 1.017 1.039 0.975 1.016 

𝑉𝐺 49 1.025 1.045 1.030 1.083 0.983 1.004 

𝑉𝐺 54 0.955 1.029 1.020 0.976 0.963 0.954 

𝑉𝐺 55 0.952 1.031 1.017 1.010 0.971 0.982 

𝑉𝐺56 0.954 1.029 1.018 0.953 1.025 0.969 

𝑉𝐺 59 0.985 1.052 1.042 0.967 1.000 0.984 

𝑉𝐺 61 0.995 1.042 1.029 1.093 1.077 0.982 

𝑉𝐺 62 0.998 1.029 1.029 1.097 1.048 0.990 

𝑉𝐺 65 1.005 1.054 1.042 1.089 0.968 1.001 

𝑉𝐺 66 1.050 1.056 1.054 1.086 0.964 1.001 

𝑉𝐺 69 1.035 1.072 1.058 0.966 0.957 1.051 

𝑉𝐺 70 0.984 1.040 1.031 1.078 0.976 1.047 

𝑉𝐺 72 0.980 1.039 1.039 0.950 1.024 1.039 

𝑉𝐺 73 0.991 1.028 1.015 0.972 0.965 1.020 

𝑉𝐺 74 0.958 1.032 1.029 0.971 1.073 1.029 

𝑉𝐺 76 0.943 1.005 1.021 0.960 1.030 1.012 

𝑉𝐺 77 1.006 1.038 1.026 1.078 1.027 1.032 

𝑉𝐺 80 1.040 1.049 1.038 1.078 0.985 1.016 

𝑉𝐺 85 0.985 1.024 1.024 0.956 0.983 1.025 

𝑉𝐺 87 1.015 1.019 1.022 0.964 1.088 1.019 

𝑉𝐺 89 1.000 1.074 1.061 0.974 0.989 1.053 

𝑉𝐺 90 1.005 1.045 1.032 1.024 0.990 1.041 
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NR* - Not reported. 

Then IEEE 300 bus system [18] is used as test system to validate the performance of the AMOA. 

Table 12 shows the comparison of real power loss obtained after optimization. Figure 1 shows 

IEEE 300 bus system [18] and this IEEE 300-bus system contains 69 generators, 60 LTCs, 304 

transmission lines, and 195 loads. 

Control 

variables 
Base case MPSO [19] PSO [19] PSO [19] CLPSO [19] AMOA 

𝑉𝐺 91 0.980 1.052 1.033 0.961 1.028 1.038 

𝑉𝐺 92 0.990 1.058 1.038 0.956 0.976 1.029 

𝑉𝐺 99 1.010 1.023 1.037 0.954 1.088 1.008 

𝑉𝐺 100 1.017 1.049 1.037 0.958 0.961 1.014 

𝑉𝐺 103 1.010 1.045 1.031 1.016 0.961 1.025 

𝑉𝐺 104 0.971 1.035 1.031 1.099 1.012 1.014 

𝑉𝐺 105 0.965 1.043 1.029 0.969 1.068 1.061 

𝑉𝐺 107 0.952 1.023 1.008 0.965 0.976 1.020 

𝑉𝐺 110 0.973 1.032 1.028 1.087 1.041 1.016 

𝑉𝐺 111 0.980 1.035 1.039 1.037 0.979 1.014 

𝑉𝐺 112 0.975 1.018 1.019 1.092 0.976 1.090 

𝑉𝐺 113 0.993 1.043 1.027 1.075 0.972 1.028 

𝑉𝐺 116 1.005 1.011 1.031 0.959 1.033 1.000 

𝑇𝑎𝑝 8 0.985 0.999 0.994 1.011 1.004 0.949 

𝑇𝑎𝑝 32 0.960 1.017 1.013 1.090 1.060 1.003 

𝑇𝑎𝑝 36 0.960 0.994 0.997 1.003 1.000 0.951 

𝑇𝑎𝑝 51 0.935 0.998 1.000 1.000 1.000 0.942 

𝑇𝑎𝑝 93 0.960 1.000 0.997 1.008 0.992 1.000 

𝑇𝑎𝑝 95 0.985 0.995 1.020 1.032 1.007 0.989 

𝑇𝑎𝑝 102 0.935 1.024 1.004 0.944 1.061 1.014 

𝑇𝑎𝑝 107 0.935 0.989 1.008 0.906 0.930 0.965 

𝑇𝑎𝑝 127 0.935 1.010 1.009 0.967 0.957 1.002 

𝑄𝐶 34 0.140 0.049 0.048 0.093 0.117 0.014 

𝑄𝐶 44 0.100 0.026 0.026 0.093 0.098 0.010 

𝑄𝐶 45 0.100 0.196 0.197 0.086 0.094 0.172 

𝑄𝐶 46 0.100 0.117 0.118 0.089 0.026 0.114 

𝑄𝐶 48 0.150 0.056 0.056 0.118 0.028 0.031 

𝑄𝐶 74 0.120 0.120 0.120 0.046 0.005 0.128 

𝑄𝐶 79 0.200 0.139 0.140 0.105 0. 148 0.119 

𝑄𝐶 82 0.200 0.180 0.180 0.164 0.194 0.165 

𝑄𝐶 83 0.100 0.166 0.166 0.096 0.069 0.148 

𝑄𝐶 105 0.200 0.189 0.190 0.089 0.090 0.161 

𝑄𝐶 107 0.060 0.128 0.129 0.050 0.049 0.128 

𝑄𝐶 110 0.060 0.014 0.014 0.055 0.022 0.014 

PG(MW) 4374.8 4359.3 4361.4 NR* NR* 4422.5 

QG(MVAR) 795.6 604.3 653.5 * NR* NR* 627.9 

Reduction in 

PLOSS(%) 
0 11.7 10.1 0.6 1.3 13.3 

Total PLOSS 

(Mw) 
132.8 117.19 119.34 131.99 130.96 115.01 
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Figure 1. IEEE 300-Bus System case [18]. 

 

Table 12. Comparison of real power loss.  

Parameter 
Method EGA 

[21] 

Method EEA 

[21] 

Method CSA 

[20] 
AMOA 

PLOSS (MW) 646.2998 650.6027 635.8942 610.0964 

 

5. Conclusion 

In this work AMOA successfully solved the optimal reactive power problem. Two most 

important control parameters are GLlimit and LLlimit which give appropriate way to global and 

local leaders correspondingly. Levy flight has been intermingled in the algorithm to enhance the 

search ability. Proposed AMOA accelerated the exploitation ability. Proposed has been tested in 

standard IEEE 14, 30, 57,118,300 bus test systems and simulation results show the projected 

algorithm reduced the real power loss comprehensively. 
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