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A B S T R A C T 

One of the best techniques for evaluating the performance of organizations is data envelopment 

analysis. Data Envelopment Analysis (DEA) is a non-parametric method for evaluating the 

performance of Decision-Making Units (DMUs) that recognizes the relative performance of DMUs 

based on mathematical programming. The classic DEA model were initially formulated for optimal 

inputs and outputs, but in real-world problems the values observed from input and output data are 

often ambiguous and random. In fact, decision makers may be faced with a specific hybrid 

environment where there is fuzziness and randomness in the problem. To overcome this problem, 

data envelopment analysis models in random fuzzy environment have been proposed. Although the 

DEA has many advantages, one of the disadvantages of this method is that the classic DEA does 

not actually give us a definitive conclusion and does not allow random changes in input and output. 

In this research data envelopment analysis models in fuzzy random environments is reviewed. 

 Keywords: DEA, Decision Making Unit, Performance, Random Fuzzy Data Envelopment 

Analysis. 
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1. Introduction 

Data Envelopment Analysis (DEA) is a method based on linear programming models to 

measure the relative performance of Decision-Making Units (DMUs) congruent with multiple 

inputs and outputs. The general view in unit evaluation is that reducing inputs and increasing 

outputs improves the performance and best performance of data envelopment analysis models .

Classic DEA models were initially formulated only for optimal inputs and outputs. In the real 

world, the values observed from input and output data are often significant and random. In fact, 

decision makers may encounter a specific hybrid environment in which fuzziness and 
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randomness exist simultaneously. However, undesirable outputs may also be present in the 

production process, which should be minimized. Consider, for example, a paper mill that 

produces undesirable environmental outputs such as sulfur oxides and suspended particulates in 

the paper production process as desirable outputs. If there are inefficiencies along the way, the 

efficiency needs to be reduced to improve efficiency, which means that when evaluating the 

performance of how to deal with undesirable outputs and desirable outputs, it should be 

different. 

To deal with imprecise data, the notions of fuzziness and randomness were introduced in DEA. 

Fuzzy sets can be used to represent ambiguous or imprecise information. On the other hand, the 

data can be obtained by statistics in some measurement errors and data entry errors 

characterized by random variables. However, in many practical situations, there is not a 

sufficient number of crisp statistic data. To handle such circumstances, a twofold uncertainty is 

needed. 

Hatami-Marbini et al. [1] classified the fuzzy DEA methods in the literature into five general 

groups: Tolerance approach [2, 3], α-level based approach, fuzzy ranking approach [4, 5], 

possibility approach [6], and fuzzy arithmetic approach [7]. Among these approaches, the α-

level based approach is probably the most popular fuzzy DEA model in the literature. This 

approach generally tries to transform the FDEA model into a pair of parametric programs for 

each α-level. Kao and Liu [8], one of the most cited studies in the α-level approach’s category, 

used Chen and Klein [9] method for ranking fuzzy numbers to convert the FDEA model to a 

pair of parametric mathematical programs for the given level of α. Saati et al. [10] proposed a 

fuzzy CCR model as a possibilistic programming problem and changed it into an interval 

programming problem by means of the α-level based approach. Parameshwaran et al. [11] 

proposed an integrated fuzzy analytic hierarchy process and DEA approach for the service 

performance measurement. Puri and Yadav [12] applied the suggested methodology by Saati et 

al. [10] to solve fuzzy DEA model with undesirable outputs. Khanjani et al. [13] proposed the 

fuzzy free disposal hull models under possibility and credibility measures. Momeni et al. [14] 

used fuzzy DEA models to address the impreciseness and ambiguity associated with input and 

output data in supply chain performance evaluation problems. Payan [15] evaluated the 

performance of DMUs with fuzzy data by using the common set of weights based on a linear 

program. Aghayi et al. [16] formulated a model to measure the efficiency of DMUs with 

interval inputs and outputs based on common sets weights. 

In order to evaluate the efficiency of DMUs with the deterministic inputs and the random 

outputs, Land et al. [17] extended the chance constrained DEA model. Olesen and Petersen [18] 

developed the chance constrained programming model for efficiency evaluation using a 

piecewise linear envelopment of confidence region for observed stochastic multiple-input 

multiple-output combinations in DEA. Huang and Li [19] developed stochastic models in DEA 

by taking into account the possibility of random variations in input-output data. Cooper et al. 

[20], Li [21], and Bruni et al. [22] utilized the joint chance constraints to extend the concept of 
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stochastic efficiency. Cooper et al. [23] used chance-constrained programming for extending 

congestion DEA models. Tsionas and Papadakis [24] developed Bayesian inference techniques 

in chance-constrained DEA models. Udhayakumar et al. [25] used a genetic algorithm to solve 

the chance-constrained DEA models involving the concept of satisficing. Also some of the 

banking applications in relation to satisficing DEA can be found in Udhayakumar et al. [25] 

and Tsolas and Charles [26]. Franoosh et al. [27] proposed chance-constrained FDH model 

with random input and random output. Wu et al. [28] proposed a stochastic DEA model by 

considering undesirable outputs with weak disposability. This model not only deals with the 

existence of random errors in the collected data, but also depicts the production rules uncovered 

by weak disposability of the undesirable outputs. Also, a comparison work between stochastic 

DEA and fuzzy DEA approaches have been introduced to evaluate the efficiency of Angolan 

banks by Wanke et al. [29]. A review of stochastic DEA models can be found in a recent work 

by Olesen and Petersen [30]. 

However, in the real-world problem decision makers may need to base decisions on 

information which are both fuzzily imprecise and probabilistically uncertain. Kwakernaak [31] 

introduced the concept of fuzzy random variable, and then this idea enhanced by a number of 

researchers in the literature [32, 33, 34, 35]. Qin and Liu [35] developed a Fuzzy Random DEA 

(FRDEA) model where randomness and fuzziness exist simultaneously [35]. The authors 

characterized the fuzzy random data with known possibility and probability distributions. 

Tavana et al. [36] also introduced three different FDEA models consisting of probability-

possibility, probability-necessity and probability-credibility constraints in which input and 

output data entailed fuzziness and randomness at the same time. Also, Tavana et al. [37] 

provided a chance-constrained DEA model with random fuzzy inputs and outputs with poisson, 

uniform and normal distributions. After that, Tavana et al. [38] proposed DEA models with 

birandom input-output. Khanjani et al. [13] proposed fuzzy rough DEA models based on the 

expected value and possibility approaches. Paryab et al. [39] proposed DEA models using bi-

fuzzy data based possibility approach. However, there has been no attempt to study randomness 

and roughness simultaneously in DEA problems. Tavana et al. [40] also introduced a DEA 

model for problems characterized by random-rough variables. Nasseri et al. [41] proposed a 

new approach to consider the impact of undesirable output on the performance of DMUs in 

fuzzy stochastic environment. To deal with the uncertain environments, especially hybrid 

environments, the DEA model may disorder its structure when the uncertain parameter of input 

and output exist. For example, the method proposed by Tavana et al. [36] does not compute the 

efficiency scores of DMUs in the range of zero to one for input-oriented DEA models. 

Classical DEA generally uses deterministic data to evaluate performance, but today in the real 

world, uncertainties in data are clearly evident, with few studies available. This paper reviewed 

the most important models of DEA with fuzzy stochastic environments. 
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2. Preliminaries 

2.1. Definition and Basic Concept 

In this subsection, we review some necessary concepts related to this research, which will be 

used in the rest of paper. 

Definition 1. A fuzzy set Ã, defined on universal set X, is given by a set of ordered pairs Ã =

{(x, μÃ(x))|x ∈ X} where μÃ(x) gives the membership grade of the element 𝑥in the set 𝐴̃and is 

called membership function. 

 Definition 2. A fuzzy set Ã = (m, α, β)LRt  is said to be an LR fuzzy number, if its membership 

function is given by: 

μÃ(x) =

{
 
 

 
 L(

m − x

α
), forx ≤ m, α > 0,

1, forx = m,

R(
x − n

β
), forx ≥ n, β > 0.

 
 

Where L: [0,∞) → [0,1] and R: [0,∞) → [0,1] are non-increasing on such that L(0)=R(0)=1. 

Remark 1. If L(x) = R(x) = max{0,1 − x} then an LR fuzzy number Ã = (m, α, β)LR is said to be 

a triangular fuzzy number and is denoted by Ã = (m, α, β). 

Definition 3.  A fuzzy set Ã, defined on universal set of real numbers R , is said to be a fuzzy 

number if its membership function has the following characteristics: 

 Ã is convex, i.e. ∀x, y ∈ R, ∀λ ∈ [0,1], μÃ(λx + (1 − λ)y) ≥ min{μÃ(x), μÃ(y)}. 

 Ã is normal, i.e. ∃x ∈ R; μÃ(x) = 1. 

 μÃ is piecewise continuous. 

Definition 4. Let Ã = (m, α, β)LR be an LR fuzzy number and λ be a real number in the interval 

[0,1] then the crisp set, Ãλ = {x ∈ R: μÃ(x) ≥ λ} = [m − αL−1(λ),m + βR−1(λ)] is said to be λ −

cut of Ã. 

Definition 5. Let Ã1 = (m1, α1, β1)LR and Ã2 = (m2, α2, β2)LR be two LR fuzzy numbers and k 

be a non-zero real number. Then the exact formula for the extended addition and the scalar 

multiplication are defined as follows: 

(m1, α1, β1)LR + (m2, α2, β2)LR = (m1 +m2, α1 + α2, β1 + β2)LR.
k > 0, k(m1, α1, β1)LR = (km1, kα1, kβ1)LR.
k < 0, k(m1, α1, β1)LR = (km1, −kβ1, −kα1)LR.

 

Definition 6. (Extension principle). This principle allows the generalization for crisp 

mathematical concepts in fuzzy frameworks. For any function f, mapping points in set X to 
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points in set Y, and fuzzy set A ∈ P(X)where A = μ1(x1) + μ2(x2)+. . . +μn(xn), this principle 

expresses f(A) = f(μ1(x1) + μ2(x2)+. . . +μn(xn)) = f(μ1(x1)) + f(μ2(x2))+. . . +f(μn(xn)). 

Definition 7. Let (θ, P(θ), Pos)be a possibility space where θ is a non-empty set involving all 

possible events, and P(θ) is the power set of θ. For everyA ∈ P(θ) there is a non-negative 

number Pos(A) , so-called a possibility measure, satisfying the following axioms: 

 P(ϕ) = 0, P(θ) = 1. 

  for every A, B ∈ P(θ), A ⊆ Bimplies Pos(A) ≤ Pos(B). 

  for every subset {Aw: w ∈ W} ⊆ P(θ), Pos(∪w Aw) = SupwPos(Aw). 

The elements of P(θ)are also called fuzzy events. 

Definition 8. Let ξbe a fuzzy variable on a possibility space(θ, P(θ), Pos). The possibility of 

fuzzy event {ξ ≥ r} , where r is any real number, is defined Pos(ξ ≥ r) = Supt≥rμξ(t) , where is 

the membership function of ξ. 

Definition 9. Let (Ω, A, Pr) be a probability space where Ω is a sample space, A is the s-algebra 

of subsets of Ω (i.e. the set of all possible potentially interesting events), and Pr is a probability 

measure on Ω. A Fuzzy Random Variable (FRV) is a function ξ from a probability 

space(Ω, A, Pr)to the set of fuzzy variables such that for every Borel set B of R, Pos{ξ(w),w ∈

B}is a measurable function of ω. 

Definition 10. A fuzzy random vector is a map from a sample space to a collection of fuzzy 

vectors, ξ = (ξ1, ξ2, . . . , ξn): Ω → Fv
n , such that for any closed subset F ∈ Rn, Pos{γ|ξ(ω, γ) ∈ F}is a 

measurable function of ω ∈ Ω , i.e. for any t ∈ [0,1], we have {𝜔 ∈ 𝛺|𝑃𝑜𝑠{𝛾|𝜉(𝜔, 𝛾) ∈ 𝐹} ≤ 𝑡} ∈

𝐴 . In the case of n=1, ξis called a fuzzy random variable. 

Definition 11. (Fuzzy random arithmetic). Let ξ1and𝜉2be two FRVs with the probability 

spaces (Ω1, 𝐴1, Pr1) and (Ω2, 𝐴2, Pr2), respectively. Then 𝜉 = 𝜉1 + 𝜉2 is defined as 𝜉(𝜔1, 𝜔2) =

𝜉
1
(𝜔1) + 𝜉2(𝜔2) for any (ω1, ω2) ∈ Ω1 × Ω2 , where (Ω1 × Ω2, 𝐴1 × 𝐴2, Pr1 × Pr2) is the 

corresponding probability space.   

Definition 12. Let ξ = (ξ1, ξ2, . . . , ξn) be a fuzzy random vector, and f: ℜn → ℜ be a continuous 

function. Then f(ξ) will be a fuzzy random variable.  

Definition 13. An LR fuzzy random variable will be denoted by ξ(ω), where 𝜔 ∈ Ω and 

described by the following membership function: 

μξ(ω)(x) =

{
 
 

 
 L(

m(ω) − x

α
), x ≤ m(ω),

1x = m(ω),

R(
x −m(ω)

β
), x ≥ m(ω).
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Where m(ω) is the normally distributed random variable? 

3. Conventional DEA-CCR Model with Crisp Data  

According to the CCR model, proposed by Charnes et al. [42], under a Constant Returns to 

Scale (CRS) technology, we consider that there are n DMUs to be evaluated where every DMUj, 

j=1,…,n, produces s outputs, yrj(r=1,…,s) using m inputs, xij(i=1,…,m). The following problem 

is used to evaluate the technical radial input-efficiency of a given DMUp: 

θp
∗ = max∑uryrp

s

r=1

s. t.∑vixip

m

i=1

= 1,

∑uryrj

s

r=1

−∑vixij

m

i=1

≤ 0,

ur, vi ≥ 0, r = 1, . . . , s, i = 1, . . . , m.

 
(1) 

Where the ur and 𝑣𝑖 are the weights assigned to the rth output and ith input, respectively. The 

DMUpis technically efficient if θp
∗ = 1, otherwise DMUpis inefficient.  

4. Existing Models 

In this section, we first review the proposed models of Tavana et al. [37]. In a random 

environment and then a random fuzzy environment. 

Tavana et al. [43] presented the mathematical details of the proposed approach for solving the 

CCR model in which input and output data are assumed to be the random variables. The details 

of this proposed model are as follows: 

Let us assume x̃j = (x̃1j, . . . , x̃mj)
T ∈ ℜm and ỹj = (ỹ1j, . . . , ỹsj)

T ∈ ℜsare the random input and 

output data for DMUj, j = 1, . . . , n, and each of them has a normal  distribution. Also, let us 

assume xj = (x1j, . . . , xmj)
T ∈ ℜm and yj = (y1j, . . . , ymj)

T ∈ ℜsare the expected vectors of the 

inputs and outputs of x̃j and ỹj, respectively. 

Refer to [43], the final formula will be as follows: 
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 minθ

s. t.∑xij − xipθ + viϕ
−1(1 − α) + viϕ

−1(1 − β) ≤ 0, i = 1,… ,m,

n

j=1

∑yrjλj − yrp − urϕ
−1(1 − α) − urϕ

−1(1 − β) ≥ 0, r = 1,… , s,

n

j=1

vi
2 =∑∑λjλkCov(

n

k=1

n

j=1

xij, xik) + θ
2Var(xip) − 2θ∑λj

n

j=1

Cov(xij, xip), i = 1,… ,m,

vi
2
=∑∑λjλkCov(

n

k=1

n

j=1

x̃ij, x̃ik) + θ
2Var(x̃ip) − 2θ∑λj

n

j=1

Cov(x̃ij, x̃ip), i = 1,… ,m,

ur
2
=∑∑λjλkCov(

n

k=1

n

j=1

ỹ
rj
, ỹ
rk
) + Var(ỹ

rp
) − 2∑λj

n

j=1

Cov(ỹ
rj
, ỹ
rp
), r = 1,… , s,

ur
2 =∑∑λjλkCov(

n

k=1

n

j=1

y
rj
, y
rk
) + Var(y

rp
) − 2∑λj

n

j=1

Cov(y
rj
, y
rp
), r = 1,… , s,

λj, vi, vi, ur, ur ≥ 0,

j = 1,… , n; i = 1,… ,m; r = 1,… , s.

 
(2) 

Definition 14. A DMU is said to be probabilistic-probabilistic α − β efficient if the optimal 

value of the objective function of model (2) is equal to 1 at the probability level 𝛼and 

probability level β; otherwise, it is said to be probabilistic-probabilistic α − β inefficient. 

Proposition 1. Model (2) for any α and β level is feasible.  

Proof: Let λj = {
1j = p
0j ≠ p

, j = 1, . . . , n, θ = 1. Then vi = 0, vi = 0, ur = 0, ur = 0. This solution is a 

feasible solution for model (2). 

Also, similar to the random CCR model proposed, the super-efficiency random model is 

developed to improve the discrimination power. The corresponding model is as follows: 
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minθSuper

s. t.∑xijλj − xipθ + viϕ
−1(1 − α) + viϕ

−1(1 − β) ≤ 0, i = 1, . . . , m,

n

j=1
j≠p

∑yrjλj − yrp − uϕ
−1(1 − α)r + urϕ

−1(1 − β) ≥ 0, r = 1, . . . , s,

n

j=1
j≠p

vi
2 =∑∑λjλkCov(

n

k=1
j≠p

n

j=1
j≠p

xij, xik) + θ
2Var(xip) − 2θ∑λj

n

j=1
j≠p

Cov(xij, xip), i = 1, . . . , m,

vi
2
=∑∑λjλkCov(

n

k=1
j≠p

n

j=1
j≠p

x̃ij, x̃ik) + θ
2Var(x̃ip) − 2θ∑λj

n

j=1
j≠p

Cov(x̃ij, x̃ip), i = 1, . . . , m,

ur
2
=∑∑λjλkCov(

n

k=1
j≠p

n

j=1
j≠p

ỹ
rj
, ỹ
rk
) + Var(ỹ

rp
) − 2∑λj

n

j=1
j≠p

Cov(ỹ
rj
, ỹ
rp
), r = 1, . . . , s,

ur
2 =∑∑λjλkCov(

n

k=1
j≠p

n

j=1
j≠p

y
rj
, y
rk
) + Var(y

rp
) − 2∑λj

n

j=1
j≠p

Cov(y
rj
, y
rp
), r = 1, . . . , s,

λj, vi, vi, ur, ur ≥ 0,

j = 1, . . . , n; i = 1, . . . , m; r = 1, . . . , s.

 
(3) 

Now we want to illustrate two models of data envelopment analysis with fuzzy and random 

inputs and outputs. Tavana et al. [36] offered the mathematical details of the probability-

possibility, probability-necessity and probability-credibility approaches for solving the CCR 

models in which the input and output data are assumed to be characterized by Fuzzy Random 

Variables (FRVs).  

Theorem 1. Assume that ξ is a fuzzy random vector, and gj are real-valued continuous 

functions for j=1,…,n. We have:   

 The possibility Pos{gj(ξ(ω)) ≤ 0, j = 1, . . . , p} is a random variable. 

 The necessity Nec{gj(ξ(ω)) ≤ 0, j = 1, . . . , p} is a random variable. 

 The credibility Cr{gj(ξ(ω)) ≤ 0, j = 1, . . . , p} is a random variable. 

They considered n DMUs, each of consumes m fuzzy stochastic inputs, denoted by x̃ij =

(xij
m, xij

α, xij
β
), i=1,…,m, j=1,…,n, and produces s fuzzy stochastic outputs, denoted by ỹrj =

(yrj
m, yrj

α , yrj
β
), r=1,…,s, j=1,…,n. Let xij

m and yrj
m, denoted by xij

m~N(xij, σij
2) and yrj

m~N(yrj, σrj
2 ) be 

normally distributed. Therefore, xij(yrj) and σij
2(σrj

2 ) are the mean and the variance of xij
m(yrj

m) 

for DMUj, respectively. Finally the final probability-possibility CCR model is as follows: 
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maxφ

s. t. φ −∑uryrp

s

r=1

− R−1(δ)∑uryrp
β

s

r=1

≤ σp
C
ϕ1−γ
−1 ,

∑vixip

m

i=1

+ R−1(δ)∑vixij
β

m

i=1

+ σp
I
ϕ1−γ
−1 ≥ 1,

∑vixip

m

i=1

− L−1(δ)∑vixij
α

m

i=1

− σp
I
ϕ1−γ
−1 ≤ 1,

∑uryrj

s

r=1

−∑vixij

m

i=1

− (L−1(δj)∑uryrp
α

s

r=1

+ R−1(δj)∑vixij
β

m

i=1

) − σp
A
ϕ1−γj
−1 ≤ 0, j = 1, . . . , n,

(σp
C
)2 = (∑ur

2

s

r=1

σrp
2 ),

(σp
I
)2 = (∑vi

2

m

i=1

σip
2 ),

(σp
A
)2 = (∑ur

2

s

r=1

σrj
2 +∑vi

2

m

i=1

σij
2), j = 1, . . . , n,

ur, vi, σp
C
, σp
I
, σp
A
≥ 0, r = 1, . . . , s, i = 1, . . . , m, j = 1, . . . , n.

 
(4) 

They presented the probability-necessity CCR model and it is as follows: 

maxφ

s. t.∑uryrp

s

r=1

− L−1(1 − δ)∑uryrj
α

s

r=1

+ σp
C
ϕ1−γ
−1 − φ ≥ 0,

∑vixip

m

i=1

− L−1(1 − δ)∑vixip
α

m

i=1

+ σp
I
ϕ1−γ
−1 ≥ 1,

∑vixip

m

i=1

+ R−1(δ)∑vixip
β

m

i=1

− σp
I
ϕ1−γ
−1 ≤ 1,

∑uryrj

s

r=1

−∑vixij

m

i=1

+ R−1(δj)∑uryrp
β

s

r=1

+ L−1(1 − δj)∑vixij
α

m

i=1

) − σj
A
ϕ1−γj
−1 ≤ 0, j = 1, . . . , n,

(σp
C
)2 = (∑ur

2

s

r=1

σrp
2 ),

(σp
I
)2 = (∑vi

2

m

i=1

σip
2 ),

(σp
A
)2 = (∑ur

2

s

r=1

σrj
2 +∑vi

2

m

i=1

σij
2), j = 1, . . . , n,

ur, vi, σp
C
, σp
I
, σp
A
≥ 0, r = 1, . . . , s, i = 1, . . . , m, j = 1, . . . , n.

 
(5) 

Theorem 2. Let λ1 = (m1, α1, β1)LRand λ2 = (m2, α2, β2)LR be two independent L-R type fuzzy 

numbers with continuous membership functions. For a given confidence level α ∈ [0,1]: 
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 When α ≤ 0.5, Cr{λ1 ≥ λ2} ≥ αif and only if m1 + β1R
−1(2α) ≥ m2 − α2R

−1(2α).  

 When α > 0.5, Cr{λ1 ≥ λ2} ≥ αif and only if m1 − α1L
−1(2(1 − α)) ≥ m2 + β2L

−1(2(1 − α)). 

For proof, see [36]. 

Finally, the probability-credibility CCR model for δj, δ ≤ 0.5 as follows: 

maxφ

s. t. φ −∑uryrp

s

r=1

− R−1(2δ)∑uryrp
β

s

r=1

− θp
O
ϕ1−γ
−1 ≤ 0,

∑vi(xip

m

i=1

+ R−1(2δ)xip
β
) + θp

I
ϕ1−γ
−1 ≥ 1,

∑vi(xip

m

i=1

− R−1(2δ)xip
α ) − θp

I
ϕ1−γ
−1 ≤ 1,

∑ur(yrj

s

r=1

− R−1(2δj)yrj
α) −∑vi

m

i=1

(xij + R
−1(2δj)xij

β
) − λjϕ1−γj

−1 ≤ 0, j = 1, . . . , n,

(θp
O)2 =∑ur

2

s

r=1

var(yrp
m ),

(θp
I )2 =∑vi

2

m

i=1

var(xip
m),

(λj)
2 =∑ur

2

s

r=1

var(yrp
m) +∑vi

2

m

i=1

var(xip
m), j = 1, . . . , n,

ur, vi, θp
O, θp

I , λj ≥ 0, r = 1, . . . , s, i = 1, . . . , m, j = 1, . . . , n.

 (6) 

And for δj, δ > 0.5: 
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maxφ

s. t. φ −∑uryrp

s

r=1

+ L−1(2(1 − δ))∑uryrj
α

s

r=1

− θp
O
ϕ1−γ
−1 ≤ 0,

∑vi(xip

m

i=1

− L−1(2(1 − δ))xip
α ) + θp

I
ϕ1−γ
−1 ≥ 1,

∑vi(xip

m

i=1

+ L−1(2(1 − δ))xip
β
) − θp

I
ϕ1−γ
−1 ≤ 1,

∑ur(yrj

s

r=1

+ L−1(2(1 − δj))yrp
β
) −∑vi(xij

m

i=1

− L−1(2(1 − δj))xij
α) − λjϕ1−γ

−1 ≤ 0, j = 1, . . . , n,

(θp
O)2 =∑ur

2

s

r=1

var(yrp
m ),

(θp
I )2 =∑vi

2

m

i=1

var(xip
m),

(λj)
2 = (∑ur

2

s

r=1

var(yrp
m ) +∑vi

2

m

i=1

var(xip
m)), j = 1, . . . , n,

ur, vi, θp
O
, θp
I
, λj ≥ 0, r = 1, . . . , s, i = 1, . . . , m, j = 1, . . . , n.

 (7) 

Definition 14. A DMU  is said to be (probability-possibility, probability-necessity and 

probability-credibility) γ-efficient if the objective function of related models, φ, is greater than 

or equal to unity at the threshold level 1 − 𝛾; otherwise, it is said to be (probability-possibility, 

probability-necessity and probability-credibility) γ-efficient. 

In another study, Tavana et al. [44] developed an imprecise DEA-based formulation for dealing 

with the randomness of fuzzy variables on a possibility space (θ, P(θ), Pos) through efficiency 

measurement. Similar to the details as in the previous section, proposed model is as follows: 

for δ > 0.5: 

 



377                  The survey of data envelopment analysis models in fuzzy stochastic environments 

maxφ

s. t. φ + θo
Oϕ−1(δ) ≤∑ur(yro

m2

s

r=1

+ R−1(γ)yro
β
),

∑vi(xio
m2 +

m

i=1

R−1(γ)xio
β
) − θo

I ϕ−1(δ) ≥ 1,

∑vi(xio
m1 −

m

i=1

L−1(γ)xio
α ) + θo

I ϕ−1(δ) ≤ 1,

∑ur(

s

r=1

yrj
m1 − L−1(γ)yrj

α) −∑vi(xij
m2 +

m

i=1

R−1(γ)xij
β
) + ϕ−1(δ)λj ≤ 0, j = 1, . . . , n,

(θo
O)2 =∑ur

2

s

r=1

(ŷro
m1 − L−1(γ)ŷro

α ),

(θo
I )2 =∑vi

2

m

i=1

(x̂io
m1 − L−1(γ)x̂io

α ),

(λj)
2 =∑ur

2

s

r=1

ŷrj
m2 +∑vi

2

m

i=1

x̂ij
m2 − L−1(γ)(∑ur

2

s

r=1

ŷrj
β
+∑vi

2

m

i=1

x̂ij
β
), j = 1, . . . , n,

ur, vi, θp
O, θp

I , θp
I
, λj ≥ 0, r = 1, . . . , s, i = 1, . . . , m, j = 1, . . . , n.

 (8) 

And for δ ≤ 0.5: 

maxφ

s. t. φ −∑ur(yro
m2

s

r=1

+ R−1(γ)ỹ
ro

β
) + θo

O
ϕ−1(δ) ≤ 0,

∑vi(xio
m2 +

m

i=1

R−1(γ)xio
β
) − θo

I
ϕ−1(δ) ≥ 1,

∑vi(xio
m1 −

m

i=1

L−1(γ)xio
α ) + θo

I
ϕ−1(δ) ≤ 1,

∑ur(

s

r=1

yrj
m1 − L−1(γ)∑ur

s

r=1

yrj
α) −∑vi(x̃ip

m2
+

m

i=1

R−1(γ)∑vi

m

i=1

x̃ip
β
) + ϕ−1(δ)λj ≤ 0, j = 1, . . . , n,

(θo
O
)2 =∑ur

2

s

r=1

(ŷro
m2 + R−1(γ)ŷro

β
),

(θo
I
)2 =∑vi

2

m

i=1

(x̂io
m2 + R−1(γ)x̂io

β
),

(λj)
2 =∑ur

2

s

r=1

ŷrj
m2 +∑vi

2

m

i=1

x̂ij
m2 + R−1(γ)(∑ur

2

s

r=1

ŷrj
β
+∑vi

2

m

i=1

x̂ij
β
), j = 1, . . . , n,

ur, vi, θp
O
, θp
I
, λj ≥ 0, r = 1, . . . , s, i = 1, . . . , m, j = 1, . . . , n.

 (9) 
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Furthermore, they presented a Necessity-Probability constrained programming model under 

fuzzy probability necessity constraints as follow: 

for δ > 0.5: 

maxφ

s. t. φ −∑uryro
m1

s

r=1

+ L−1(1 − γ)∑uryro
α

s

r=1

+ θ̃o
Oϕ−1(δ) ≤ 0,

∑vi(xio
m1

m

i=1

− L−1(1 − γ)xio
α ) − θ̃o

Iϕ−1(δ) ≥ 1,
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m2 +

m

i=1

R−1(γ)∑vi

m

i=1

xip
β
+ θ̃o

I ϕ−1(δ) ≤ 1,

∑ur(yrj
m2

s

r=1

+ R−1(γ)yrj
β
) −∑vi

m

i=1

(xij
m1 − L−1(1 − γ)xij

α) + λ̃jϕ
−1(δ) ≤ 0, j = 1, . . . , n,

(θ̃o
O)2 =∑ur

2

s

r=1

(ŷro
m1 + R−1(γ)ŷro
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(θ̃o
I )2 =∑vi

2

m

i=1
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m2 + R−1(γ)x̂io

β
),

(λ̃j)
2 =∑ur

2

s

r=1

ŷrj
m1 +∑vi

2

m

i=1

x̂ij
m1 , j = 1, . . . , n,

ur, vi, θ̃o
O, θ̃o

I , λ̃j ≥ 0, r = 1, . . . , s, i = 1, . . . , m, j = 1, . . . , n.

 (10) 

For δ ≤ 0/5: 
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maxφ
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m1

s
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α

s
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m1

m

i=1
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m

i=1

xio
α − θ̂o

I ϕ−1(δ) ≥ 1,
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m2 +

m

i=1
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m

i=1

xip
β
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m2

s
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β
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m

i=1

(xij
m1 − L−1(1 − γ)xij

α) + λ̂jϕ
−1(δ) ≤ 0, j = 1, . . . , n,

(θ̂o
O)2 =∑ur

2

s

r=1

(ŷro
m1 − L−1(1 − γ)ŷro

α ),

(θ̂o
I )2 =∑vi

2

m

i=1
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β
),
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2 =∑ur

2

s

r=1

ŷrj
m1 +∑vi

2

m

i=1

x̂ij
m1 − L−1(1 − γ)(∑vi

2

m

i=1
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ŷrj
α), j = 1, . . . , n,

ur, vi, θ̂o
O, θ̂o

I , λ̂j ≥ 0, r = 1, . . . , s, i = 1, . . . , m, j = 1, . . . , n.

 (11) 

In the models presented, Tavana et al. [44] discussed the CCR model in which the inputs and 

outputs are random-fuzzy parameters on a possibility space with a normal distribution. In 

general programs, the possibility levels may be unknown or imprecise, in particular for fuzzy 

and stochastic production sets. Hence, they developed the proposed models with the fuzzy 

threshold level to take into account the generalized DEA model. They assumed the fuzzy δ, 

denoted by δ̃ = (δα, δm1 , δm2 , δβ) and the final model is as follows: 
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i=1
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m2 + xip

β
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2

m
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β
)ϕ−1(δ̃γR) ≤ 0

maxφ
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β
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m
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xij
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β

s
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m

i=1

xij
α) + hjϕ

−1(δm2 + R−1(γ)δβ) ≤ 0, j = 1, . . . , n,

(ρo
O)2 =∑ur

2

s

r=1

(ŷro
m2 + R−1(1 − γ)ŷro

β
),

(ρo
I )2 =∑vi

2

m

i=1

(x̂io
m2 + R−1(1 − γ)x̂io

β
),

(hj)
2 =∑ur

2

s

r=1

(ŷrj
m2 + R−1(1 − γ)ŷrj

β
) +∑vi

2

m

i=1

(x̂ij
m2 + R−1(1 − γ)x̂io

β
), j = 1, . . . , n,

ur, vi, ρo
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 (12) 

The DMUois called necessity- probabilistic γ − δ̃ efficient if φo = 1 where φo = φo/maxj(φj). 

5. Numerical Example 

In this section, we show the results of model (8) and model (9) with a numerical example. In 

this example, we consider 10 DMUs with two random-fuzzy inputs and one random-fuzzy 

output on a possibility space. The random-fuzzy inputs, x̃ij, and random-fuzzy outputs, ỹrj, are 

normally-distributed with triangular fuzzy means and triangular fuzzy variances as 

x̃ij~N(xij, σij
2
) where xij = (xij

m, xij
α, xij

β
)LR and σij

2
= (x̂ij

α, x̂ij
m, x̂ij

β
)LR; and ỹrj~N(yrj, σrj

2
) where yrj =

(yrj
m, yrj

α , yrj
β
)LR and σrj

2
= (ŷrj

α , ŷrj
m, ŷrj

β
)LR. The data are shown in Table 1. 

Using “what if” analysis in performance evaluation for the possibility-probability developed 

models, we first assume δ = 0.5 when γ assumes the four different measures of 0.1, 0.3, 0.5 and 

0.9. We then assume γ = 0.5 when 𝛿 assumes the four different measures as 0.1, 0.3, 0.5 and 

0.9. Table 2 and Table 3 report the results of models (8) and (9) for the above mentioned levels. 
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6. Conclusion 

A DEA model basically draws three critical elements: The model specification, the reference 

set itself, and the definition of the production possibility set. Starting from the latter, the 

production possibility set can either be defined as complete and known (like in conventional 

DEA) or as potentially extending beyond or excluding the reference set (like in stochastic 

DEA). The reference set, the very observations that form the engine of the non-parametric 

approach, can be either precise (as in conventional DEA), outcomes of stochastic processes (as 

in stochastic frontier analysis), or imprecise (as in the fuzzy DEA models). Classic DEA 

generally uses deterministic data to evaluate performance, but today in the real world 

uncertainty is clearly observed in data. In this research, we first reviewed the data envelopment 

analysis data in a random field and then in a random fuzzy field simultaneously. 
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