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A B S T R A C T 

Disaster relief logistics is considered to be one of the major activities in disaster management. This 

research studies response phase of the disaster management cycle. To do so, a multi-purpose 

integrated model for a three-level relief cycle logistics is provided under an uncertainty condition and 

on a periodic basis. In this model, inventory transfer, vehicle routing, distribution and sending relief 

goods are modeled on a periodic basis. In addition, in order to solve the proposed mathematical 

model, ultra-initiative particles swarm algorithm in combination with variable neighborhood search 

based on Pareto archive is proposed. To prove the efficiency of the proposed particles swarm 

algorithm, several sample problems are randomly selected considering the solved problems in the 

literature and are solved by particles swarm algorithm. These problems are also solved by genetic 

algorithm and the results obtained from these two algorithms are compared in terms of quality, 

dispersion and integrity indices. The results show that compared to genetic algorithm, particles 

swarm algorithm is more capable of producing more integrated, qualified and dispersed responses. 

Moreover, the results show that the solution time of genetic algorithm is less than that of the proposed 

algorithm. 
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1. Introduction 

Each year, millions of people are affected by natural or manmade disasters around the world. In 

recent decade, the number of victims has significantly been increased [6, 15]. Most of relief 

organizations help and support the affected persons by providing them such relief goods as food, 

water, drug and medical equipment as well as building shelter and relief tents. A wide range of 
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logistics-related issues are becoming humanitarian. Some studies estimate that logistics and 

supply cycle management comprises more than 80% of the whole operations [17]. This article 

studies a particular event which may happen during response phase or reconstruction phase. 

Some of regional warehouses should be established for storage and distribution of the relief 

goods. These regional warehouses receive services from central warehouses or adjacent regional 

warehouses and the central warehouses receive services from global warehouses. A warehouse 

may be destroyed due to a disaster, firing, theft or other reasons and this also leads to supply 

shortage. So the demand for special goods may suddenly increase. For example disease outbreaks 

require the drugs and the related equipment. Sudden increasing of a demand results in shortage 

of a local warehouse which can be compensated through central warehouses but since this takes 

a long time, this shortage can be supplied by means of regional warehouses as well.  

In some cases, several disasters occur simultaneously that may cause additional losses like 2010 

Haiti Earthquake which first earthquake occurred and followed by storm. Therefore, periodic 

events involve a complicated planning [2]. 

 Relief logistics planning involves contradictory goals. Its first goal is to minimize the unfulfilled 

demand and its second goal is to minimize the distribution cost which is inconsistent with the 

first goal and so there should be a balance between them. As the literature shows operations 

research models have a successful application in supporting different kinds of humanitarian 

operations. 

 2. Literature Review 

Given the importance of logistics in humanitarian operations, many articles have been published 

in this field during recent years and several operations research methods have been proposed. For 

example facility location planning, transporting routing, planning for solving the proposed 

problems such as maximum coverage and network flow model or the shortest route of the 

initiative and exact methods have been provided. Sometimes location problem has been 

combined with transporting routing [1], and in some cases inventory planning has been combined 

with location problem. Chang [7] proposed two possible models for warehouses location in 

relation to the urgent response following earthquake as well as inventory assignment to 

warehouses. 

Yi and Kumar [18] proposed ant colony optimization algorithm to solve logistics problems in 

relief measures during crisis. Tzeng et al. [16] proposed a deterministic multi-criteria model to 

distribute the necessary goods within the damaged regions considering cost of response time and 

customer’s satisfaction and to solve it by means of multi-purpose fuzzy planning approach. Given 

the importance of uncertainty in disasters relief management, some researchers raised uncertainty 

discussion. Barbarosoglu and Arda [4] proposed the uncertainty modeling for relief response. 

Chang et al. [7] proposed two random planning models in order to determine warehouse centers 

and the amount of necessary equipment as well as equipment distribution. Mete and Zabinsky 
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[13] proposed a random optimization model for planning the warehouse and distributing medical 

products in emergency conditions.  

Balcik and Beamon [3] expanded facility location model and inventory planning model for 

disaster relief. Fiedrich et al. [10] proposed an inventory model to deal with the disasters.  

Periodic routing problem is another routing problem for which it is necessary to provide service 

to customers on a periodic basis and in line with planning horizon. Periodic routing aims to make 

clear the routs for servicing to customers in each period so that all costs related to routing in 

planning horizon be minimized. Periodic routing was first proposed by Beltrami and Bodin [5].  

However, the first mathematical model for periodic routing problem was proposed by 

Christofides and Beasley [8]. Hadjiconstaninou and Baldacci [11] proposed multi-warehouses 

periodic routing. Cordeau et al. [9] presented a forbidden search algorithm in order to solve 

multiple warehouse and multi-period problem. Kang et al. [13] proposed an exact solution 

algorithm for periodic scheduling problem with multiple warehouses. Ho et al. [19] expanded 

genetic algorithm in order to solve multiple warehouse routing problem. Salhi and Sari [14] 

presented an initiative three-step method in order to solve multiple warehouse routing problems.  

3. Mathematical Model Description  

This article studies relief logistics during reaction phase of relief management. For this purpose, 

a three-level model including supplier (I), central warehouses (A) and regional warehouses (J) is 

provided. In this model, the relief goods are transferred from central warehouses to regional 

warehouses. Since in real world, the regional warehouses may deal with inventory shortage, such 

warehouses can compensate this shortage from central warehouses or other regional warehouses. 

According to this model, two kinds of demand – predicted and unpredicted- are considered. This 

model aims to study inventory transfer and distribution planning as well as vehicle routing on 

periodic basis. This model is designed as a three-purpose model under fuzzy uncertainty 

conditions. All components of this model will be described in the next section. 

3.1. Model Indices    

I: Points related to suppliers (i and i' refer to supplier index). 

A: Number of central warehouses (a and a' refer to central warehouses index). 

J: Points related to Depot (j and j' refer to Depot index). 

C: Number of relief goods (c refers to goods index). 

M: Types of vehicles (m refers to vehicle type index). 

T: planning Horizon (t and t' refer to period index).  
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3.2. Model Parameters 

αminct: Minimum coverage of goods (c) during period (t) which is determined based on the 

urgency level. 

wc: Weight of a unit of the cth  goods. 

djct
1 : The rate of the predicted demand for goods (c) in depot (j) during period (t).  

d̃jct
2 = djct

2l , djct
2m, djct

2u): The rate of fuzzy unpredicted demand for goods (c) in depot (j) during 

period (t).  

vcapm: Capacity of vehicle (m).  

Vpcapat
m: Parking capacity of central warehouse (a) for vehicle (m) during period (t).  

Vpcapj′t
m : Parking capacity of warehouse (j′) for vehicle (m) during period (t).  

cyj′0
m : Number of vehicles available on depot (j′) at the first step. 

cya
m: Number of vehicles available on central warehouse (a) at the first step.  

cfixm: Fixed cost of vehicle (m). 

c̃jj′m = (cjj′m
l , cjj′m

m , cjj′m
u ): Fuzzy transportation cost per unit goods from depot (j) to depot (j′). 

c̃ajm = (cajm
l , cajm

m , cajm
u ): Fuzzy transportation cost per unit goods from central warehouse (a) to 

depot (j).  

�̃�iam = (ciam
l , ciam

m , ciam
u ): Fuzzy transportation cost per unit goods from supplier (i) to central 

warehouse (a).  

capat: Capacity of central warehouse (a) during period (t).  

capjt: Capacity of warehouse (j) during period (t).  

sjc: The initial inventory of goods (c) in warehouse (j) during the first period.  

sac: The initial inventory of goods (c) in central warehouse (a) during the first period. 

ℎ̃ = (hl, hm, hu): Fuzzy cost of inventory storage. 

𝑝1ct =(p1ct
l , p1ct

m , p1ct
u ) : Fuzzy penalties for the predicted demand during period (t) which have 

not been fulfilled yet.  

p̃2ct = ((p2ct
l , p2ct

m , p2ct
u ): Fuzzy penalties for the unpredicted demand during period (t) which have 

not been fulfilled yet. 
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3.3. Model variables  

xiac
mt: The amount of goods (c) sent from supplier (i) to central warehouse (a) by vehicle (m) during 

period (t).  

xajc
mt: The amount of goods (c) sent from central warehouse (a) to the jth depot by vehicle (m) 

during period (t). 

xjj′c
mt : The amount of goods (c) sent from depot (j) to depot (j′) by vehicle (m) during period (t).  

yjj′
mt: Number of vehicle (m) sent from depot (j) towards depot (j′) during period (t). 

yaj
mt: Number of vehicle (m) sent from central warehouse to depot (j) during period (t) and arrives 

at (j) during period (t+1).  

yia
mt: Number of vehicle (m) sent from supplier (i) to central warehouse (a) during period (t) and 

arrived at (a) during period (t+1). 

cyj′t
m: Number of vehicle (m) transferred in depot (j′) from period (t) to period (t+1). 

cyat
m: Number of vehicle (m) transferred in central warehouse (a) from period (t) to period (t+1).   

sjct: The amount of inventory of goods (c) in depot (j) remained from period (t-1) and is available 

in the beginning of period (t). 

sact: The amount of inventory of goods (c) in central warehouse (a) remained from period (t-1) 

and is available in the beginning of period (t).  

SDjct: The amount of demand for goods © which has been fulfilled in depot (j) during period (t). 

UDjct: The amount of demand for goods (c) in depot (j) during period (t) which has not been 

fulfilled and has been postponed to period (t+1).  

CUDjct: A part of the predicted demand for goods (c) in depot (j) during period (t) which has not 

been fulfilled.  

  

min f1 = ∑ ∑ ∑ ∑ [c̃jj′m (∑ xjj′c
mt

C

c=1

) + yjj′
mt ∗ cfixm]

M

m=1

+

J

j′=1

,j′≠j

J

j=1

T

t=1

∑ ∑ ∑ ∑ [c̃ajm

M

m=1

A

a=1

J

j=1

T

t=1

(∑ xajc
mt

C

c=1

)

+ yaj
mt ∗ cfixm] + ∑ ∑ ∑ ∑ [c̃iam

M

m=1

(∑ xiac
mt

C

c=1

A

a=1

I

i=1

T

t=1

) + yia
mt ∗ cfixm]

+ h̃ ∑ ∑ ∑ sjct

C

c=1

J

j=1

T

t=1

+ h̃ ∑ ∑ ∑ sact 

A

a=1

C

c=1

T

t=1

. 

(1) 
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The second objective function is to minimize the unfulfilled demand: 

min f2 =  ∑ ∑[p̃1ct ∑ CUDjct

J

j=1

C

c=1

T

t=1

+ p̃2ct ∑ UCUDjct

J

j=1

]. (2) 

The third objective function is to maximize the least ratio of the fulfilled demand: 

 

max ∑ ∑ minj  
SDjct

(djct
1 + d̃jct

2 )
ct

. (3) 

3.5. Model Limitations 

sjct + ∑ ∑ Xajc
mt−1

A

a=1

M

m=1

+ ∑ ∑ xj′jc
mt

j′,j′≠j

M

m=1

= SDjct + ∑ ∑ Xjj′c
mt

j≠j′∈J

M

m=1

+ sjct+1  ∀j, c, t = 2,3 … , T. (4) 

This limitation ensures the balance of goods flow in depots. For each goods in each period, total 

amount of goods stored in a depot during that period, the amount of goods which that depot 

receives from central warehouses and the amount of goods which receives from the other depots 

equals to total amount of goods which that depot uses in order to fulfill the demand, the amount 

of goods which sends to other depots and the amount of goods stores in the warehouse for the 

next period. 

sjc1 = SDjc1 + ∑ ∑ Xjj′c
m1

j≠j′∈J

+ sjc2    ∀ j, c .

M

m=1

 (5) 

This limitation ensures the balance of goods flow in depots during the first period.   

sact + ∑ ∑ Xiac  
mt−1

I

i=1

M

m=1

= ∑ ∑ Xajc
mt

J

j=1

M

m=1

+ sact+1        ∀a, c, t = 2,3, … , T. (6) 

This limitation ensures the balance of goods flow in central warehouses. The whole amount of 

goods (c) available on the central warehouse (a) during period (t) [the amount of goods (c) which 

has been remained from period (t-1) and  is available in central warehouse (a) in the beginning 

of period (t) together with the amount of goods (c) which has been received from suppliers during 

period (t)] are sent to depots and the remaining amount will be stored in central warehouse (a) 

for the next period. 

sac1 = ∑ ∑ Xajc
m1 + sac2

J

j=1

M

m=1

   ∀a, c. (7) 

This limitation ensures the balance of goods in central warehouses during the first period.  
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djct
1 + d̃jct

2 + UDjct−1 = SDjct + UDjct ∀j, c, t = 2,3, … , T. (8) 

djc1
1 + d̃jc1

2 = SDjc1 + UDjc1    ∀j, c. (9) 

This limitation shows all demands for goods (c) -whether definite and indefinite- in depot (j) 

during period (t) together with the unfulfilled demand for the same goods in the same depot from 

the previous period is equal to total demand– whether fulfilled or unfulfilled- for goods (c) in 

depot (j) during period (t). 

∑(sjcT+1 + ∑(djct
1

T

t=1

+ d̃jct
2

J

j=1

)) + ∑ sacT+1

A

a=1

= ∑(sjc1

J

j=1

+ UDjcT) + ∑ sac1

A

a=1

+ ∑ ∑ ∑ ∑ xiac
mt     

M

m=1

A

a=1

I

i=1

T

t=1

∀c. 

(10) 

This limitation deals with the balance of total goods flow in all depots during all periods and 

central warehouses. The amount of goods which is remained until the end of relief operations (in 

both depots and central warehouses) together with the distributed goods should be equal to total 

initial inventory of depots and central warehouses as well as the amount of goods which is 

received from suppliers. In fact, this limitation ensures that no goods are lost.  

CUDjct = djct
1 − SDjct + max{0, CUDjct−1}  ∀j, c, t = 2,3, … T. (11) 

CDUjc1 = djc1
1 − SDjc1              ∀ j, c. (12) 

This limitation shows a part of the certain demand for goods (c) which has not been fulfilled in 

depot (j) during period (t) is equal to all certain demands for goods (c) in depot (j) during period 

(t) excluding the fulfilled and unfulfilled demands from the previous period. By determining the 

amount of predicted and unfulfilled demands, one can calculate the unpredicted and unfulfilled 

demands as well. This could be done by the following relation:  

UCUDjct = UDjct − CUDjct   ∀j, c, t. (13) 

This limitation is used to calculate the amount of unpredicted demand for goods (c) in depot (j) 

during period (t) which has not been fulfilled.  

∑ ∑ ∑ wc ∗ xj′jc
mt

cj′m

+ ∑ ∑ ∑ wc ∗ xajc
mt−1

c

+ ∑ wc ∗ sjct

c

 ≤ capjt

am

  ∀j, t = 2,3, … , T. (14) 

This limitation deals with meeting the capacity of depot (j) during period (t).    

∑ ∑ ∑ wc ∗ xjj′c
mt

j′c

+ ∑ wc ∗ sjct+1

c

≤

m

capjt     ∀j, t. (15) 

This limitation deals with meeting the capacity of depot (j) during period (t).    
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∑(xjj′c
mt ∗ wc) ≤ vcapm     ∗ yjj′

mt          ∀m, j, j′, t

c

. (16) 

∑(xajc
mt ∗ wc) ≤ vcapm     ∗ yaj

mt          ∀a, j, m, t.

c

 (17) 

∑(xiac
mt ∗ wc) ≤ vcapm     ∗ yia

mt          ∀a, i, m, t

c

. (18) 

This limitation deals with meeting the capacity of vehicle (m) during period (t).  

∑ ∑ ∑ xiac
mt−1

I

i=1

C

c=1

M

m=1

∗ wc + ∑ wc ∗ sact

c

≤ capat     ∀a, t. (19) 

∑ ∑ ∑ wc ∗ xajc
mt

jc

+ ∑ wc ∗ sact+1

c

≤

m

capat     ∀a, t. (20) 

These limitations deal with meeting the maximum capacity of central warehouses during each 

period.  

∑ yjj′
mt

J

j=1

+ ∑ yaj′
mt−1

A

a=1

+ cyj′t−1
m = ∑ yj′j

mt
J

j=1
+ cyj′t

m      ∀j′, m, t = 2,3, … , T. (21) 

This limitation deals with the balance of vehicle flow in depots and shows that all vehicles get 

into warehouse (j′) from warehouse (j) and central warehouse (a) together with those vehicles 

transferred from the previous period equals to all vehicles get out of  warehouse  (j′) together 

with those vehicles transferred to the next period. 

cyj′0
m = ∑ yj′j

m1

J

j=1

+ cyj′1
m      ∀ j′, m. (22) 

This limitation is in relation to the first period.   

∑ yjj′
mt

J

j=1

+ ∑ yaj′
mt−1

A

a=1

+ cyj′t−1
m ≤ Vpcapj′t

m   ∀j′, m, t = 2,3, . . , T. (23) 

This limitation shows the limitation of parking capacity of warehouse ( j′) during period (t) for 

vehicle (m).  

∑ yia
mt−1

I

i=1

+ cyat−1
m = ∑ yaj′

mt

J

j′

+ cyat
m     ∀a, m, t = 2,3, … , T. (24) 

This limitation deals with the balance of vehicle flow in central warehouses and shows that all 

vehicles get into central warehouse (a) from supplier (i) together with those vehicles transferred 
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from the previous period equals to all vehicles get out of central warehouse (a) during period (t) 

together with those vehicles transferred to the next period. 

cya0
m = ∑ yaj′

m1

J

j′

+ cya1
m    ∀a, m. (25) 

This limitation is related to the first period.  

∑ yia
mt−1

I

i=1

+ cyat−1
m ≤ Vpcapat

m     ∀a, m, t = 2,3, … , T. (26) 

This limitation shows the limitation of parking capacity of central warehouse (a) for vehicle (m) 

during period (t).  

SDjct

(djct
1 + d̃jct

2 )
≥ αminct              ∀j, c, t. (27) 

This limitation is related to the minimum coverage level of goods (c). The limitations related to 

values and signs of variables include:  

xiac
mt , xajc

mt, xjj′c
mt , yia

mt, yaj
mt, yjj′c

mt , sjct, sact, SDjct, UDjct, CUDjct, UCUDjct ≥ 0.  (28) 

Now, the model is de-phased by using Jime ´nez method. The objective function (1) is written as 

follows:  

min f1 = ∑ ∑ ∑ ∑ [
1

4
(cjj′m

l + 2 ∗ cjj′m
m + cjj′m

u ) (∑ xjj′c
mt

C

c=1

) + yjj′
mt ∗ cfixm]

M

m=1

J

j′=1

,j′≠j

J

j=1

T

t=1

+ ∑ ∑ ∑ ∑
1

4
(cajm

l + 2 ∗ cajm
m + cajm

u )

M

m=1

A

a=1

J

j=1

T

t=1

 

(∑ xajc
mt

C

c=1

) + yaj
mt ∗ cfixm] + ∑ ∑ ∑ ∑

1

4

M

m=1

(ciam
l + 2 ∗ ciam

m + ciam
u )(∑ xiac

mt

C

c=1

A

a=1

I

i=1

T

t=1

) + yia
mt

∗ cfixm] +
1

4
(hl + 2 ∗ hm + hu) ∑ ∑ ∑ sjct

C

c=1

J

j=1

T

t=1

+
1

4
(hl + 2 ∗ hm + hu) ∑ ∑ ∑ sact

A

a=1

C

c=1

T

t=1

 . 

 

(29) 

The objective function (2) is written as follows: 



303                  Integrated and periodic relief logistics planning for reaction phase … 

min f2 =  ∑  

T

t=1

∑[
1

4
(p1t

l + 2 ∗ p1t
m + p1t

u ) ∑ CUDjct

J

j=1

C

c=1

+
1

4
(p2t

l + 2 ∗ p2t
m + p2t

u ) ∑ UCUDjct

J

j=1

]. (30) 

Wc,t ≤  
SDjct

(djct
1 + d̃jct

2 )
        ∀j, c. (31) 

The de-phased model is as follows: 

Wc,t ≤
SDj,c,t

djct
1 + [β

djct
2l + djct

2m

2 + (1 − β)
djct

2m + djct
2u

2 ]

 . 
(32) 

Limitation (8) is de-phased as follows:  

djct
1 + β

djct
2l + djct

2m

2
+ (1 − β)

djct
2m + djct

2u

2
+ UDjct−1 = SDjct + UDjct ∀j, c, t = 2,3, … , T. (33) 

Limitation (9) is written as follows:  

djct
1 + β

djct
2l + djct

2m

2
+ (1 − β)

djct
2m + djct

2u

2
= SDjc1 + UDjc1 ∀j, c. (34) 

After de-phasing, limitation (10) is written as follows:  

∑(sjcT+1 + ∑(djct
1 + [

T

t=1

β
djct

2l + djct
2m

2
+ (1 − β)

djct
2m + djct

2u

2

J

j=1

])) + ∑ sacT+1

A

a=1

= ∑(sjc1

J

j=1

+ UDjcT) + ∑ sac1

A

a=1

+ ∑ ∑ ∑ ∑ xiac
mt     

M

m=1

A

a=1

I

i=1

T

t=1

∀c. 

(35) 

4. Particles Swarm Optimization Algorithm   

PSO is a successful technique in artificial intelligence. Image a group of insects or a bunch of 

fish. If one of the group members finds a suitable route to progress (for example in order to get 

food, safe location and etc.) other members are also able to follow that route. This phenomenon 

is modeled using those members have their own position and velocity.    

For the first time, PSO has been expanded by a social psychology named James Kennedy and an 

electronic engineer named Russell Eberhart based on the previous experiences in the field of 

modeling collective behavior observed in most kinds of birds.  

In this article, in order to solve the understudy model, particles PSO is proposed in which variable 

neighborhood search structure are used in order to update the particles.  
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4.1. The Proposed Structure 

In this section, the designed components for the ultra-initiative PSO method are completely 

studied. The following figure shows the general structure designed for PSO method.  

{ 

Step1: initialization 

Generate initial N feasible particles. 

Initial pareto archive as empty set. 

Apply improvement procedure for generated particles. 

particles. 

Initialize pg and pi. 

Step 2: while number of iteration<= max_iteration 

Update particle by VNS 

Improve population of particles 

Evaluate the updated particles to get the new pi and pg 

Update pareto archive set 

Select N best particles as next generation 

End while. 

Return the best solution. 

} 

Figure 1. Outline of particles swarm method. 

 

4.2. Response Display Method 

In all ultra-initiative algorithms, due to the need to soluble at the beginning of the algorithm, it is 

necessary to save the soluble according to a certain structure. Such structure is known as response 

display method. In this research, in order to display response, a matrix structure is used so that 

for each model outputs, a matrix proportional to that variable is designed. For example, for 

variable 𝑦jj′
mt, a four-dimensional matrix is designed two of which equals to number of the regional 

warehouses, the 3rd dimension equals to number of vehicles and the 4th dimension equals to 

number of periods.  

4.3. Generating the Initial Responses   

As previously mentioned particles swarm algorithm is population-based and operates with a 

population of responses on each of iterations. At the beginning of the algorithm, a population of 

responses should be generated as the initial responses. In this article, the initial population is 

randomly generated (considering limitations of the model). On the other hand, N possible 

response are randomly generated and used as the initial population of algorithm.       
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4.4. Improvement Trend 

After generating the initial responses on each of iterations, improvement trend is applied on the 

available particles in the population which improves the particles as much as possible. In this 

study, improvement trend is designed as the parallel combination of two neighborhood search 

structure. In the next section, neighborhood search structure and improvement trend structure are 

explained.  

4.4.1. The first neighborhood search structure 

In this structure, index (t) at integrated interval [1..T] (T refers to number of periods), indices (j 

and j') at integrated interval [ 1..J] (J refers to number of Depots), index (m) at interval [1..M] ( 

M refers to types of vehicle) are randomly generated and the amount of  goods sent from (j) to 

(j') during period (t) by vehicle (m) are replaced with the same amount of goods sent from (j') to 

(j) during period (t) by vehicle (m). However, limitations of model should be considered in this 

process. 

4.4.2. The second neighborhood search structure  

In this structure, index (t) at integrated interval [1..T] (T refers to number of periods), index (j) 

in integrated interval [ 1..J] ( J refers to number of Depots), indices (a and a') in integrated interval 

[1..A] ( A refers to number of central warehouses), index (m) in integrated interval [1..M] (M 

refers to types of vehicle) are randomly generated and the amount of goods sent from (a) to (j) 

during period (t) by vehicle (m) are replaced with the same amount of goods sent from (a') to (j) 

during  period (t) by vehicle (m). However, limitations of model should be considered in this 

process.  

These two neighborhood structures are combined in parallel. Then improvement trend structure 

is composed as follows: 

{ 

for input particle s: 

For i=1 to maximum iteration 

S1=neighborhood search structure 1 (s) 

S2=neighborhood search structure2(s) 

S=acceptance (s1, s2, s) 

End for 

Return s 

} 

Figure 2. Improvement trend structure. 

As you see in the above figure, when each of particles are given to improvement trend, the 

neighborhood search structures are applied on the input response in parallel (simultaneously) and  

the most qualified response is chosen among the three responses (input response, response 
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generated from the first structure and response generated from the second structure). The 

qualified response is selected using non-dominate relations. In fact, that response which is not 

dominated by other responses is selected.  

4.2. Particle Updates    

Here, particle (Xi) is updated using Variable Neighborhood Search (VNS) on each iteration. 

Variable Neighborhood Search (VNS) is generated by combining three neighborhood search 

operator, two of which are the same neighborhood search structure described on Section (3-4). 

In the following, other neighborhood search operator and variable neighborhood search structure 

are explained.  

4.5.1. The third neighborhood search structure      

This structure takes two responses as the input and tries to search the first response 

neighborhoods so that be similar to the second response or on the other hand drive toward the 

second response. In fact, in this structure, the first response is directed to the second response. 

So, it can be said that the second response acts as the director of the first response.  

Variable neighborhood structure is used in order to update the particles. This structure contains 

three inputs including xi, pi (the best neighborhood of ith  particle found in this iteration up to now) 

and pg ( the best response found in this iteration). The third neighborhood search structure is 

generated by combining the first and second neighborhood search structures. In this research, in 

the respective VSN, the third neighborhood search structure is used twice and once pi acts as the 

director of xi and once pg acts as the director of xi. The variable neighborhood search structure 

designed in this study is as follows: (assume NSSk represents Kth neighborhood search structure). 

{ 

for each input solution 

K=1 

While stopping criterion is meet do 

n_ S=Apply NSS type k 

s=choose solution by non-dominate relation 

If s is improved then 

K=1 

Else 

K=k+1 

If k=4 then 

K=1 

Endif 

Endif 

Endwhile 

} 

Figure 3. Variable search neighborhood structure. 
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In the above structure, the first type of NNS is the first search neighboring structure, the second 

type of NSS is the second search neighboring structure, the third type of NSS is the third search 

neighboring structure with inputs of xi and pi, and at last the forth type of NSS is the third search 

neighborhood structure with inputs of xi and pg.  

4.6. Updating pi  and pg  

For each of the ith particle, if there is a neighboring better than pi among the neighboring structures 

found for this response, pi will be replaced with it. Otherwise, no change is made and it remains 

without any change.  

If the best response is better than pg among all the responses which have ever been found, pg will 

be replaced with it. Otherwise, no change is made and it remains without any change.  

4.7. Updating Pareto Archive  

As it has already said, the solution method used in this research is based on Pareto archive. In the 

proposed algorithm, a collection is considered as Pareto archive which contains the non-

dominated responses generated by the algorithm. This collection will be updated in each of the 

iterations. To do so, first the responses generated on that iteration and the responses available in 

Pareto archive are put into the response pool (answer pool) and are leveled. Then, among these 

responses, the responses available in the first level or the non-dominated responses are selected 

and considered as the new Pareto archive.   

4.8. Selecting Response Collection for the Next Generation  

Algorithm needs a population of responses in each of the iterations. In this research in order to 

select the next iteration population, the responses available in the population of that iteration 

together with the new responses generated by algorithm are put into the response pools. After 

leveling and calculating crowding distance for each response based on level of that response, N 

responses of the most qualified and dispersed are selected as the next iteration population of 

algorithm using Deb rule [12].  

5. Computational Results 

In this section, some sample problems are randomly generated and solved by the proposed 

particles swarm algorithm. To prove the efficiency of the proposed algorithm, results obtained 

from this algorithm and those obtained from genetic algorithm are compared based on three 

comparison metrics.   
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5.1. Comparison Metrics 

There are various indices to evaluate the quality and dispersion of ultra-initiative multi-purpose 

algorithms. In this thesis, three indices are used for comparison purposes. In the next section, 

these indices are explained.  

Quality Index: it is used to compare the quality of Pareto responses obtained from each method. 

In fact, all Pareto responses obtained by both methods are leveled based on quality index and the 

percent of the first level responses which belongs to each method are determined. The higher the 

percentage, the greater the quality of the algorithm.  

Integration Index: it is used to test integration of the distributed Pareto responses which are 

generated on the border of responses. This index can be defined as follows: 

N 1

mean ii 1

mean

d d
s .

(N 1) d



 


 


  

In the above relation, di indicates Eucliadean distance between two adjacent non-dominated 

responses and dmean  indicates mean value of di.  

Dispersion Index: it is used to determine the number of the non-dominated responses found on 

the optimal border. Dispersion index is defined as follows: 

i i N

 i 1 t t
D max( x y ).    

In the above relation, 
i i

t t
x y  indicates Eucliadean distance between two adjacent responses (

i

t
x and

i

t
y ) on the optimal border.  

5.2. General Hypothesis of Algorithms  

Values for the parameters related to both genetic and particles swarm algorithms are as follows: 

 Population size for both algorithms in all problems equals to 100 and iteration number of algorithm 

equals to 600.  

 Mutation operator rate and intersection operator rate in genetic algorithm equals to 0.1 and 0.8, 

respectively.  

 For all problems, number of goods and types of vehicle equal to 3. In addition, weight of goods is 

randomly generated in integrated interval [1…10] and the predicted demand is generated in 

integrated interval [1…20]. In order to generate the unpredicted demand values as triangular 

distance [m1 m2 m3], number (m2) is firstly generated in integrated interval [1…20] and then 

numbers (m1) and (m3) are generated through relation (1-r) m2 and (1+r) m2 respectively. In both 

relation, (r) is considered as a random number in interval (0, 1). This process is the same for 
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generating rectangular values for transporting costs, inventory storage costs and penalties applied 

to the unfulfilled demand. The only difference is that the middle number is generated in integrated 

interval [1…40]. Moreover, vehicle capacity is randomly generated in integrated interval 

[150…300]. 

 In order to obtain parking capacity of depots and central warehouses, total weight for the necessary 

goods of the predicted demand is calculated as number (v1) and total weight for the predicted and 

the unpredicted demand is calculated as number (v2). Then for each vehicle (m), two numbers 

(w1 and w2) are calculated through these relation w1 =
v1

vcapm
, w2 =

v2

vcapm
s and at last parking 

capacity is randomly generated in integrated interval [w1..w2]. Also, capacity of depots and 

central warehouses are randomly obtained in integrated interval [v1…v2].  

 The initial inventory values and number of the initial vehicles available in integrated interval 

[1…20] are randomly obtained.  

5.3. Comparison Results  

To prove the efficiency of the proposed algorithm, 10 sample problems are randomly generated 

and implemented by both genetic algorithm and particles swarm algorithm. The results obtained 

from comparing these 2 algorithms together with characteristics of these 10 problems are 

provided in the following table. Characteristics of each problem are represented by I/A/J/T format 

where I, A, J and T refer to number of suppliers, number of central warehouses, number of depots 

and number of planning periods respectively. 

Table 1. Comparison results for genetic algorithm (GA) and Hybrid Particle Swarm Optimization Algorithm 

(HPSO). 

 

 

 

Quality Index 

 

Integration Index 

 

Dispersion Index 

 

Run Time 

Problem HPSO GA HPSO GA HPSO GA HPSO GA 

2/3/4/4 

5/4/6/4 

5/4/8/4 

7/4/15/5 

7/8/15/5 

7/10/18/6 

7/10/20/6 

8/10/20/8 

9/12/24/10 

9/12/30/10 

 

94 

88.24 

90.91 

84.38 

90.7 

61.9 

75.76 

88.64 

81.48 

66.67 

6 

11.76 

9.9 

15.62 

9.3 

38.1 

24.24 

11.36 

18.52 

33.33 

0.87 

0.38 

0.19 

1.29 

0.67 

0.81 

0.81 

0.49 

0.96 

0.98 

1.19 

0.1 

0.46 

1.34 

0.99 

1.54 

1.72 

0.94 

1.47 

0.45 

905.3 

2375.4 

4518.9 

6499 

8774.7 

10785 

13980 

16786 

27734 

25209 

 

449.6 

219.3 

1090.5 

1480.5 

2267.5 

7958 

6350 

3960 

12352 

10144 

4.01 

11.13 

10.98 

19.61 

25.67 

45.8 

52.1 

72.59 

132.02 

155.09 

0.12 

0.22 

0.28 

1.13 

1.45 

2.71 

3.27 

3.95 

9.76 

11.77 

As you see in the above table, compared to genetic algorithm, hybrid particle swarm optimization 

algorithm has more ability to generate the qualified responses close to the optimal boundary in 

all cases. Moreover, in all 10 problems, the response generated by hybrid particle swarm 

optimization algorithm is more dispersed than those obtained from genetic algorithm. In case of 
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integration index, integration of responses generated by genetic algorithm is more than those 

generated by hybrid particle swarm optimization algorithm only in two problems. As you see, 

solution time of genetic algorithm is less than that of hybrid particle swarm optimization 

algorithm for all problems.  

6. Conclusion  

In this article, response phase from disaster management cycle is studied and a multi-purpose 

integrated model is provided for three-level relief cycle logistic under uncertainty condition and 

on a periodic basis for this phase. In order to solve the proposed mathematical model, an ultra-

initiative particles swarm algorithm in combination with variable neighboring search algorithm 

based on Pareto archive. Results obtained from applying the proposed particle swarm algorithm 

and genetic algorithm on several problems are compared based on three quality, dispersion and 

integration indices. Results for this comparison shows that compared to genetic algorithm, 

particle swarm algorithm is more capable of generating more qualified, integrated and dispersed 

responses. Moreover, the results reflect this fact that solution time of genetic algorithm is less 

than that of the proposed algorithm.  
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