Machine Learning
H. Herunde; A. Singh; H. Deshpande; P. Shetty
Abstract
Nowadays, the control of the traffic in the urban roads and in the highway has been a big challenge as the number of increase in the auto mobiles. So to overcome this problem we use the detection and tracking the vehicles using the traffic surveillance system. We can manage and control the traffic more ...
Read More
Nowadays, the control of the traffic in the urban roads and in the highway has been a big challenge as the number of increase in the auto mobiles. So to overcome this problem we use the detection and tracking the vehicles using the traffic surveillance system. We can manage and control the traffic more easily. It is very complicated and a challenging task to identify the vehicle or a moving object in a complex environment with various background. The ratio detected of such algorithms depends on the quality of the foreground mask generated. Therefore this project is to present the detection and tracking the vehicles and the pedestrians in an efficient method which focus on trajectory motion of the vehicles and the pedestrians. In this proposed method, the pixels in the background are preserved which can be cars, bikes, buses, pedestrian, etc., the rest is discarded as the noise. Hence, our proposed method detects the vehicles and the pedestrians as mentioned and discards the rest noise as well in the same time. Here the quality of the generated foreground mask is more to increase the detection ratio. The performance is compared with other standard methods qualitatively and quantitatively.
Machine Learning
A. Singh; H. Herunde; F. Furtado
Abstract
Amid the previous three decades, the topic of image processing has gained vital name and recognition among researchers because of their frequent look in varied and widespread applications within the field of various branches of science and engineering. As an example, image processing is helpful to issues ...
Read More
Amid the previous three decades, the topic of image processing has gained vital name and recognition among researchers because of their frequent look in varied and widespread applications within the field of various branches of science and engineering. As an example, image processing is helpful to issues in signature recognition, digital video processing, remote sensing and finance. Image processing models are used for detecting the face. The aim of this thesis is to solve the face-detection in the first attempt using the Haar-cascade classifier from images containing simple and complex backgrounds. It is one of the preeminent detectors in terms of reliability and speed. We introduced a new method to deal with the frontal face images by using a modified Haar cascade algorithm. By using this algorithm, we can detect the image as well as the coordinates. The main attraction of this paper is to solve different types of images having one object, two objects, and three objects which can’t be solved by any of the existing methods but can be solved by our proposed method.
Machine Learning
H. Deshpande; A. Singh; H. Herunde
Abstract
Computer Vision is a field of study that helps to develop techniques to identify images and displays. It has various features like image recognition, object detection and image creation, etc. Object detection is used for face detection, vehicle detection, web images, and safety systems. Its algorithms ...
Read More
Computer Vision is a field of study that helps to develop techniques to identify images and displays. It has various features like image recognition, object detection and image creation, etc. Object detection is used for face detection, vehicle detection, web images, and safety systems. Its algorithms are Region-based Convolutional Neural Networks (RCNN), Faster-RCNN and You Only Look Once Method (YOLO) that have shown state-of-the-art performance. Of these, YOLO is better in speed compared to accuracy. It has efficient object detection without compromising on performance.
Machine Learning
F. Furtado; A. Singh
Abstract
Nowadays, the recommendation system has made finding the things easy that we need. Movie recommendation systems aim at helping movie enthusiasts by suggesting what movie to watch without having to go through the long process of choosing from a large set of movies which go up to thousands and millions ...
Read More
Nowadays, the recommendation system has made finding the things easy that we need. Movie recommendation systems aim at helping movie enthusiasts by suggesting what movie to watch without having to go through the long process of choosing from a large set of movies which go up to thousands and millions that is time consuming and confusing. In this article, our aim is to reduce the human effort by suggesting movies based on the user’s interests. To handle such problems, we introduced a model combining both content-based and collaborative approach. It will give progressively explicit outcomes compared to different systems that are based on content-based approach. Content-based recommendation systems are constrained to people, these systems don’t prescribe things out of the box, thus limiting your choice to explore more. Hence, we have focused on a system that resolves these issues.
Machine Learning
A. Ghanbari Talouki; M. Majdi
Abstract
Inpainting or completion is used with the purpose of restoring damaged images and video frames. This paper proposes an applicable algorithm to inpaint corrupted subjects in video frames. To begin with, background and foreground (moving subject) are separated from each other in each frame, with the aim ...
Read More
Inpainting or completion is used with the purpose of restoring damaged images and video frames. This paper proposes an applicable algorithm to inpaint corrupted subjects in video frames. To begin with, background and foreground (moving subject) are separated from each other in each frame, with the aim of getting to a more visually pleasant result. Static background inpainting is done using a patch-based method. To inpaint the corrupted moving subject, a subject-based method that is an improvement on the rigid object-based method is used in this study to consider the special issue of inpainting the human body. To fill in the holes created by occluding subjects the most appropriate template is found using a similarity measure which is based on both contour and pixel values. The inpainted video is acquired by superimposing the completed foreground on the inpainted background