Calculation of fuzzy matrices determinant

Document Type: Research Paper

Authors

Department of Mathematics, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran.

Abstract

Matrix and its determinant are two basic tools, which are important in financial, accounting, and economic affairs. Therefore, in this paper, a simple and effective method is proposed to obtain the determinant of fuzzy matrices. First, using arithmetic operations based on Transmission Average (TA),the second order fuzzy determinant is calculated.Then,Sarrus rule is defined to calculate third order fuzzy determinant. Finally, by defining minor of fuzzy matrix and ijth adjugate of the fuzzy matrix, nth order fuzzy determinant is calculated. The effectiveness and applicability of the proposed method are verified by solving some numerical examples.

Keywords


[1]      Khalifa, H. A. (2019). On solving two-person zero-sum fuzzy matrix games via linear programming approach. International journal of research in industrial engineering8(1), 17-27.

[2]      Amin-Tahmasbi, H., & Hami, M. (2019). Stuff scheduling in capillary marketing and analyse of its impact on the company’s financial issues. International journal of research in industrial engineering8(1), 53-65.

[3]      Tavakoli, M. M., Molavi, B., & Shirouyehzad, H. (2017). Organizational performance evaluation considering human capital management approach by fuzzy-dea: a case study. International journal of research in industrial engineering6(1), 1-16.

[4]      Ezzati, R., Maleknejad, K., & Fathizadeh, E. (2017). CAS Wavelet Function Method for Solving Abel Equations with Error Analysis. International journal of research in industrial engineering6(4), 350-364.

[5]      Taghi-Nezhad, N. A., & Taleshian, F. (2018). A Solution Approach for Solving Fully Fuzzy Quadratic Programming Problems. Journal of applied research on industrial engineering5(1), 50-61.

[6]      Adabitabar Firozja, M., Babakordi, F., & Shahhosseini, M. (2011). Gauss elimination algorithm for interval matrix. International journal of industrial mathematics3(1), 9-15.

[7]      Babakordi, F., & Allahviranloo, T. (2016). An efficient method for solving LR fuzzy dual matrix systems. Journal of intelligent & fuzzy systems30(1), 575-581.

[8]      Nasseri, S. H., Taghi-Nezhad, N., & Ebrahimnejad, A. (2017). A note on ranking fuzzy numbers with an area method using circumcenter of centroids. Fuzzy information and engineering9(2), 259-268.

[9]      Goodarzi, F. K., Taghinezhad, N. A., & Nasseri, S. H. (2014). A new fuzzy approach to solve a novel model of open shop scheduling problem. Univ Politeh Buchar Sci Bull Ser A Appl Math Phys76(3), 199-210.

[10]   Taleshian, F., Fathali, J., & Allah Taghi-Nezhad, N. (2018). Fuzzy majority algorithms for the 1-median and 2-median problems on a fuzzy tree. Fuzzy information and engineering10(2), 225-248.

[11]   Taghi-nezhad, N., Naseri, H., Khalili Goodarzi, F., &Taleshian Jelodar, F. (2015). Reactive scheduling presentation for an open shop problem focused on jobs’ due dates. Journal of production and operations management, 6(2), 95-112.

[12]   Nasseri, S. H., Khalili, F., Taghi-Nezhad, N., & Mortezania, S. (2014). A novel approach for solving fully fuzzy linear programming problems using membership function concepts. Ann. Fuzzy Math. Inform7(3), 355-368.

[13]   Fazel Rabbi, M. (2018). Assessment of fuzzy failure mode and effect analysis (FMEA) for reach stacker crane (RST): A case study. International journal of research in industrial engineering7(3), 336-348.

[14]   Kim, J. B., Baartmans, A., & Sahadin, N. S. (1989). Determinant theory for fuzzy matrices. Fuzzy sets and systems29(3), 349-356.

[15]   Ragab, M. Z., & Emam, E. G. (1995). The determinant and adjoint of a square fuzzy matrix. Information sciences84(3-4), 209-220.

[16]   Abbasi, F., Allahviranloo, T., & Abbasbandy, S. (2015). A new attitude coupled with fuzzy thinking to fuzzy rings and fields. Journal of intelligent & fuzzy systems29(2), 851-861.

[17]   Allahviranloo, T., Perfilieva, I., & Abbasi, F. (2018). A new attitude coupled with fuzzy thinking for solving fuzzy equations. Soft computing, 22(9), 3077–3095.

[18]   Dhar, M. (2013). A Note on Determinant and Adjoint of Fuzzy Square Matrix. IJ intelligent systems and applications5, 58-67.

[19]   Allahviranloo, T., & Babakordi, F. (2017). Algebraic solution of fuzzy linear system as: A ̃X ̃+B ̃X ̃ =Y ̃. Soft computing, 21(24), 7463-7472.

[20]   Taghi-Nezhad, N. A. (2019). The p-median problem in fuzzy environment: proving fuzzy vertex optimality theorem and its application. Soft computing23(22), 11399-11407.

[21]   Klir, G. J., Yuan, B. (1995). Fuzzy sets and fuzzy logic: theory and applications. Upper Saddlie River: Prentice-Hall PTR.

[22]   Khalili, F., Naseri, H., & Taghi-Nezhad, N. A. (2019). A new interactive approach for solving fully fuzzy mixed integer linear programming problems. Yugoslav journal of operations research. http://yujor.fon.bg.ac.rs/index.php/yujor/article/view/692/649

[23]   Nasseri, S. H., Taghi-Nezhad, N. A., & Ebrahimnejad, A. (2017). A novel method for ranking fuzzy quantities using center of incircle and its application to a petroleum distribution center evaluation problem. International journal of industrial and systems engineering27(4), 457-484.