A signed distance method for solving multi-objective transportation problems in fuzzy environment

Document Type: Research Paper


Department of Operations Research, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza, Egypt.



This paper aims to study the multi-objective transportation problem with fuzzy parameters. These fuzzy parameters represented as  interval-valued fuzzy numbers instead of the normal fuzzy numbers. Using the signed distance ranking, the problem converted into the corresponding crisp multi-objective transportation problem. Then, the solution method introduced by [8] for solving the problem is applied. This method provides the ideal and the set of all fuzzy efficient solutions. The advantage of this method is more flexible than the standard multi-objective transportation problem, where it allows the decision maker to choose the  levels of fuzzy numbers he is willing. A numerical example to illustrate the utility, effectiveness, and applicability of the method is given.


[1]      Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management science17(4), B-141.

[2]      Bit, A. K., Biswal, M. P., & Alam, S. S. (1992). Fuzzy programming approach to multicriteria decision making transportation problem. Fuzzy sets and systems50(2), 135-141.

[3]      Chanas, S., Kołodziejczyk, W., & Machaj, A. (1984). A fuzzy approach to the transportation problem. Fuzzy sets and systems13(3), 211-221.

[4]      Chiang, J. (2001). Fuzzy linear programming based on statistical confidence interval and interval-valued fuzzy set. European journal of operational research129(1), 65-86.

[5]      Dubois, D., & Prade, H. (1980). Systems of linear fuzzy constraints. Fuzzy sets and systems3(1), 37-48.

[6]      Ezzati, R., Kharram, E., & Enayati, R. (2015). A new algorithm to solve fully fuzzy linear programming problems using the MOLP. Applied mathematical modelling, 3(12), 3183- 3193.

[7]      Hamadameen, O. A. (2018).  A novel technique for solving multi-objective linear programming problems. Aro- the scientific journal of Koya university, 1, 1-8.

[8]      Jayalakshmi, M., & Sujatha, V.(2018). A new algorithm to solve multi-objective assignment problem. International journal of pure and applied mathematics, (119), 719- 724.

[9]      Kaur, L., Rakshit, M., & Singh, S. (2018). A new approach to solve multi-objective transportation problem. Applications & applied mathematics13(1).

[10]  Kiruthiga, M., & Loganathan, C. (2015). Fuzzy multi-objective linear programming problem using membership function. International journal of science, engineering, and technology, applied sciences5(8), 1171-1178.

[11]  Kumar, R., Edalatpanah, S. A., Jha, S., & Singh, R. (2019). A Pythagorean fuzzy approach to the transportation problem. Complex & intelligent systems5(2), 255-263.

[12]  Leberling, H. (1981). On finding compromise solutions in multicriteria problems using the fuzzy min-operator. Fuzzy sets and systems6(2), 105-118.

[13]  Mahmoudi, F., & Nassrei, S. H. (1981). A new approach to solve fully fuzzy linear programming problem. Journal of applied research on industrial engineering, 6(2), 139- 149.

[14]  Maity, G., & Roy, S. K. (2016). Solving multi-objective transportation problem with interval goal using utility function approach. International journal of operational research27(4), 513-529.  

[15]  Najafi, H. S., Edalatpanah, S. A., & Dutta, H. (2016). A nonlinear model for fully fuzzy linear programming with fully unrestricted variables and parameters. Alexandria engineering journal55(3), 2589-2595.

[16]  Nomani, M. A., Ali, I., & Ahmed, A. (2017). A new approach for solving multi-objective transportation problems. International journal of management science and engineering management12(3), 165-173.

[17]  Oheigeartaigh, M. (1982). A fuzzy transportation algorithm.  Fuzzy sets and systems, 8(3), 235- 243.

[18]  Pandian, P., & Anuradha, D. (2011). A new method for solving bi-objective transportation problems. Australian journal of basic and applied sciences5(10), 67-74.

[19]  Rommelfanger, H., Hanuscheck, R., & Wolf, J. (1989). Linear programming with fuzzy objectives. Fuzzy sets and systems29(1), 31-48.

[20]  Sakawa, M., & Yano, H. (1985). Interactive decision making for multi-objective linear fractional programmingproblems with fuzzy parameters. Cybernetics and system16(4), 377-394.

[21]  Tanaka, H., & Asai, K. (1984). Fuzzy linear programming problems with fuzzy numbers. Fuzzy sets and systems13(1), 1-10.

[22]  Thamaraiselvi, A., & Santhi, R. (2015). Optimal solution of fuzzy transportation problem using hexagonal fuzzy numbers. International Journal: Scientific and engineering research6, 2229-5518.

[23]  Yu, V. F., Hu, K. J., & Chang, A. Y. (2015). An interactive approach for the multi-objective transportation problem with interval parameters. International journal of production research53(4), 1051-1064.

[24]  Zadeh, L. A. (1965). Fuzzy sets. Information and control8(3), 338-353.

[25]  Zimmermann, H. J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy sets and systems1(1), 45-55.