Multi-objective linear mathematical programming for solving U-shaped robotic assembly line balancing

Document Type: Research Paper


1 Department of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran.

2 Department of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran.


In recent years, robots have been an eminent solution for manufacturers to facilitate their process and focus on a variety of their products. As the importance of robot usages, our paper focuses on the robotics assembly line. In this paper, we have considered the cycle time, robot operational costs, robot purchase costs, and robot energy consumptions. In the following, we add robot failure rates to have an efficient and high-quality assembly line. The presented model is a multi-objective problem, therefore, the linear programming methods as goal programming and augmented ε-constraint method are applied to optimize the problem. In the end, we have considered a case study to examine and show the applicability of the proposed model on the real situation.


Main Subjects

[1]     Groover, M. P. (1980). Automation, production systems, and computer-aided manufacturing (Vol. 1). Englewood Cliffs, NJ: Prentice-Hall.

[2]     Salveson, M. E. (1955). The assembly line balancing problem. The journal of industrial engineering, 6(3), 18-25.

[3]     Gutjahr, A. L., & Nemhauser, G. L. (1964). An algorithm for the line balancing problem. Management science11(2), 308-315.

[4]     Falkenauer, E., & Delchambre, A. (1992, May). A genetic algorithm for bin packing and line balancing. Proceedings of the 1992 IEEE international conference on robotics and automation (pp. 1186-1192). Nice, France, France: IEEE.

[5]     Ajenblit, D. A., & Wainwright, R. L. (1998, May). Applying genetic algorithms to the U-shaped assembly line balancing problem. Proceedings of the 1998 IEEE international conference on evolutionary computation. IEEE world congress on computational intelligence (Cat. No. 98TH8360) (pp. 96-101). Anchorage, AK, USA, USA: IEEE.

[6]     Miltenburg, G. J., & Wijngaard, J. (1994). The U-line line balancing problem. Management science40(10), 1378-1388.

[7]     Urban, T. L. (1998). Note. Optimal balancing of U-shaped assembly lines. Management science44(5), 738-741.

[8]     Scholl, A., & Klein, R. (1999). ULINO: Optimally balancing U-shaped JIT assembly lines. International journal of production research37(4), 721-736.

[9]     Özcan, U., Kellegöz, T., & Toklu, B. (2011). A genetic algorithm for the stochastic mixed-model U-line balancing and sequencing problem. International journal of production research49(6), 1605-1626.

[10]  Jonnalagedda, V., & Dabade, B. (2014). Application of simple genetic algorithm to U-shaped assembly line balancing problem of type II. IFAC proceedings volumes47(3), 6168-6173.

[11]  Alavidoost, M. H., Tarimoradi, M., & Zarandi, M. F. (2015). Fuzzy adaptive genetic algorithm for multi-objective assembly line balancing problems. Applied soft computing34, 655-677.

[12]  Nilakantan, J. M., Ponnambalam, S. G., & Nielsen, P. (2018). Energy-Efficient straight robotic assembly line using metaheuristic algorithms. Soft computing: theories and applications (pp. 803-814). Singapore: Springer. 

[13]  Rubinovitz, J., Bukchin, J., & Lenz, E. (1993). RALB–A heuristic algorithm for design and balancing of robotic assembly lines. CIRP annals42(1), 497-500.

[14]  Nilakantan, J. M., Nielsen, I., Ponnambalam, S. G., & Venkataramanaiah, S. (2017). Differential evolution algorithm for solving RALB problem using cost-and time-based models. The international journal of advanced manufacturing technology89(1-4), 311-332.

[15]  Rubinovitz, J., & Levitin, G. (1995). Genetic algorithm for assembly line balancing. International journal of production economics41(1-3), 343-354.

[16]  Kim, H., & Park, S. (1995). A strong cutting plane algorithm for the robotic assembly line balancing problem. International journal of production research33(8), 2311-2323.

[17]  Delice, Y., Aydoğan, E. K., Özcan, U., & İlkay, M. S. (2017). A modified particle swarm optimization algorithm to mixed-model two-sided assembly line balancing. Journal of intelligent manufacturing28(1), 23-36.

[18]  Faccio, M., Gamberi, M., & Bortolini, M. (2016). Hierarchical approach for paced mixed-model assembly line balancing and sequencing with jolly operators. International journal of production research54(3), 761-777.

[19]  Faccio, M., Gamberi, M., & Bortolini, M. (2016). Hierarchical approach for paced mixed-model assembly line balancing and sequencing with jolly operators. International journal of production research54(3), 761-777.

[20]  Kara, Y., Ozcan, U., & Peker, A. (2007). An approach for balancing and sequencing mixed-model JIT U-lines. The international journal of advanced manufacturing technology32(11-12), 1218-1231.

[21]  Kucukkoc, I., & Zhang, D. Z. (2014). Simultaneous balancing and sequencing of mixed-model parallel two-sided assembly lines. International journal of production research52(12), 3665-3687.

[22]  Simaria, A. S., & Vilarinho, P. M. (2009). 2-ANTBAL: An ant colony optimization algorithm for balancing two-sided assembly lines. Computers & industrial engineering56(2), 489-506.

[23]  Aghajani, M., Ghodsi, R., & Javadi, B. (2014). Balancing of robotic mixed-model two-sided assembly line with robot setup times. The international journal of advanced manufacturing technology74(5-8), 1005-1016.

[24]  Rabbani, M., Mousavi, Z., & Farrokhi-Asl, H. (2016). Multi-objective metaheuristics for solving a type II robotic mixed-model assembly line balancing problem. Journal of industrial and production engineering33(7), 472-484.

[25]  Çil, Z. A., Mete, S., & Ağpak, K. (2017). Analysis of the type II robotic mixed-model assembly line balancing problem. Engineering optimization49(6), 990-1009.

[26]  Levitin, G., Rubinovitz, J., & Shnits, B. (2006). A genetic algorithm for robotic assembly line balancing. European journal of operational research168(3), 811-825.

[27]  Gao, J., Sun, L., Wang, L., & Gen, M. (2009). An efficient approach for type II robotic assembly line balancing problems. Computers & industrial engineering56(3), 1065-1080.

[28]  Yoosefelahi, A., Aminnayeri, M., Mosadegh, H., & Ardakani, H. D. (2012). Type II robotic assembly line balancing problem: an evolution strategies algorithm for a multi-objective model. Journal of manufacturing systems31(2), 139-151.

[29]  Daoud, S., Chehade, H., Yalaoui, F., & Amodeo, L. (2014). Solving a robotic assembly line balancing problem using efficient hybrid methods. Journal of heuristics20(3), 235-259.

[30]  Nilakantan, J. M., Huang, G. Q., & Ponnambalam, S. G. (2015). An investigation on minimizing cycle time and total energy consumption in robotic assembly line systems. Journal of cleaner production90, 311-325.

[31]  Nilakantan, J. M., Ponnambalam, S. G., & Huang, G. Q. (2015). Minimizing energy consumption in a U-shaped robotic assembly line. 2015 international conference on advanced mechatronic systems (ICAMechS) (pp. 119-124). IEEE.

[32]  Nilakantan, M. J., Ponnambalam, S. G., & Jawahar, N. (2016). Design of energy efficient RAL system using evolutionary algorithms. Engineering computations33(2), 580-602.

[33]  Manavizadeh, N., Hosseini, N. S., Rabbani, M., & Jolai, F. (2013). A Simulated Annealing algorithm for a mixed model assembly U-line balancing type-I problem considering human efficiency and Just-In-Time approach. Computers & industrial engineering64(2), 669-685.

[34]  Mukund Nilakantan, J., & Ponnambalam, S. G. (2016). Robotic U-shaped assembly line balancing using particle swarm optimization. Engineering optimization48(2), 231-252.

[35]  Li, Z., Tang, Q., & Zhang, L. (2016). Minimizing energy consumption and cycle time in two-sided robotic assembly line systems using restarted simulated annealing algorithm. Journal of cleaner production135, 508-522.

[36]  Chan, J. K., & Shaw, L. (1993). Modeling repairable systems with failure rates that depend on age and maintenance. IEEE transactions on reliability42(4), 566-571.

[37]  Charnes, A., & Cooper, W. W. (1957). Management models and industrial applications of linear programming. Management science4(1), 38-91.

[38]  Ignizio, J. P. (1985). Introduction to linear goal programming. Sage Publications.

[39]  Lee, S. M. (1972). Goal programming for decision analysis(pp. 252-260). Philadelphia: Auerbach Publishers.

[40]  Li, H. L. (1996). An efficient method for solving linear goal programming problems. Journal of optimization theory and applications90(2), 465-469.

[41]  Pal, B. B., Moitra, B. N., & Maulik, U. (2003). A goal programming procedure for fuzzy multiobjective linear fractional programming problem. Fuzzy sets and systems139(2), 395-405.

[42]  Schott, J. R. (1995). Fault tolerant design using single and multicriteria genetic algorithm optimization (Master’s Thesis, Boston, MA: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology).

[43]  Kalyanmoy, D. (2001). Multi objective optimization using evolutionary algorithms (pp. 124-124). John Wiley and Sons.

Kao, E. P. (1976). A preference `order dynamic program for stochastic assembly line balancing. Management science22(10), 1097-1104.