Document Type : Review Paper

Authors

1 Department of Mechanical Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India-182320.

2 Department of Mechanical Engineering, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir India-182320.

Abstract

Ultrasonic testing uses high frequency sound waves of a range between 0.5 to 15 MHz to conduct testing. The basic principle and applications of ultrasonic testing techniques is enormous use under the domain of mechanical engineering applications. Importance of ultrasonic testing of rails, train wheels, carbon fiber reinforced plastic, aeronautical defects in composite structures, testing of welds, and some other applications are increasing day by day. Literature survey reveals that it is a challenging task for practitioners and researchers to increase the efficiency of non-destructive testing techniques for identifying and localization defects in different mechanical engineering components/parts. Basic fundamentals applications of ultrasonic testing of metal, non-metal, ceramics, polymers, concrete, etc. are briefly explained.  Present and future perspective of ultrasonic testing for mechanical engineering domain are discussed along with the sub new development in the area of ultrasonic testing.

Keywords

Main Subjects

[1]      Ahmed, K. S., Vijayarangan, S., & Kumar, A. (2007). Low velocity impact damage characterization of woven jute—glass fabric reinforced isothalic polyester hybrid composites. Journal of reinforced plastics and composites26(10), 959-976.
[2]      Hassen, A. A., Taheri, H., & Vaidya, U. K. (2016). Non-destructive investigation of thermoplastic reinforced composites. Composites part B: Engineering97, 244-254.
[3]      Katunin, A., Dragan, K., & Dziendzikowski, M. (2015). Damage identification in aircraft composite structures: A case study using various non-destructive testing techniques. Composite structures127, 1-9.
[4]      Armitage, P. R., & Wright, C. D. (2013). Design, development and testing of multi-functional non-linear ultrasonic instrumentation for the detection of defects and damage in CFRP materials and structures. Composites science and technology87, 149-156.
[5]      Bairagi, M., Sinha, A., & Anand, A. (2016). Guillotine side trimming shear machine: A case study of plate mill in Bhilai steel plant. Engineering solid mechanics4(4), 226-234.
[6]      Bates, D., Smith, G., Lu, D., & Hewitt, J. (2000). Rapid thermal non-destructive testing of aircraft components. Composites part B: Engineering31(3), 175-185.
[7]      Beilken, D., & Hinken, J. H. (2005). Fibre reinforced plastic: A feasibility study of microwave based non-destructive testing. Journal of nondestructive testing10(10), 1-1.
[8]      Kamsu-Foguem, B. (2012). Knowledge-based support in non-destructive testing for health monitoring of aircraft structures. Advanced engineering informatics26(4), 859-869.
[9]      Carvalho, A. A., Rebello, J. M. A., Souza, M. P. V., Sagrilo, L. V. S., & Soares, S. D. (2008). Reliability of non-destructive test techniques in the inspection of pipelines used in the oil industry. International journal of pressure vessels and piping85(11), 745-751.
[10]  Chassignole, B., El Guerjouma, R., Ploix, M. A., & Fouquet, T. (2010). Ultrasonic and structural characterization of anisotropic austenitic stainless steel welds: Towards a higher reliability in ultrasonic non-destructive testing. NDT & E international43(4), 273-282.
[11]  Garnier, C., Pastor, M. L., Eyma, F., & Lorrain, B. (2011). The detection of aeronautical defects in situ on composite structures using non-destructive testing. Composite structures93(5), 1328-1336.
[12]  Czigany, T. (2004). An acoustic emission study of flax fiber-reinforced polypropylene composites. Journal of composite materials38(9), 769-778.
[13]  Cernadas, D., Trillo, C., Doval, Á. F., López, Ó., López, C., Dorrío, B. V., ... & Pérez-Amor, M. (2006). Non-destructive testing of plates based on the visualisation of Lamb waves by double-pulsed TV holography. Mechanical systems and signal processing20(6), 1338-1349.
[14]  El Guerjouma, R., Baboux, J. C., Ducret, D., Godin, N., Guy, P., Huguet, S., ... & Monnier, T. (2001). Non‐Destructive evaluation of damage and failure of fibre reinforced polymer composites using ultrasonic waves and acoustic emission. Advanced engineering materials3(8), 601-608.
[15]  Sun, G., & Zhou, Z. (2014). Application of laser ultrasonic technique for non-contact detection of drilling-induced delamination in aeronautical composite components. Optik-International journal for light and electron optics125(14), 3608-3611.
[16]  Takada, H., & Hirose, T. (2007). An ultrasonic method for testing spot-welds. Technical report, 10.
[17]  Zhu, J., Collins, R. P., Boxall, J. B., Mills, R. S., & Dwyer-joyce, R. (2015). Non-destructive in-situ condition assessment of plastic pipe using ultrasound. Procedia engineering119, 148-157.
[18]  Le, M., Jun, J., Kim, J., & Lee, J. (2013). Nondestructive testing of train wheels using differential-type integrated Hall sensor matrixes embedded in train rails. NDT & E international55, 28-35.
[19]  Mulhauser, O. (1931). German patent specification.
[20]  Peng, P. C., Chi, J. H., & Cheng, J. W. (2016). A study on behavior of steel structures subjected to fire using non-destructive testing. Construction and building materials128, 170-175.
[21]  Vipparthy, S. T., Madhu, C. V., Ramakrishna, G. G., & Bunyan, V. J. (2015). Inspection of rails using interface of ultrasonic testing. International journal of mechanical engineering and robotics research4(1), 176.
[22]  Iyer, S., Sinha, S. K., Pedrick, M. K., & Tittmann, B. R. (2012). Evaluation of ultrasonic inspection and imaging systems for concrete pipes. Automation in construction22, 149-164.
[23]  Sinha, A. K., & Kim, D. Y. (2013). Laser welding quality monitoring using plasma, back reflection and temperature signals based on Dempster-Shafer theory. Korean journal of computational design and engineering, 240-242.
[24]  Sinha, A. K., Kim, D. Y., & Ceglarek, D. (2013). Correlation analysis of the variation of weld seam and tensile strength in laser welding of galvanized steel. Optics and lasers in engineering51(10), 1143-1152.
[25]  Sokolov, S. J. (1935). Ultrasonic oscillations and their applications. Technical physics of the USSR, 2, 522-534.
[26]  Tabatabaeipour, M., Hettler, J., Delrue, S., & Van Den Abeele, K. (2015). Nondestructive ultrasonic inspection of friction stir welds. Physics procedia70, 660-663.
[27]  Segreto, T., Bottillo, A., & Teti, R. (2016). Advanced ultrasonic non-destructive evaluation for metrological analysis and quality assessment of impact damaged non-crimp fabric composites. Procedia CIRP41, 1055-1060.