CAS Wavelet Function Method for Solving Abel Equations with Error Analysis

Document Type: Research Paper

Authors

Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran.

Abstract

In this paper we use a computational method based on CAS wavelets for solving nonlinear fractional order Volterra integral equations. We solve particularly Abel equations. An operational matrix of fractional order integration for CAS wavelets is used. Block Pulse Functions (BPFs) and collocation method are employed to derive a general procedure for forming this matrix. The error analysis of proposed numerical scheme is studied theoretically. Finally, comparison of numerical results with exact solution are shown.

Keywords

Main Subjects


[1]     He, J. H. (1998). Nonlinear oscillation with fractional derivative and its applications. International Proceedings of international conference on vibrating engineering, 288-291.

[2]     Mainardi, F. (2012). Fractional calculus: some basic problems in continuum and statistical mechanics. arXiv preprint arXiv:1201.0863.

[3]      Rossikhin, Y. A., & Shitikova, M. V. (1997). Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Applied mechanics reviews50, 15-67.

[4]     Baillie, R. T. (1996). Long memory processes and fractional integration in econometrics. Journal of econometrics73(1), 5-59.

[5]     Evans, R. M., Katugampola, U. N., & Edwards, D. A. (2017). Applications of fractional calculus in solving Abel-type integral equations: Surface–volume reaction problem. Computers & mathematics with applications73(6), 1346-1362.

[6]     Chen, C. F., & Hsiao, C. H. (1975). Design of piecewise constant gains for optimal control via Walsh functions. IEEE transactions on automatic control20(5), 596-603.

[7]     [7]  D. S. Shih, F. C. Kung, C. M. Chao,( 1986).  Laguerre series approach to the analysis of a linear control system incorporation observers, International Journal of Control, vol. 43 (1986), pp.123-128.

[8]     Paraskevopoulos, P. N., Sparis, P. D., & Mouroutsos, S. G. (1985). The Fourier series operational matrix of integration. International journal of systems science16(2), 171-176.

[9]     Podlubny, I. (1997). The Laplace transform method for linear differential equations of the fractional order. arXiv preprint funct-an/9710005.

[10] Sadri, K., Amini, A., & Cheng, C. (2018). A new operational method to solve Abel’s and generalized Abel’s integral equations. Applied mathematics and computation317, 49-67.

[11] Li, Y., & Zhao, W. (2010). Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations. Applied mathematics and computation216(8), 2276-2285.

[12] Babaaghaie, A., & Maleknejad, K. (2017). Numerical solutions of nonlinear two-dimensional partial Volterra integro-differential equations by Haar wavelet. Journal of computational and applied mathematics317, 643-651.

[13] Fathizadeh, E., Ezzati, R., & Maleknejad, K. (2017). Hybrid rational haar wavelet and block pulse functions method for solving population growth model and abel integral equations. Mathematical problems in engineering2017.

[14] ur Rehman, M., & Khan, R. A. (2011). The Legendre wavelet method for solving fractional differential equations. Communications in nonlinear science and numerical simulation16(11), 4163-4173.

[15] Heydari, M. H., Hooshmandasl, M. R., Ghaini, F. M., & Fereidouni, F. (2013). Two-dimensional Legendre wavelets for solving fractional Poisson equation with Dirichlet boundary conditions. Engineering analysis with boundary elements37(11), 1331-1338.

[16] Heydari, M. H., Hooshmandasl, M. R., Cattani, C., & Li, M. (2013). Legendre wavelets method for solving fractional population growth model in a closed system. Mathematical problems in engineering, http://dx.doi.org/10.1155/2013/161030

[17] Wang, Y., & Zhu, L. (2017). Solving nonlinear Volterra integro-differential equations of fractional order by using Euler wavelet method. Advances in difference equations2017(1), 27.

[18] Wang, Y., & Zhu, L. (2017). Solving nonlinear Volterra integro-differential equations of fractional order by using Euler wavelet method. Advances in difference equations2017(1), 27.

[19] Wang, Y., & Fan, Q. (2012). The second kind Chebyshev wavelet method for solving fractional differential equations. Applied mathematics and computation218(17), 8592-8601.

[20] Fathizadeh, E., Ezzati, R., & Maleknejad, K. (2017). The construction of operational matrix of fractional integration using the fractional chebyshev polynomials. International journal of applied and computational mathematics, 1-23.

[21] Kilicman, A., & Al Zhour, Z. A. A. (2007). Kronecker operational matrices for fractional calculus and some applications. Applied mathematics and computation187(1), 250-265.

[22] Darani, M. R. A., Adibi, H., & Lakestani, M. (2010). Numerical solution of integro-differential equations using flatlet oblique multiwavelets. Dynamics of continuous, discrete & impulsive systems. series A17(1), 55-74.

[23] Darani, M. A., Adibi, H., Agarwal, R. P., & Saadati, R. (2008). Flatlet oblique multiwavelet for solving integro-differential equations. Dynamics of continuous, discrete and impulsive systems, series A: Matematical analysis15, 755-768.

[24] Lakestani, M., Dehghan, M., & Irandoust-Pakchin, S. (2012). The construction of operational matrix of fractional derivatives using B-spline functions. Communications in nonlinear science and numerical simulation17(3), 1149-1162.

[25] Daubechies, I. (1992). Ten lectures on wavelets. Society for industrial and applied mathematics.

[26] Keinert, F. (2003). Wavelets and multiwavelets. CRC Press.

[27] Yousefi, S., & Banifatemi, A. (2006). Numerical solution of Fredholm integral equations by using CAS wavelets. Applied mathematics and computation183(1), 458-463.

[28] Saeedi, H., Moghadam, M. M., Mollahasani, N., & Chuev, G. N. (2011). A CAS wavelet method for solving nonlinear Fredholm integro-differential equations of fractional order. Communications in nonlinear science and numerical simulation16(3), 1154-1163.

[29] Maleknejad, K., & Ebrahimzadeh, A. (2014). Optimal control of volterra integro-differential systems based on Legendre wavelets and collocation method. World academy of science, engineering and technology, international journal of mathematical, computational, physical, electrical and computer engineering8(7), 1040-1044.

[30] Adibi, H., & Assari, P. (2009). Using CAS wavelets for numerical solution of Volterra integral equations of the second kind. Dynamics of continuous, discrete and impulsive systems series A: Mathematical analysis16, 673-685.

[31] Danfu, H., & Xufeng, S. (2007). Numerical solution of integro-differential equations by using CAS wavelet operational matrix of integration. Applied mathematics and computation194(2), 460-466.

[32] Abualrub, T., Sadek, I., & Abukhaled, M. (2009). Optimal control systems by time-dependent coefficients using cas wavelets. Journal of applied mathematics2009.

[33] Yi, M., & Huang, J. (2015). CAS wavelet method for solving the fractional integro-differential equation with a weakly singular kernel. International journal of computer mathematics92(8), 1715-1728.

[34] Podlubny, I. (1998). Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (Vol. 198). Academic press.

[35] Kilicman, A., & Al Zhour, Z. A. A. (2007). Kronecker operational matrices for fractional calculus and some applications. Applied mathematics and computation187(1), 250-265.

[36] Wazwaz A. M. (1997). A first course in integral equations. World Scientific Publishing.

[37] Folland, G. B. (2013). Real analysis: modern techniques and their applications. John Wiley & Sons.

[38] Barzkar, A., Assari, P., & Mehrpouya, M. A. (2012). Application of the cas wavelet in solving fredholm-hammerstein integral equations of the second kind with error analysis. World applied sciences journal. 18. 1695-1704. 10.5829/idosi.wasj.2012.18.12.467