A MOLFP Method for Solving Linear Fractional Programming Under Fuzzy Environment

Document Type: Research Paper

Authors

Department of Mathematics, National Institute of Technology Jamshedpur, Jharkhand 831014,India

Abstract

In this paper, a solution procedure is proposed to solve Fully Fuzzy Linear Fractional Programming (FFLFP) problem where all the variables and parameters are triangular fuzzy numbers. Here, FFLFP problem transformed into an equivalent Multi- Objective Linear Fractional Programming (MOLFP) problem. Then MOLFP converted into an equivalent multi objective linear programming problem by using mathematical programming approach. The proposed solution illustrated through numerical examples and compared with existing methods.

Keywords

Main Subjects


[1]      Buckley, J. J., & Feuring, T. (2000). Evolutionary algorithm solution to fuzzy problems: fuzzy linear programming. Fuzzy sets and systems, 109(1), 35-53.

[2]      Chakraborty, M., & Gupta, S. (2002). Fuzzy mathematical programming for multi objective linear fractional programming problem. Fuzzy sets and systems, 125(3), 335-342.

[3]      Charnes, A., & Cooper, W. W. (1962). Programming with linear fractional functionals. Naval research logistics (NRL), 9(3‐4), 181-186.

[4]      Dutta, D., Tiwari, R. N., & Rao, J. R. (1992). Multiple objective linear fractional programming—a fuzzy set theoretic approach. Fuzzy sets and systems, 52(1), 39-45.

[5]      Pop, B., & Stancu-Minasian, I. M. (2008). A method of solving fully fuzzified linear fractional programming problems. Journal of applied mathematics and computing, 27(1), 227-242.

[6]      Ezzati, R., Khorram, E., & Enayati, R. (2015). A new algorithm to solve fully fuzzy linear programming problems using the MOLP problem. Applied mathematical modelling, 39(12), 3183-3193.

[7]      Toksarı, M. D. (2008). Taylor series approach to fuzzy multiobjective linear fractional programming. Information sciences178(4), 1189-1204.

[8]      Stancu-Minasian, I. M., & Pop, B. (2003). On a fuzzy set approach to solving multiple objective linear fractional programming problem. Fuzzy sets and systems134(3), 397-405.

[9]      Stanojevic, B & Stancu-Minasian, I. M. (2009). On solving fuzzified linear fractional programs. Advanced modeling and optimization, 11, 503-523.

[10]  Stanojević, B., & Stancu-Minasian, I. M. (2012). Evaluating fuzzy inequalities and solving fully fuzzified linear fractional programs. Yugoslav journal of operations research22(1), 41-50.

[11]  Zadeh, L. A. (1996). Fuzzy sets. Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by lotfi a zadeh (pp. 394-432).

[12]  Ebrahimnejad, A., & Tavana, M. (2014). A novel method for solving linear programming problems with symmetric trapezoidal fuzzy numbers. Applied mathematical modelling38(17), 4388-4395.

[13]  Kumar, A., Kaur, J., & Singh, P. (2011). A new method for solving fully fuzzy linear programming problems. Applied mathematical modelling35(2), 817-823.

[14]  Lotfi, F. H., Allahviranloo, T., Jondabeh, M. A., & Alizadeh, L. (2009). Solving a full fuzzy linear programming using lexicography method and fuzzy approximate solution. Applied mathematical modelling33(7), 3151-3156.

[15]  Maleki, H. R, Tata, M.,  Mashinchi, M., (1996). Fuzzy number linear programming. Proceeding of internat confference on intelligent and cognitive systems fss sponsored (pp. 145-148).Tehran, Iran: IEEE and ISRF.145-148.

[16]  Veeramani, C., & Sumathi, M. (2014). Fuzzy mathematical programming approach for solving fuzzy linear fractional programming problem. RAIRO-Operations research48(1), 109-122.

[17]  Lai, Y. J., & Hwang, C. L. (1992). Fuzzy mathematical programming. Fuzzy mathematical programming (pp. 74-186). Springer, Berlin, Heidelberg.

[18]  Zimmermann, H. J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy sets and systems1(1), 45-55.

[19]  Zimmermann, H. J. (1982). Trends and new approaches in European operational research. Journal of the operational research society, 597-603.

[20]  Das, S., & Mandal, T. (2015). A single stage single constraints linear fractional programming problem. International journal of operational research2, 1-5.

[21]  Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management science17(4), B-141.

[22]  Ganesan, K., & Veeramani, P. (2006). Fuzzy linear programs with trapezoidal fuzzy numbers. Annals of operations research143(1), 305-315.

[23]   Sapan, K. D., Mandal, T., & Edalatpanah, S. A. (2015). A note on “A new method for solving fully fuzzy linear fractional programming with a triangular fuzzy numbers”. Retrieved from http://dspace.unimap.edu.my/dspace/handle/123456789/41158.

[24]  Das, S. K., Mandal, T., & Edalatpanah, S. A. (2017). A new approach for solving fully fuzzy linear fractional programming problems using the multi-objective linear programming. RAIRO-Operations research51(1), 285-297.

[25]  Das, S. K., Mandal, T., & Edalatpanah, S. A. (2017). A mathematical model for solving fully fuzzy linear programming problem with trapezoidal fuzzy numbers. Applied intelligence46(3), 509-519.

[26]  Das, S. K., & Edalatpanah, S. A.  (2016c). A general form of fuzzy linear fractional programs with trapezoidal fuzzy numbers. International journal of data envelopment analysis and *operations research*, 2 (1), 16-19.

[27]  Torabi, N., & Najafi, S. E. (2015). New model for ranking based on sum weights disparity index in data envelopment analysis in fuzzy condition. Journal of applied research on industrial engineering, 2(2), 111-119.

[28]  Hatami, A., & Kazemipoor, H. (2013). Fuzzy big-M method for solving fuzzy linear programs with trapezoidal fuzzy numbers. International journal of research in industrial engineering2(3), 1-9.

[29]  Sheikhi, H. (2012). A novel approach for solving fuzzy multi-objective zero-one linear programming problems. International journal of research in industrial engineering1(1).

[30]  Najafi, H. S., & Edalatpanah, S. A. (2014). Homotopy perturbation method for linear programming problems. Applied mathematical modelling38(5), 1607-1611.

[31]  Najafi, H. S., Edalatpanah, S. A., & Dutta, H. (2016). A nonlinear model for fully fuzzy linear programming with fully unrestricted variables and parameters. Alexandria engineering journal55(3), 2589-2595.

[32]  Hosseinzadeh, A., & Edalatpanah, S. A. (2016). A new approach for solving fully fuzzy linear programming by using the lexicography method. Advances in fuzzy systems. doi: 10.1155/2016/1538496