• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
International Journal of Research in Industrial Engineering
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 7 (2018)
Volume Volume 6 (2017)
Issue Issue 4
Issue Issue 3
Issue Issue 2
Issue Issue 1
Volume Volume 5 (2016)
Volume Volume 4 (2015)
Volume Volume 3 (2014)
Volume Volume 2 (2013)
Volume Volume 1 (2012)
Karmaker, C. (2017). Determination of Optimum Smoothing Constant of Single Exponential Smoothing Method: A Case Study. International Journal of Research in Industrial Engineering, 6(3), 184-192. doi: 10.22105/riej.2017.49603
C. L. Karmaker. "Determination of Optimum Smoothing Constant of Single Exponential Smoothing Method: A Case Study". International Journal of Research in Industrial Engineering, 6, 3, 2017, 184-192. doi: 10.22105/riej.2017.49603
Karmaker, C. (2017). 'Determination of Optimum Smoothing Constant of Single Exponential Smoothing Method: A Case Study', International Journal of Research in Industrial Engineering, 6(3), pp. 184-192. doi: 10.22105/riej.2017.49603
Karmaker, C. Determination of Optimum Smoothing Constant of Single Exponential Smoothing Method: A Case Study. International Journal of Research in Industrial Engineering, 2017; 6(3): 184-192. doi: 10.22105/riej.2017.49603

Determination of Optimum Smoothing Constant of Single Exponential Smoothing Method: A Case Study

Article 1, Volume 6, Issue 3, Autumn 2017, Page 184-192  XML PDF (704.51 K)
Document Type: Research Paper
DOI: 10.22105/riej.2017.49603
Author
C. L. Karmaker email
Department of Industrial and Production Engineering, Jessore University of Science and Technology, Jessore-7408, Bangladesh
Abstract
Exponential smoothing is a sophisticated forecasting method that works based on previous forecast plus a percentage of the forecast error. A key issue of this technique is the proper choice of exponential smoothing constant. In order to minimize forecasting errors, choosing an appropriate value of smoothing constant is very crucial. In this study, a framework is developed for the selection of optimal value of smoothing constant that minimizes a measure of forecast errors like mean square error (MSE) and mean absolute deviation (MAD). Both “trial & error” and Excel based non-linear optimizer (“Excel Solver”) are used for this purpose. To validate the proposed model, necessary demand data of Ruchi Jhal Muri from years 2010-2016 from Square Food & Beverage Ltd. in Mohakhali, Dhaka were collected. The optimum values of smoothing constant under trial & error method are 0.31 and 0.14 for minimum MAD and MSE respectively whereas for excel solver, values are 0.314 and 0.143 with respect to minimum MAD and MSE. Although both methods provide approximately the same results but excel solver is much easier & requires less time for deriving optimum solution. This study will provide an outline for the forecast planners as well as manufacturers to improve the accuracy of exponential forecasting through using Excel Solver for determining the optimum value of smoothing constant.
Keywords
Smoothing Constant; Forecast Error; Trial and error method; Excel Solver
Main Subjects
Engineering Optimization
References

[1]      Gass, S. I., & Harris, C. M. (Eds.). (2001). Encyclopedia of operations research and management science: Centennial edition. Springer Science & Business Media.

[2]      Gardner Jr, E. S., & Koehler, A. B. (2005). Comments on a patented bootstrapping method for forecasting intermittent demand. International journal of forecasting, 21(3), 617-618.

[3]      Karmaker, C. L., Halder, P. K., & Sarker, E. (2017). A Study of Time Series Model for Predicting Jute Yarn Demand: Case Study. Journal of Industrial Engineering, 2017.

[4]      Kabir, G., & Moiisin, H. B. (2011). Selection of an effective forecasting technique for
level demand a case study of retail chain company. Journal of Science and Technology, 1 (2), l l3- l19.

[5]      Jalil, N. A. A., Ahmad, M. H., & Mohamed, N. (2013). Electricity load demand forecasting using exponential smoothing methods. World Applied Sciences Journal, 22(11), 1540-1543.

[6]      Stevenson, W. J., & Hojati, M. (2007). Operations management (Vol. 8). Boston: McGraw-Hill/Irwin.

[7]      Simonoff, J. S. (2012). Smoothing methods in statistics. Springer Science & Business Media.

[8]      Chiang, T. C. (2012). Business Conditions & Forecasting – Exponential Smoothing [PDF document]. Retrieved from www.pages.drexel.edu/~chiangtc/FIN642_winter04/Fin642Lecture2_2005.pdf

[9]      Fomby, T. B. (2008). Exponential smoothing models. Mannual SAS/ETS Software: Time Series Forecasting System. Version, 6, 225-235.

[10]  Xie, M., Hong, G. Y., & Wohlin, C. (1997). A study of exponential smoothing technique in software reliability growth prediction. Quality and reliability engineering international, 13(6), 347-353.

[11]  Paul, S. K. (2011). Determination of exponential smoothing constant to minimize mean square error and mean absolute deviation. Global journal of research in engineering, 11(3).

[12]  Cho, V. (2003). A comparison of three different approaches to tourist arrival forecasting. Tourism management, 24(3), 323-330.

[13]  Dielman, T. E. (2006). Choosing Smoothing Parameters For Exponential Smoothing: Minimizing Sums Of Squared Versus Sums Of Absolute Errors. Journal of Modern Applied Statistical Methods, 5(1), 11.

[14]  Berry, W. L., & Bliemel, F. W. (1974). Selecting exponential smoothing constants: an application of pattern search. International Journal of Production Research, 12(4), 483-499.

[15]  Berry, W. L., & Bliemel, F. W. (1974). Selecting exponential smoothing constants: an application of pattern search. International Journal of Production Research, 12(4), 483-499.

[16]  Ravinder, H. V. (2013). Determining The Optimal Values Of Exponential Smoothing Constants-Does Solver Really Work?. American Journal of Business Education (Online), 6(3), 347.

[17]  MU’AZU, H. G. (2014). New Approach for Determining the Smoothing Constant of a Single Exponential Smoothing Method. International Journal of Science and Technology, 3(11). Retrieved from www.journalofsciences-technology.org/archive/2014/nov.../6322514155342.pdf

Statistics
Article View: 150
PDF Download: 829
Home | Glossary | News | Aims and Scope | Sitemap
Top Top


This work is licensed under a Creative Commons Attribution - Non-commercial 3.0

Journal Management System. Designed by sinaweb.