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Keywords:: using a slope parameter. Then we apply Monte Carlo simulation to
evaluate the accuracy and the precision performance of the proposed
change point estimator. Finally we compare, the proposed estimator
with the MLE of the Poisson process change point derived under
linear trend disturbance on the basis of cumulative sum (CUSUM) and
Shewhart C control charts. The results show that the proposed
procedure outperforms the MLE designed for drift time with regard to
variance and is more effective in detecting drift time when the
magnitude of change is relatively large.
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1. Introduction

Statistical process control (SPC) has played an important role in industry for many years.
After examining the process, SPC uses statistical tools to find the sources of variation in the
process parameter(s). Control charts are used to monitor for changes in a process by
distinguishing between specia causes and common causes of variation. When a control chart
signals an out-of-control alarm, process engineers initiate a search for the assignable cause
disturbing the process. By signaling, control charts do not provide specific information
regarding the cause nor when the process changed; rather, they only suggest that a change has
occurred.

Cumulative sum (CUSUM) control charts suggested by Page were among the primary tools
for detecting change in the process [1]. Though they were not as simple to operate as
Shewhart control charts but they have been shown to be more efficient in detecting small
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shifts in the process mean. Exponentially weighted moving average (EWMA) control charts
also offered a procedure for estimating the process change point [2]. Despite their ability in
detecting small shifts, they were not quite effective tools for finding large shifts in the process
mean. Knowing the exact point of change in a process would help to search and identify
specia causes, resulting in time saving to find the causes. Therefore, it is useful to identify
the difference between the change point and the time when an out of control signal is
generated by control charts.

Poisson count processes are often used to model the number of occurrences over some
interval unit. The interval unit can be time, distance, area, volume or some similar unit. Often
in an industrial quality control setting, the Poisson distribution is used to model the number of
defects or nonconformities per unit of product. That is, the probability that a randomly
selected unit of product contains x nonconformitiesis given by

P(X =x) =%-e_)‘

(1)

Where x>0, and 2>0 denotes the mean rate of nonconformities. The on-line monitoring of A
is typically accomplished through the use of a SPC chart. For monitoring Poisson rates, the c,
CUSUM and EWMA control charting procedures are most commonly used.

2. Literaturereview

The presence of alinear trend change in the mean of a sequence of independent exponential
random variables was investigated by Gupta and Ramanayake [3]. They also studied
anal ogues testing procedures to detect a linear trend change followed by an abrupt change in
arandom sequence of exponentially distributed random variables.

Samuel and Pignatiello [4] analyzed a step change in the rate parameter for a Poisson process.
Samuel et a. [5] & [6] considered step change in a normal process mean and normal process
variance. Samuel and Pignatiello [7] proposed an MLE for the process fraction non-
conforming change point by applying the step change likelihood function. They evaluated the
performances of their proposed estimator when an np chart signals and concluded that their
estimator provides good accuracy and precision performances. Moreover, Perry et a. [§]
developed a change-point estimator from the change likelihood function for a binomia
random variable without assuming the previous information of the exact change type. The
only assumption in their research is that the predicted change type is should belong to a
family of monotonic change type. Further, Perry et al. compared the performances between
their estimator and the one suggested by Samuel and Pignatiello [7].

The maximum likelihood estimator has been widely used to identify the time of the drift in
processes. In this context, Perry and Pignatiello [9] proposed the MLE for the change point of
a normal process mean when a linear trend disturbance is present. The proposed estimator
performance was studied and compared with the performance of MLE designed for step
changes. The MLE provides good overal performance in comparison with the estimators
given by the CUSUM and EWMA control charts[10] & [11]. Perry et a. [12] compared the
performance of the MLE for the time of drift in a Poisson rate parameter designed for linear
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trends to the MLE of the process change point designed for step changes when a linear trend
disturbance is present. Performance comparisons showed that the MLE of the process change
point designed for linear trends outperforms the MLE designed for step changes and CUSUM
control chart estimator.

Noorossana and Shademan [13] proposed MLE for the change point of a norma process
mean that does not require the knowledge of the exact change type showed by the process.
The only required assumption is that the change type present should belong to a family of
monotonic change, either isotonic or antitonic. Furthermore, they compared performances
between their estimator and those suggested by Samuel et al. [5] and Perry and Pignatiello [9]
following a genuine signal from the Shewhart X control chart. Zandi et al. [14] introduced
MLE for the change point of process fraction nonconforming when the process was subjected
to alinear trend disturbance. Atashgar and Noorossana [15] applied artificial neural networks
to identify the change point in a bivariate environment when the process mean vector shifted
linearly.

3. Poisson Process Linear Trend Change point model

Consider alinear trend change model for the behavior of Poisson process rate parameter . It
is assumed the process is initidly in control for the first T subgroups and independent
observations come from a Poisson distribution with in-control parameter A = . The first
disturbance in the rate parameter occurs at an unknown point in time t (the process change
point). After this point, the process changes from A = to an out of control state . =, for
i=1+1,.., T, where T denotes the time when a control chart generates a signal. Assuming

the signal is not a false alarm, the change model of X is given by Equation (1), where 8 is the
slope of the linear trend disturbance or the magnitude of process change.

A=k +B-TD i=t+1,...T. (2)
The above model has two unknown parameters t and 3. The parameter t represents the last
subgroup taken from the in-control process, and 8 is the slope parameter of the linear trend
model. B > 0 means a linear change with an additive trend in A has occurred and g < 0
represents a descending trend in the Poisson process. Based on these assumptions, we derived
an estimation for the process change point T with non-decreasing changetype 8 > 0.
Thelikelihood function is:

T
Ci
L(t,0) = [ [ 04" /e - exn(2,)
i=1
T
Ci
x 1_[ (0 +BG-0) " /c!) -exp (— (2 +BG~ r))), 3)
i=t+1
Where c; is the count corresponding to the ith subgroup. The MLE of t is the value of t that
maximizes the likelihood function (Equation (2)), or equivaently, its logarithm. The
logarithm of the likelihood function is
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InL(t, BID) = K — S(T _O(T+1-1) + 1og(x0)z &
T i=1
+ Z ¢ In (0 + Bl — D). )

Where K is constant. Perry [9] used the Newton method for estimate value of . But this
method needs many calculations. We propose a new method for finding  and use it in the
likelihood function to introduce an estimator for the real time of change. An instance of the
drift change in the Poisson processis depicted in Figure 1.

2 3 T T
Figure 1. Drift change in the Poisson process for some possible change point t.

We see that 'y = (b, —1,)/(T—1) . Since ¢y is an estimate of A, hence B’ =
(ct — XO)/(T — 1) may be used as an initial value for B’_. Substituting such an estimate, '.

for B in (3) and evaluating over al possible change points t to find the maximum value leads
to:

, t
T=argmax{ — %(T -t(T+1-t)+ IOg(XO)ZCi
i=1
T

+ ) 6 (g + Bl - 0)) )
i=t+1
Therefore, we propose T as an estimator of the change point.
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4. CUSUM control chart estimator

Although developed by Page for normal process means, a CUSUM chart to monitor Poisson
count data was suggested by Brook and Evans. This procedure cumulates the difference
between an observed value X; and areference value k. If this sum exceeds adecision interva
h, the chart signals a disturbance is present. The CUSUM control statistic for detecting
increases and in the mean count rate are given as S;* = max{0,X; —k* +S;_;*} where
So" = 0 and

k=0, —=2)/(n(,") — ()
The value for _is the out of control process rate for which to design the CUSUM. If St
exceeds a specified decision interval h*, then the chart signals that an increase in the mean
count rate has occurred. Lucas provided a comprehensive study on Poisson CUSUM control
charts. Hawkins and Olwell provided extensive detail pertaining to the theoretical

foundation and construction of CUSUM control charts in general, including the Poisson
CUSUM [12].

5. Falsealarms

This section addresses the handling of false darmsin the simulation model. When t > 0 and
acontrol chart issuesasignal at subgroup T where T < t, thesignal isafase aarm since the
signal was given before the ssimulated process change occurred. Otherwise, however, if the
signal time is greater than the real process change point, i.e. T > t, we cal it a genuine
signal and use it for searching for the change point.

In the simulation runs, the false darm signal is not considered for the performance analysis.
Whenever a signal is a false alarm, the process is assumed in control and, therefore, the
control chart continues its action to monitor the process. In other words, when a false aarm
happens in a simulation run at subgroup T, the control chart resumes at subgroup T+1 while
not altering the change-point estimation process [12].

6. Comparison of Change Point Estimator

In this section the performances of the proposed estimator, T, are compared with the MLE
derived for linear change disturbance proposed by Perry et al. (2006) when a linear trend
disturbance is present, and the out-of-control signal comes from a Poisson CUSUM and ¢
control charts. This is referred to T,,. We investigate in-control rate parameter value of

A, = 5,10.
e Using aPoisson CUSUM control chart

In this section we use simulation to compare accuracy of T and T, following asignal from a
Poisson CUSUM control chart. The process change point was simulated to occur at © = 100.

Independent observations were simulated from a Poisson process with rate parameter A, for
subgroupi = 1,2, ...,100. Following subgroup 100, observations were simulated from a
Poisson process with rate parameter A, = A + B(i —t), where g > 0, until the CUSUM

chart produced a signal. Then two estimates of the process change point, T and ©,,, were
computed. This procedure was repeated a total of N = 5000 times for each [ value
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investigated. Averages of the change point estimates obtained from the 5000 runs, T and T,
were computed along with their corresponding estimated standard errors.

Table | shows accuracy performances for the two estimators, as well as the estimated ARL
of the CUSUM procedure, over arange of 3 values. The mean squared errors, MSE, and the
expected time of the change-point estimates were calculated as shown in Table 1. Except
forf = 0.05, and 3 = 0.15, MSE(t)is smaller than MSE(%,,) for all other considered values
of B. And for § = 0.5 T iscloser tot = 100 than is T,,. It means that for these values of (3
the proposed estimator performs better than the other estimator.

Tablel. Estimated accuracy performances for new estimator and MLE of the change point for different g
values following a genuine signal from an CUSUM control chart when alinear trend change is present. (4, =
5, h=7k =6.38, T = 100, N=5000)

B ARL 7 Tm MSE(t) | MSE(%,,)
0.05 56.603 | 124.43 | 97.34 | 19.96 17.92
015 20.95 | 104.7 101.3 | 751 6.97
035 10.89 | 102.01 | 99.1 4.21 6.10

05 9.1 100 98.4 3.05 5.83
08 6.22 101.70 | 97.8 1.49 4.79

1 5.20 99.8 97.8 2.88 361

5 3.38 99.4 98.05 | 1.89 3.05

3 2.634 | 99.9 100.44 | 0.73 2.50

Note that, in this table, as the magnitude of the slope parameter, 3, increases to 3, the mean
squared error for the two estimators decreases. However, more accurate estimates are
obtained using the proposed method in amost all cases. Thus, it can be concluded from
Table | that the proposed estimator outperforms the other estimator especially for large value
of B.

Furthermore we use simulation to study the precision of the proposed estimator following a
signal from a CUSUM control chart. To evaluate and compare the precision of T and t,,,, we
recorded (for each estimator) the proportion of the N = 5000 simulation runs that the
estimator was within a specified tolerance of the simulated change point value. Doing this
for arange of 8 yields the results shown in Tables |1 and 1.

Tablell. Precision of the new estimator and MLE of the change point for different g values (B < 0.8). (A, = 5,
h=7k=6.38 T= 100, N=5000)

. B
Precision 005 | 015 | 035 | 05
P, = 1) 0045 | 0070 | 0135 | 0.150
P =1) 0017 | 0039 | 0101 | 0.121
bt x| <1y | 004 0221 0324 | 0397
PUTm — T = 0017 | 0119 | 0242 | 0330
pt—1/<1)
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Precision 005 | 015 | 035 | 05

Pt —T|<2) | 0211 | 0329 | 0473 | 0550
p(t—t/<2) | 0079 | 0179 | 0368 | 0517

p(|tm —T/<3) | 0261 | 0435 | 0.600 | 0.666
p(lt—t/<3) | 009 | 0243 | 049 | 0651

Pz, —T/<4) 0323 | 0530 | 0682 | 0.732
p(z—t/<4) | 0113 | 0307 | 0609 | 0.752

p(|tm —T/<5) | 037 | 0595 | 0755 | 0.773
p(t—t/<5) | 0127 | 0371 | 0.69 | 0.834

Pz, — T/ <6) | 0045 | 0.666 0797 | 0.810
p(z—t/<6) | 0017 | 0437 | 0781 | 0.892

Tablelll. Precision of the new estimator and MLE of the change point for different B values (8 = 0.8). (&, =
5 h=7k=6.38 T= 100, N=5000)

. B
Precision 08 1 5 3
PE,=17) 0.168 0.200 0.267 0.286
pE=1) 0.187 0.244 0.357 0.412

p(ltm —T|<1) | 0445 | 0483 | 0513 | 0.481
p(E—t/<1) | 0447 | 0510 | 0724 | 0.770

P12, —T|<2) | 0608 | 0619 | 0641 | 0.614
p(z—1|<2) | 0632 | 0730 | 0877 | 0.890

p(ltm—T/<3) 0704 0703 @ 0715 | 0.695
p(z—1/<3) | 0772 | 0839 | 0933 | 0.940

p(ltm —T|<4) | 0755 | 0.761 | 0.769 | 0.767
p(lt—1|<4) | 0869 | 0919 | 0954 0972

p(tm—T/<5) 0785 | 0.801 0.798 | 0.801
p(z—1/<5) | 0918 | 0951 | 0965 & 0.98

p(ltm —T| <6) | 0814 | 0.828 | 0826 | 0.827
p(lt—t/<6) | 0956 | 0975 0977 | 0.985
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From Table Il and I11 it can be seen that the T is more precise for > 0.5. As the magnitude
of B increases, the precision of the two estimators improves. The precision of the two
estimates is plotted in Figures 2-4. These Figures confirms the above results.
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Figure 4. Precision of estimators for tolerance 1 subgroup p(t*1[<2).

e Using ac control charts

In this section we consider the performance of our proposed change point estimator when
using a c chart and A, = 10. In this case, the upper control limit is UCL = 10 + 3v'10 =

19.49 and the lower control limit is LCL = 10 — 3v/10 = 0.51. A Monte Carlo simulation
study was conducted to examine the performance of our estimator and compare it whit the
other estimator.

The change point was simulated at time 100. Starting at time 101, observations were
simulated from the changed process until the ¢ chart signaled that the process was out of
control. The expected time of the first genuine alarm, E(T), is the expected time at which the
control chart first signals a change in the Poisson rate parameter. Since no false alarms were
observed, the expected time of the first genuine alarm is equal to the average run length
(ARL) plust. Thus, (T) = ARL + t . Based on the simulation data, the two aforementioned
estimators of the Poisson process, i.e. T and T,,, were then obtained for various values of 3.
This procedure was repeated N = 5000 times over a range of 8 values for each estimator.
The mean squared errors, MSE, and the expected time of the change-point estimates were
calculated as shown in Table V.

From Table IV, it can be seen for all values of B, MSE(%) is smaller thanMSE(T,,) and for
3=0.5, our proposed estimator performs well in estimating the time of the process change. It
can aso be seen from Table IV that the performance of the two estimators improves
considerably with increases in magnitude of the change. We next consider the frequency
with which the change point estimation is within a distance of m the true change point, for
=1,2,..,10,15 . The results are reported in Table V and VI for different B values. Table V
show that for small values of (3 the precision provided by the T,,, in most cases is better than
the proposed estimator. However, it is not absolutely better than it. For example for § = 0.5,
the precision performance of T that was within 9,10 and 15 subgroups of the true process
change point, is slightly better than the precision provided by the ©,,,.
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TablelV. Estimated accuracy performances for new estimator and MLE of the change point for different 8
vaues from an ¢ control chart when alinear trend change is present. (A, = 10, T = 100, N=5000)

B E(T) % T MSE(t) | MSE(%,,)
005 | 158516 | 12198 | 105852 | 2018 | 2363
015 | 125128 | 114236 | 103103 | 804 14.908
05 | 11406 | 10716 | 97.66 4833 | 10219
05 | 11204 10528 | 96.24 3.81 8.60
0g | 10718 10228 | 9754 2347 | 6.719

, | 10704 10188 | 9866 2.00 4817

, | 10422 | 10012 |98 1.90 3.07

g 10336 10001 | 99.8 0904 | 270

TableV. Precision of the new estimator and the MLE of the change point for different g values (B < 0.8).
(4, = 10, T = 100, N=5000)
B

Precision 005 | 015 | 035 05
P, = T) 0025 | 0045 @ 0087 | 0.102
pE = 1) 0009 | 0015 0023 | 0.055

Pz, —T/<1) | 0055 | 0135 026 | 0.304
p(z—1/<1) | 0024 | 0113 0085 | 0.150

p(ltm—T/<2) | 0099 | 0212 0383 | 0457
p(lt—t/<2) | 0046 | 0125 0138 | 0247

p(ltm —T|<3) | 0137 | 0295 0476 | 0577
p(lt—t/<3) | 0052 | 0137 @ 0216 | 0.360

p(ltm —T/<4) | 0166 | 0366 0582 | 0.682
p(lt—t/<4) | 0074 | 0157 @ 0284 | 0477

Pz, — T/ <5) | 0203 | 0429 | 0663 | 0.767
p(t—1/<5) | 0087 | 0169 0354 | 0598

p(|tm —T|<6) | 0244 | 0485 0739 | 0819
p(lt—t/<6) | 0095 | 0184 0449 | 0.686

0273 | 0553 | 0.801 | 0.851

PUTm—T<7) | 5184 | 0100 0547 | 0.774

Pt -1 =<7)
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Precision 005 | 015 | 035 | 05

P, —t/<8) | 0303 | 0602 | 0839 | 0.886
p(z—1/<8) | 0207 | 0339 | 0637 | 0.859

p(ltm—T|<9) | 0334 | 0645 0866 | 0.905
p(t—t/<9) | 0304 | 0473 | 0711 | 0922

Pz, — T/ <10) | 0364 | 0.684 | 0880 | 0.917
p(lt—t|<10) | 0439 | 0521 | 0769 | 0.956

Pz, —T| <15) | 0845 | 0.893 & 0948 | 0.955
p(lt—1|<15) | 0614 | 0729 | 0.966 1

TableVI. Precision of the new estimator and the MLE of the change point for different  values (B = 0.8).
(*, = 10, T = 100, N=5000)

» B
Precision 08 1 5 3
PE,=1) 0.096 0.144 0.257 0.296
pE =1 0.137 0.173 0.291 0.673

p(lt,—t/<1) | 0305 | 0387 | 0560 | 0.608
Pz -t <1) 0378 | 0456 | 0.692 | 0.816

p(tm—1T/<2) | 0462 | 0589 | 0.700 | 0.749
p(lt—t/<2) | 0574 | 0655 | 0882 | 0.959

p(lt,—t|<3) | 0629 | 0757 | 0784 | 0.822
Pz -1/ <3) 0697 | 0786 | 00966 | 0.99

p(tm—1T/<4) | 0777 | 0829 | 0.823 | 0.857
p(z—1|<4) | 0747 | 0877 | 0992 | 0.995

p(|t, —t|<5) | 0836 | 0864 | 0.882 | 0.960
Pz -1/ <5) 0853 | 0945 | 0.996 1

p(ltm—1/<6) | 0871 | 0887 | 0.887 | 0.968
p(z—1/<6) | 0911 | 0976 | 0.999 1

0.888 | 0.908 | 0.974 | 0.987
P(tm—T/<7) | 0952 | 0.995 1 1
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.. B
Precision 08 1 5 3
pt -t =7)
P(Tm — T <8) 0.906 0.925 0.993 1
p(T—7| <8) 0.981 1 1 1
PpTm — Tl <9) 0.921 0.932 0.950 1
p(z—7| <9 0.992 1 1 1
p(Z, — Tl <10) 0.93 0.94 1 1
p(|T — 1| <10) 0.997 1 1 1
p(T, — Tl < 15) 0.957 0.964 1 1
p(T— 1| <15) 1 1 1 1

It can be seen from Table VI that our proposed change point estimator has a very good
precision in estimating the time of a change in the Poisson rate parameter when the
magnitude of B isequal or bigger than 0.8. for § = 0.8, our estimator identified the process
change point in 13.7% of the ssimulation trials. Our estimator was within two (six) subgroups
of the true process change point in 57.4% (91.1%) of the simulations. The proposed
estimator performs very well for large values of (. For § = 3, the ¢ chart has an ARL of
3.36. In this case, our proposed estimator identified the change point correctly in 67.3% of
the simulations and was within one subgroup of the time of the process change in 81.6% of
the simulation trials.

7. Conclusion

Knowing the time when the process change began would simplify the search for the special
cause. If process engineers knew when the change in the process began, the search would
simply reduce to discovering which process variables or procedures changed during that
time. Thus, process engineers would increase their chances of correctly identifying the
special cause quickly. This would alow them to take appropriate actions to improve quality
sooner.

In this paper, we have proposed a new estimator based on the likelihood function that is
useful for identifying the time of a drift change in the Poisson process. The performance of
the proposed estimation method was evaluated and compared with the MLE methods
developed by Perry et a. [12] for linear trend in Poisson rate parameter. For this purpose, we
consider the out-of-control signal comes from a Poisson CUSUM and c control charts. When
the out-of-control signal is detected, the diagnostic is started. Results showed that the
proposed approach has a smaller variance almost in al cases and for large values of 3 it
outperforms the other estimator when alinear trend disturbance is present.

The proposed method provides an estimate to the drift change in Poisson process.
Employing such an estimator for other kind of processes such as binomial, normal and etc.
may be a subject for future research.
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