
 

 

 

 
 

    
  

 

 
*Corresponding author 
E-mail address: raz_66_h77@yahoo.com 
 

 

Int. J. Research in Industrial Engineering, pp. 26-38  

Volume 3, Number 1, 2014 

International Journal of Research in Industrial Engineering 

journal homepage: www.nvlscience.com/index.php/ijrie 

A New Estimator Based on Likelihood Function for Drift Time of Change 
in Poisson Rate Parameter 
 
R. Hosseiny1,*, V. Amirzadeh1, M. A. Yaghoobi2  
1Department of Statistic, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman,kerman, iran. 
2Department of Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran. 
 
 
 

A B S T R A C T  A R T I C L E   I N F O 

Although a control chart can signal an out-of-control state in a 
process, but it does not always indicate when the process change has 
begun. Identifying the real time of the change in the process, called the 
change point, is very important for eliminating the source(s) of the 
change and assists process engineers in identifying the responsible 
spec ia l  cause  and  ul t imate ly in  improving  the  p rocess .  
In this paper, we first introduce an estimator for a change point with 
linear trend in the Poisson process, based on the likelihood function 
using a slope parameter. Then we apply Monte Carlo simulation to 
evaluate the accuracy and the precision performance of the proposed 
change point estimator. Finally we compare, the proposed estimator 
with the MLE of the Poisson process change point derived under 
linear trend disturbance on the basis of cumulative sum (CUSUM) and 
Shewhart C control charts. The results show that the proposed 
procedure outperforms the MLE designed for drift time with regard to 
variance and is more effective in detecting drift time when the 
magnitude of change is relatively large. 
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1. Introduction 

Statistical process control (SPC) has played an important role in industry for many years.  
After examining the process, SPC uses statistical tools to find the sources of variation in the 
process parameter(s). Control charts are used to monitor for changes in a process by 
distinguishing between special causes and common causes of variation. When a control chart 
signals an out-of-control alarm, process engineers initiate a search for the assignable cause 
disturbing the process. By signaling, control charts do not provide specific information 
regarding the cause nor when the process changed; rather, they only suggest that a change has 
occurred. 
Cumulative sum (CUSUM) control charts suggested by Page were among the primary tools 
for detecting change in the process [1]. Though they were not as simple to operate as 
Shewhart control charts but they have been shown to be more efficient in detecting small 
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shifts in the process mean. Exponentially weighted moving average (EWMA) control charts 
also offered a procedure for estimating the process change point [2]. Despite their ability in 
detecting small shifts, they were not quite effective tools for finding large shifts in the process 
mean. Knowing the exact point of change in a process would help to search and identify 
special causes, resulting in time saving to find the causes. Therefore, it is useful to identify 
the difference between the change point and the time when an out of control signal is 
generated by control charts. 
Poisson count processes are often used to model the number of occurrences over some 
interval unit. The interval unit can be time, distance, area, volume or some similar unit. Often 
in an industrial quality control setting, the Poisson distribution is used to model the number of 
defects or nonconformities per unit of product. That is, the probability that a randomly 
selected unit of product contains x nonconformities is given by 

P�X = x� = λ�

�! ∙ e�λ	                                                                                                                   
(1) 
Where x≥0, and λ≥0 denotes the mean rate of nonconformities. The on-line monitoring of  λ 
is typically accomplished through the use of a SPC chart. For monitoring Poisson rates, the c, 
CUSUM and EWMA control charting procedures are most commonly used.  

2. Literature review  

The presence of a linear trend change in the mean of a sequence of independent exponential 
random variables was investigated by Gupta and Ramanayake [3]. They also studied 
analogues testing procedures to detect a linear trend change followed by an abrupt change in 
a random sequence of exponentially distributed random variables. 
Samuel and Pignatiello [4] analyzed a step change in the rate parameter for a Poisson process. 
Samuel et al. [5] & [6] considered step change in a normal process mean and normal process 
variance. Samuel and Pignatiello [7] proposed an MLE for the process fraction non-
conforming change point by applying the step change likelihood function. They evaluated the 
performances of their proposed estimator when an np chart signals and concluded that their 
estimator provides good accuracy and precision performances. Moreover, Perry et al. [8] 
developed a change-point estimator from the change likelihood function for a binomial 
random variable without assuming the previous information of the exact change type. The 
only assumption in their research is that the predicted change type is should belong to a 
family of monotonic change type. Further, Perry et al. compared the performances between 
their estimator and the one suggested by Samuel and Pignatiello [7]. 
The maximum likelihood estimator has been widely used to identify the time of the drift in 
processes. In this context, Perry and Pignatiello [9] proposed the MLE for the change point of 
a normal process mean when a linear trend disturbance is present. The proposed estimator 
performance was studied and compared with the performance of MLE designed for step 
changes. The MLE provides good overall performance in comparison with the estimators 
given by the CUSUM and EWMA control charts [10] & [11]. Perry et al. [12] compared the 
performance of the MLE for the time of drift in a Poisson rate parameter designed for linear 
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trends to the MLE of the process change point designed for step changes when a linear trend 
disturbance is present. Performance comparisons showed that the MLE of the process change 
point designed for linear trends outperforms the MLE designed for step changes and CUSUM 
control chart estimator. 
Noorossana and Shademan [13] proposed MLE for the change point of a normal process 
mean that does not require the knowledge of the exact change type showed by the process. 
The only required assumption is that the change type present should belong to a family of 
monotonic change, either isotonic or antitonic. Furthermore, they compared performances 
between their estimator and those suggested by Samuel et al. [5] and Perry and Pignatiello [9] 
following a genuine signal from the Shewhart X̅ control chart. Zandi et al. [14] introduced 
MLE for the change point of process fraction nonconforming when the process was subjected 
to a linear trend disturbance. Atashgar and Noorossana [15] applied artificial neural networks 
to identify the change point in a bivariate environment when the process mean vector shifted 
linearly.  

3. Poisson Process Linear Trend Change point model 

Consider a linear trend change model for the behavior of Poisson process rate parameter	λ. It 
is assumed the process is initially in control for the first τ subgroups and independent 

observations come from a Poisson distribution with in-control parameter λ = λ�. The first 

disturbance in the rate parameter occurs at an unknown point in time τ (the process change 

point). After this point, the process changes from λ = λ� to an out of control state λ = λ�  for 

i = τ + 1, … , T, where T denotes the time when a control chart generates a signal. Assuming 

the signal is not a false alarm, the change model of λ is given by Equation (1), where β is the 
slope of the linear trend disturbance or the magnitude of process change. 
 
λ� = λ� + β�i − τ�																						i = τ + 1, … . T	.																																																																													(2) 

The above model has two unknown parameters τ and	β. The parameter τ represents the last 
subgroup taken from the in-control process, and β is the slope parameter of the linear trend 

model. β > 0 means a linear change with an additive trend in λ has occurred and β < 0 
represents a descending trend in the Poisson process. Based on these assumptions, we derived 
an estimation for the process change point τ with non-decreasing change type  β > 0.  
The likelihood function is: 

L�τ, λ��C� = � (λ�
�� c�!)� ∙

�

�	�
exp�−λ��

× � 		λ� + β�i − τ�
�� c�!� 
 ∙



�	���
exp �− 	λ� + β�i − τ�
� ,																											(3) 

Where c� is the count corresponding to the ith subgroup. The MLE of τ is the value of τ that 
maximizes the likelihood function (Equation (2)), or equivalently, its logarithm. The 
logarithm of the likelihood function is  
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ln	L�τ, β|D� = K − 	β2 �T − τ��T + 1 − τ� + log�λ��� c�
�

�	�

+ � c� 	 ln	( λ� + β�i − τ�)



�	���
.																																																																																	(4) 

Where K is constant. Perry [9] used the Newton method for estimate value of  β. But this 
method needs many calculations. We propose a new method for finding β and use it in the 
likelihood function to introduce an estimator for the real time of change. An instance of the 
drift change in the Poisson process is depicted in Figure 1. 

 
Figure 1. Drift change in the Poisson process for some possible change point τ. 

 

We see that β′� = (λ
 − λ�) (T − τ)� 	 . Since c
  is an estimate of λ
, hence β′� =
(c
 − λ�) (T − τ)� 	 may be used as an initial value for β�

�. Substituting such an estimate, β′� 

for β in (3) and evaluating over all possible change points τ to find the maximum value leads 
to: 

τ� = arg	max
�
���

	{		 − 	β�
�

2 �T − t��T + 1 − t� + log�λ��� c�
�

�	�

+ � c� 	ln	( λ� + β′��i − t�)



�	���
}	.																																																																													(5) 

Therefore, we propose τ� as an estimator of the change point. 
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4. CUSUM control chart estimator 

Although developed by Page for normal process means, a CUSUM chart to monitor Poisson 
count data was suggested by Brook and Evans. This procedure cumulates the difference 
between an observed value X� and a reference value k. If this sum exceeds a decision interval 
h, the chart signals a disturbance is present. The CUSUM control statistic for detecting 
increases and in the mean count rate are given as S�

� = max�0, X� − k� + S���
��  where 

S�
� = 0 and 

k� = (λ�
� − λ�) (ln(λ�

�) − ln(λ�))�  

The value for λ�is the out of control process rate for which to design the CUSUM. If S�
� 

exceeds a specified decision interval h�, then the chart signals that an increase in the mean 
count rate has occurred. Lucas provided a comprehensive study on Poisson CUSUM control 
charts. Hawkins and Olwell provided extensive detail pertaining to the theoretical 
foundation and construction of CUSUM control charts in general, including the Poisson 
CUSUM [12].   

5. False alarms 

This section addresses the handling of false alarms in the simulation model. When τ > 0 and 
a control chart issues a signal at subgroup T where	T ≤ τ, the signal is a false alarm since the 
signal was given before the simulated process change occurred. Otherwise, however, if the 
signal time is greater than the real process change point, i.e. T > �, we call it a genuine 
signal and use it for searching for the change point. 
In the simulation runs, the false alarm signal is not considered for the performance analysis. 
Whenever a signal is a false alarm, the process is assumed in control and, therefore, the 
control chart continues its action to monitor the process. In other words, when a false alarm 
happens in a simulation run at subgroup T, the control chart resumes at subgroup T+1 while 
not altering the change-point estimation process [12].  

6. Comparison of Change Point Estimator 

In this section the performances of the proposed estimator, τ�, are compared with the MLE 
derived for linear change disturbance proposed by Perry et al. (2006) when a linear trend 
disturbance is present, and the out-of-control signal comes from a Poisson CUSUM  and c 
control charts. This is referred to τ��. We investigate in-control rate parameter value of  
λ� = 5, 10. 

• Using a Poisson CUSUM  control chart 

In this section we use simulation to compare accuracy of τ� and τ�� following a signal from a 
Poisson CUSUM control chart. The process change point was simulated to occur at τ = 100. 
Independent observations were simulated from a Poisson process with rate parameter λ� for 
subgroup	i = 1,2, … , 100. Following subgroup 100, observations were simulated from a 
Poisson process with rate parameter λ� = λ� + β�i − τ�, where β > 0, until the CUSUM 
chart produced a signal. Then two estimates of the process change point, τ� and τ��, were 
computed. This procedure was repeated a total of N = 5000 times for each β value 
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investigated. Averages of the change point estimates obtained from the 5000 runs, τ� and τ��, 
were computed along with their corresponding estimated standard errors.  
Table I shows accuracy performances for the two estimators, as well as the estimated ARL 
of the CUSUM procedure, over a range of β values. The mean squared errors, MSE, and the 
expected time of the change-point estimates were calculated as shown in Table 1. Except 
forβ = 0.05, and β = 0.15, MSE(τ)is smaller than MSE(τ��) for all other considered values 
of β. And for β ≥ 0.5 τ�  is closer to	τ = 100 than is τ��. It means that for these values of β 
the proposed estimator performs better than the other estimator. 
 

Table I.    Estimated accuracy performances for new estimator and MLE of the change point for different � 
values following a genuine signal from an CUSUM control chart when a linear trend change is present. ( �� =

�,  � = �,� = �.�	,	� = �

, N=5000) 
� ��� �� ��� ���(�) ���(���) 

0.05 
56.603 124.43 97.34 19.96 17.92 

0.15 
20.95 104.7 101.3 7.51 6.97 

0.35 
10.89 102.01 99.1 4.21 6.10 

0.5 
9.1 100 98.4 3.05 5.83 

0.8 
6.22 101.70 97.8 1.49 4.79 

1 
5.20 99.8 97.8 2.88 3.61 

2 
3.38 99.4 98.05 1.89 3.05 

3 
2.634 99.9 100.44 0.73 2.50 

 
Note that, in this table, as the magnitude of the slope parameter, β, increases to 3, the mean 
squared error for the two estimators decreases. However, more accurate estimates are 
obtained using the proposed method in almost all cases. Thus, it can be concluded from 
Table I that the proposed estimator outperforms the other estimator especially for large value 
of β. 
Furthermore we use simulation to study the precision of the proposed estimator following a 
signal from a CUSUM control chart. To evaluate and compare the precision of τ� and τ��, we 
recorded (for each estimator) the proportion of the N = 5000 simulation runs that the 
estimator was within a specified tolerance of the simulated change point value. Doing this 
for a range of β yields the results shown in Tables II and III. 
 
Table II. Precision of the new estimator and MLE of the change point for different � values (� < 0.8). (�� = �, 

� = �, � = �.�	 	� = �

, N=5000) 

Precision 
� 

0.05 0.15 0.35 0.5 
 

��(��� = �) 
��(�� = �) 

 

0.045 
0.017 

0.070 
0.039 

0.135 
0.101 

0.150 
0.121 

 
��(|��� − �| ≤ �) 
��(|�� − �| ≤ �) 

0.045 
0.017 

0.221
0.119 

0.324 
0.242 

0.397 
0.330 
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Precision 
� 

0.05 0.15 0.35 0.5 
 

 
��(|��� − �| ≤ �) 
��(|�� − �| ≤ �) 

 

0.211 
0.079 

0.329
0.179 

0.473 
0.368 

0.550 
0.517 

 
��(|��� − �| ≤ �) 
��(|�� − �| ≤ �) 

 

0.261 
0.096 

0.435
0.243 

0.600 
0.496 

0.666 
0.651 

 
��(|��� − �| ≤ �) 
��(|�� − �| ≤ �) 

 

0.323 
0.113 

0.530 
0.307 

0.682 
0.609 

0.732 
0.752 

 
��(|��� − �| ≤ �) 
��(|�� − �| ≤ �) 

 

0.37 
0.127 

0.595
0.371 

0.755 
0.696 

0.773 
0.834 

 
��(|��� − �| ≤ �) 
��(|�� − �| ≤ �) 

 

0.045 
0.017 

0.666
0.437 

0.797 
0.781 

0.810 
0.892 

Table III. Precision of the new estimator and MLE of the change point for different � values (� ≥ 
.	). (�� =
�, � = �, � = �.�	 	� = �

, N=5000) 

Precision 
� 

0.8 1 2 3 
 

��(��� = �) 
��(�� = �) 

 

0.168 
0.187 

0.200 
0.244 

0.267 
0.357 

0.286 
0.412 

 
��(|��� − �| ≤ �) 
��(|�� − �| ≤ �) 

 

0.445 
0.447 

0.483 
0.510 

0.513 
0.724 

0.481 
0.770 

 
��(|��� − �| ≤ �) 
��(|�� − �| ≤ �) 

 

0.608 
0.632 

0.619 
0.730 

0.641 
0.877 

0.614 
0.890 

 
��(|��� − �| ≤ �) 
��(|�� − �| ≤ �) 

 

0.704 
0.772 

0.703 
0.839 

0.715 
0.933 

0.695 
0.940 

 
��(|��� − �| ≤ �) 
��(|�� − �| ≤ �) 

 

0.755 
0.869 

0.761 
0.919 

0.769 
0.954 

0.767 
0.972 

 
��(|��� − �| ≤ �) 
��(|�� − �| ≤ �) 

 

0.785 
0.918 

0.801 
0.951 

0.798 
0.965 

0.801 
0.98 

 
��(|��� − �| ≤ �) 
��(|�� − �| ≤ �) 

 

0.814 
0.956 

0.828 
0.975 

0.826 
0.977 

0.827 
0.985 
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From Table II and III it can be seen that the 
of β increases, the precision of the 
estimates is plotted in Figures 2

Figure 2. Precision of estimators for the estimated accurate change point 
 

 

Figure 3. Precision of estimators for tolerance 

A New Estimator Based on Likelihood Function for Drift Time of Change

From Table II and III it can be seen that the τ� is more precise for β � 0.5. As the magnitude 
increases, the precision of the two estimators improves. The precision of the two 

plotted in Figures 2-4. These Figures confirms the above results.

Precision of estimators for the estimated accurate change point ��

Precision of estimators for tolerance 1 subgroup           p ̂(|τ ̂-τ|≤

A New Estimator Based on Likelihood Function for Drift Time of Change... 

. As the magnitude 
estimators improves. The precision of the two 

results. 

 

����� � ��. 

 

τ|≤1).  
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Figure 4. Precision of estimators for tolerance 

• Using a c control charts

In this section we consider the performance of our proposed change point estimator when 
using a c chart and λ� 
 10. In this case, the upper control limit i

19.49 and the lower control limit is 
study was conducted to examine the performance of our estimator and compare it whit the 
other estimator. 
The change point was simulated at time 100. Starting at tim
simulated from the changed process until the 
control. The expected time of the first genuine alarm, 
control chart first signals a change in the Pois
observed, the expected time of the first genuine alarm is equal to the average run length 
(ARL) plus	τ. Thus, �T� 
 ARL
estimators of the Poisson process, i
This procedure was repeated 
The mean squared errors, MSE
calculated as shown in Table IV. 
From Table IV, it can be seen for all values of
β≥0.5, our proposed estimator performs well in estimating the time of the pr
can also be seen from Table IV that the performance of the two estimators improves 
considerably with increases in magnitude of the change. We next consider the frequency 
with which the change point estimation is within a distance of m the 

 1,2, . . ,10,15 . The results are reported in Table V and VI for different 
show that for small values of	β
the proposed estimator. However, it is not abso
the precision performance of 
change point, is slightly better than the precision provided by the 
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Precision of estimators for tolerance 1 subgroup           p ̂(|τ ̂-τ|≤
 

control charts 

In this section we consider the performance of our proposed change point estimator when 
. In this case, the upper control limit is UCL

and the lower control limit is LCL 
 10 � 3√10 
 0.51. A Monte Carlo simulation 
study was conducted to examine the performance of our estimator and compare it whit the 

The change point was simulated at time 100. Starting at time 101, observations were 
simulated from the changed process until the c chart signaled that the process was out of 
control. The expected time of the first genuine alarm, E�T�, is the expected time at which the 
control chart first signals a change in the Poisson rate parameter. Since no false alarms were 
observed, the expected time of the first genuine alarm is equal to the average run length 

ARL " τ . Based on the simulation data, the two aforementioned 
estimators of the Poisson process, i.e.	τ� and τ��, were then obtained for various values of 
This procedure was repeated N 
 5000 times over a range of β values for each estimator. 

MSE, and the expected time of the change-point estimates were 
calculated as shown in Table IV.  
From Table IV, it can be seen for all values of	β,	MSE�τ�� is smaller than

, our proposed estimator performs well in estimating the time of the pr
can also be seen from Table IV that the performance of the two estimators improves 
considerably with increases in magnitude of the change. We next consider the frequency 
with which the change point estimation is within a distance of m the true change point, for 

. The results are reported in Table V and VI for different 
β the precision provided by the τ��, in most cases is better than 

the proposed estimator. However, it is not absolutely better than it. For example for 
the precision performance of τ� that was within 9,10 and 15 subgroups of the true process 
change point, is slightly better than the precision provided by the τ��.  

 

τ|≤2).  

In this section we consider the performance of our proposed change point estimator when 
UCL 
 10 " 3√10 


. A Monte Carlo simulation 
study was conducted to examine the performance of our estimator and compare it whit the 

e 101, observations were 
chart signaled that the process was out of 

, is the expected time at which the 
son rate parameter. Since no false alarms were 

observed, the expected time of the first genuine alarm is equal to the average run length 
. Based on the simulation data, the two aforementioned 

, were then obtained for various values of β. 
values for each estimator. 

point estimates were 

is smaller thanMSE�τ��� and for 
, our proposed estimator performs well in estimating the time of the process change. It 

can also be seen from Table IV that the performance of the two estimators improves 
considerably with increases in magnitude of the change. We next consider the frequency 

true change point, for 
. The results are reported in Table V and VI for different β values. Table V 

� , in most cases is better than 
lutely better than it. For example for β 
 0.5, 

that was within 9,10 and 15 subgroups of the true process 
�
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Table IV.     Estimated accuracy performances for new estimator and MLE of the change point for different � 
values from an � control chart when a linear trend change is present. (�� = �
, � = �

, N=5000) 

� ���� �� ��� ���(�) ���(���) 
0.05 

158.516 121.98 105.852 20.18 23.63 

0.15 
125.128 114.236 103.103 8.04 14.908 

0.35 
114.06 107.16 97.66 4.833 10.219 

0.5 
112.04 105.28 96.24 3.81 8.60 

0.8 
107.18 102.28 97.54 2.347 6.719 

1 
107.04 101.88 98.66 2.00 4.817 

2 
104.22 100.12 98 1.90 3.07 

3 
103.36 100.01 99.18 0.904 2.70 

 
Table V.     Precision of the new estimator and the MLE of the change point for different � values (� < 0.8). 

(�� = �
,	� = �

,  N=5000) 

Precision 
� 

0.05 0.15 0.35 0.5 
 

��(��� = �) 
��(�� = �) 

 

0.025 
0.009 

0.045 
0.015 

0.087 
0.023 

0.102 
0.055 

 
��(|��� − �| ≤ �) 
��(|�� − �| ≤ �) 

 

0.055 
0.024 

0.135 
0.113 

0.26 
0.085 

0.304 
0.150 

 
��(|��� − �| ≤ �) 
��(|�� − �| ≤ �) 

 

0.099 
0.046 

0.212 
0.125 

0.383 
0.138 

0.457 
0.247 

 
��(|��� − �| ≤ �) 
��(|�� − �| ≤ �) 

 

0.137 
0.052 

0.295 
0.137 

0.476 
0.216 

0.577 
0.360 

 
��(|��� − �| ≤ �) 
��(|�� − �| ≤ �) 

 

0.166 
0.074 

0.366 
0.157 

0.582 
0.284 

0.682 
0.477 

 
��(|��� − �| ≤ �) 
��(|�� − �| ≤ �) 

 

0.203 
0.087 

0.429 
0.169 

0.663 
0.354 

0.767 
0.598 

 
��(|��� − �| ≤ �) 
��(|�� − �| ≤ �) 

 

0.244 
0.095 

0.485 
0.184 

0.739 
0.449 

0.819 
0.686 

 
��(|��� − �| ≤ �) 
��(|�� − �| ≤ �) 

0.273 
0.184 

0.553 
0.190 

0.801 
0.547 

0.851 
0.774 
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Precision 
� 

0.05 0.15 0.35 0.5 
 

 
��(|��� − �| ≤ 	) 
��(|�� − �| ≤ 	) 

 

0.303 
0.297 

0.602 
0.339 

0.839 
0.637 

0.886 
0.859 

 
��(|��� − �| ≤  ) 
��(|�� − �| ≤  ) 

 

0.334 
0.304 

0.645 
0.473 

0.866 
0.711 

0.905 
0.922 

 
��(|��� − �| ≤ �
) 
��(|�� − �| ≤ �
) 

 

0.364 
0.439 

0.684 
0.521 

0.880 
0.769 

0.917 
0.956 

 
��(|��� − �| ≤ ��) 
��(|�� − �| ≤ ��) 

 

0.845 
0.614 

0.893 
0.729 

0.948 
0.966 

0.955 
1 

 

Table VI.     Precision of the new estimator and the MLE of the change point for different β values (β ≥ 0.8). 

(λ� = 10,	τ = 100, N=5000) 

Precision 
� 

0.8 1 2 3 
 

��(��� = �) 
��(�� = �) 

 

0.096 
0.137 

0.144 
0.173 

0.257 
0.291 

0.296 
0.673 

 
��(|��� − �| ≤ �) 
��(|�� − �| ≤ �) 

 

0.305 
0.378 

0.387 
0.456 

0.560 
0.692 

0.608 
0.816 

 
��(|��� − �| ≤ �) 
��(|�� − �| ≤ �) 

 

0.462 
0.574 

0.589 
0.655 

0.700 
0.882 

0.749 
0.959 

 
��(|��� − �| ≤ �) 
��(|�� − �| ≤ �) 

 

0.629 
0.697 

0.757 
0.786 

0.784 
0.966 

0.822 
0.99 

 
��(|��� − �| ≤ �) 
��(|�� − �| ≤ �) 

 

0.777 
0.747 

0.829 
0.877 

0.823 
0.992 

0.857 
0.995 

 
��(|��� − �| ≤ �) 
��(|�� − �| ≤ �) 

 

0.836 
0.853 

0.864 
0.945 

0.882 
0.996 

0.960 
1 

 
��(|��� − �| ≤ �) 
��(|�� − �| ≤ �) 

 

0.871 
0.911 

0.887 
0.976 

0.887 
0.999 

0.968 
1 

 
��(|��� − �| ≤ �) 

0.888 
0.952 

0.908 
0.995 

0.974 
1 

0.987 
1 
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Precision 
� 

0.8 1 2 3 
��(|�� − �| ≤ �) 

 
 

��(|��� − �| ≤ 	) 
��(|�� − �| ≤ 	) 

 

0.906 
0.981 

0.925 
1 

0.993 
1 

1 
1 

 
��(|��� − �| ≤  ) 
��(|�� − �| ≤  ) 

 

0.921 
0.992 

0.932 
1 

0.950 
1 

1 
1 

 
��(|��� − �| ≤ �
) 
��(|�� − �| ≤ �
) 

 

0.93 
0.997 

0.94 
1 

1 
1 

1 
1 

 
��(|��� − �| ≤ ��) 
��(|�� − �| ≤ ��) 

 

0.957 
1 

0.964 
1 

1 
1 

1 
1 

 

It can be seen from Table VI that our proposed change point estimator has a very good 
precision in estimating the time of a change in the Poisson rate parameter when the 
magnitude of 	β is equal or bigger than 0.8. for	β = 0.8, our estimator identified the process 
change point in 13.7% of the simulation trials. Our estimator was within two (six) subgroups 
of the true process change point in 57.4% (91.1%) of the simulations. The proposed 
estimator performs very well for large values of β. For	β = 3, the c chart has an ARL of 
3.36. In this case, our proposed estimator identified the change point correctly in 67.3% of 
the simulations and was within one subgroup of the time of the process change in 81.6% of 
the simulation trials. 

7. Conclusion 

Knowing the time when the process change began would simplify the search for the special 
cause. If process engineers knew when the change in the process began, the search would 
simply reduce to discovering which process variables or procedures changed during that 
time. Thus, process engineers would increase their chances of correctly identifying the 
special cause quickly. This would allow them to take appropriate actions to improve quality 
sooner. 
In this paper, we have proposed a new estimator based on the likelihood function that is 
useful for identifying the time of a drift change in the Poisson process. The performance of 
the proposed estimation method was evaluated and compared with the MLE methods 
developed by Perry et al. [12] for linear trend in Poisson rate parameter. For this purpose, we 
consider the out-of-control signal comes from a Poisson CUSUM and c control charts. When 
the out-of-control signal is detected, the diagnostic is started. Results showed that the 
proposed approach has a smaller variance almost in all cases and for large values of β it 
outperforms the other estimator when a linear trend disturbance is present. 
The proposed method provides an estimate to the drift change in Poisson process. 
Employing such an estimator for other kind of processes such as binomial, normal and etc. 
may be a subject for future research.  
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