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1|Introduction    

Production planning, maintenance, and quality control are the most critical challenges of a production system 

that directly affect the system's performance. Production planning aims to decide how to divide and schedule 

the tasks to achieve specific goals, such as minimizing tardiness or maximizing production. The maintenance 
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Abstract 

Adopting an integrated production, maintenance, and quality policy in production systems is of great importance due to their 

interconnected influence. Consequently, investigating these aspects in isolation may yield an infeasible solution. This paper aims 

to address the joint optimal policy of production, maintenance, and quality in a two-machine-single-product production system 

with an intermediate buffer and final product storage. The production machines have degradation levels from as-good-as-new to 

the breakdown state. The failures increase the production machine's degradation level, and maintenance activities change the status 

to the initial state. Also, the quality of the final product depends on the level of degradation of the machines and the correlation 

between the degradation level of the production machines and the product's quality in the case that high degradation of the 

previous production machines leads to a high probability to produce wastage by the following machines is considered. The 

production system studied in this research has been modeled using the agent-based simulation, and the Reinforcement Learning 

(RL) algorithm has obtained the optimal integrated policy. The goal is to find an integrated optimal policy that minimizes 

production costs, maintenance costs, inventory costs, lost orders, breakdown of production machines, and low-quality production. 

The meta-heuristic technique evaluates the joint policy obtained by the decision-maker agent. The results show that the acquired 

joint policy by the RL algorithm offers acceptable performance and can be applied to the autonomous real-time decision-making 

process in manufacturing systems. 

Keywords: Agent-based modeling, Reinforcement learning, Simulation-optimization, Production planning, Maintenance, Quality 
control. 
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goal is to maximize machine availability time while minimizing associated costs. According to the definition 

of European standard EN13306 version 2010 [1], maintenance and repair is "the combination of all technical, 

administrative and managerial activities during the life of a device in order to maintain or return it to the 

required function." 

Since performing any maintenance and repair activities will make the production machines inaccessible, 

optimizing maintenance and repair activities without considering the production planning limitations will lead 

to an infeasible solution. On the other hand, production planning is entirely affected by the time of availability 

of production machines. If the production machines are not available at the right time, achieving the desired 

goals in production planning will be almost impossible. In addition, if the maintenance and repair duration is 

allocated to the production, there will be a possibility of failure and breakdown of the production machines. 

Therefore, maintenance and production are two activities that conflict with each other [2]. 

The quality of the final products is also affected by the degradation level of the production machines. The 

high level of degradation increases the probability of producing low-quality products. Therefore, production 

planning, maintenance, and quality control must be considered as an integrated problem to obtain a feasible 

solution. However, very little research has been done on the integrated optimization of these aspects [3]. 

There has been significant development in artificial intelligence and machine learning in recent years, and 

their applications have been extended to many fields, including manufacturing systems. Machine learning is a 

subset of artificial intelligence in which computers can explore the patterns in the data and learn the policies. 

Machine learning is divided into three categories: supervised learning, unsupervised learning, and 

Reinforcement Learning (RL), which are shown in Fig. 1 [4]. 

 

Fig. 1. The machine learning categories. 
 

The required data for supervised learning has been labeled or categorized, e.g., data classification and 

regression for future prediction. In unsupervised learning, the data is unlabeled. This method is used to 

explore hidden patterns in the data, such as clustering methods. However, in RL, the learning process is done 

by trial and error in a dynamic environment. The agent takes action and receives associated rewards to 

maximize the expected rewards. This method is inspired by behavioral psychology. The agent's learning 

process can occur in a real-world environment or a simulation model. The application of RL in optimizing 

the production system is almost nascent. This research aims to apply RL to achieve the optimal joint policy 

of production planning, maintenance, and quality in a multi-machine production system. In order to evaluate 

the obtained policy, the Simulation-Optimization (SO) approach has been used. The main contributions of 

this paper are: 

 Applying RL and Agent-Based Modeling (ABM) to obtain a joint optimal policy of production, maintenance, and 

quality in a multi-machine single-product manufacturing system. 

 Investigating the correlation between the degradation level of the production machines and the product's quality in the 

case that high degradation of the previous production machines leads to a high probability of produce wastage by the 

following machines. 

 Comparing the acquired joint policy by the decision-maker agent with the meta-heuristic method and evaluating the 

performance of the RL-based policy. 
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The article's structure will be as follows. In Section 2, the literature review will be presented. In Section 3, the 

production system, the agent-based model, and the RL algorithm are described. In Section 4, the obtained 

policy has been evaluated by SO techniques. Finally, the conclusion and suggestions are provided in Section 

5. 

2|Literature Review 

As mentioned, RL is an emerging approach to optimize production systems. Zheng et al. [5] consider a 

production system consisting of two machines and one intermediate buffer [5]. The production system has 

been modeled by Discrete Event Simulation (DES), and RL has been used to obtain the optimal joint policy 

of production and maintenance based on the inventory level and the state of the production machines. Kuhnle 

et al. [6] optimized a parallel multi-machine production system using RL to achieve the best schedule for 

maintenance activities, increase production rates, and reduce maintenance costs [6]. ABM has been applied 

to model the production system, and each machine is considered an agent. In addition, each agent 

independently satisfies the demand. Xanthopoulos et al. [7] investigated a joint production and maintenance 

problem in a single machine–single product system. The system has a downstream buffer to store the final 

products and satisfy the demand. The optimal joint policy to minimize the inventory level and demand 

backorders has been acquired by RL. The extension of the previous research has been done by Paraschos et 

al. [8]. They consider the quality of products so that the production machine has a degradation level that 

affects the quality of the final products. The maintenance and repair activities can be performed to improve 

the degradation level. The optimal joint production, maintenance, and quality have been yielded by RL. 

Yang et al. [9] have considered the joint optimal Preventive Maintenance (PM) and production scheduling 

policy in a similar production system by RL approach [9]. Deep Reinforcement Learning (DRL) has acquired 

the PM policy of a multi-machine, single-product system in [10]. Su et al. [11] investigate the challenge of 

designing PM policies for large-scale manufacturing systems and propose a novel approach using multi-agent 

RL to address the complexity of such systems [11]. They discuss that Designing efficient PM policies for 

large-scale manufacturing systems is difficult due to non-linearity and stochasticity in these complex systems. 

Zhao and Smidts [12] address challenges in maintenance policy optimization, in which decision-maker agents 

encounter an imperfect understanding of system degradation models and have a limited ability to observe 

system degradation states [12]. They proposed RL to tackle these challenges, specifically for maintenance 

problems with Markov degradation processes. Ye et al. [13] investigate the joint optimization of 

manufacturing systems, specifically focusing on large-scale dynamic systems, such as manufacturing networks, 

which have complex structures [13]. The paper proposes a novel approach using RL, specifically the Deep 

Deterministic Policy Gradient (DDPG) algorithm, to achieve joint optimization of PM and work-in-process 

quality inspection in manufacturing networks with reliability-quality interactions. 

SO is another method to obtain optimal policies in production systems. In a study conducted by Lavoie et al. 

[14] they proved the effectiveness of SO algorithms in optimizing production systems. These algorithms have 

also been used in joint production planning, maintenance, and quality control optimization. Bouslah et al. [15] 

investigated a production system with two machines. In this research, hybrid optimization was performed 

using SO techniques to minimize the total costs. The problem of production planning and quality control is 

presented in [16]. They use SO to optimize a single machine-single product system jointly. The extension of 

the previous research has been done in [3]. They optimized combined production planning, maintenance, and 

quality control of a continuous single-machine production machine. Tambe and Kulkarni [17] introduce an 

integrated planning approach for optimizing the three core functions of shop floor management: 

maintenance, production scheduling, and quality. The methodology focuses on the conditional reliability of 

components and their impact on the overall system operation. The primary objective is to minimize the 

system operation cost through combined decision-making and investigate the integrated policy's cost-

effectiveness compared to non-integrated planning approaches. The mathematical model is used to build a 

system model, and the meta-heuristics methods, such as simulated annealing and genetic algorithm, are 

applied to solve the optimization problem.  
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A summary of the presented papers is given in Table 1. 

Table 1. The summary of the papers. 

 

  

  

  

  

  

  

  

  

  

  

 

 

 

 

 

 

 

The main contribution of this paper is to propose an RL-based method to jointly optimize the production, 

maintenance, and quality problem in a multi-machine single-product system by considering the correlation 

between the degradation level of the production machines and the product's quality in the case that high 

degradation of the previous production machines leads to a high probability to produce wastage by the 

following machines. To the author's knowledge, the proposed method has not been discussed in other 

research.  

To evaluate the obtained RL-based policy, the SO technique has been implemented to compare the results. 

For this purpose, an agent-based model of the production system is developed, and a commercial SO package 

is used to obtain the optimal joint policy. The SO package combines heuristic and meta-heuristic methods 

such as tabu search, neural network, and scattered search to optimize the objective function.  

3|Problem Description 

In this research, a production system consisting of two production machines M1 and M2, and one intermediate 

buffer with a maximum capacity of Bmax and a final product warehouse with a capacity of Imax has been 

investigated (Fig. 2).  

No Rf. Method Production System Production Planning Maintenance Quality 
1 [5] RL Two machines–Single 

product 

   

2 [6] RL Multi parallel machines–
Single product 

   

3 [7] RL Single machine–Single 
product 

   

4 [8] RL Single machine–Single 
product 

   
 

5 [9] RL Single machine–Single 
product 

   

6 [10] RL Multi Machine–Single 
Product 

   

7 [15] SO Two machines–Single 
product 

   

8 [16] SO Single machine–Single 
product 

   

9 [3] SO Single machine–Single 
product 

   

10 [17] SO Multi Machine–Single 
Product 

   

11 [11] RL Multi Machine–Single 
Product 

   

12 [12] RL Single machine–Single 
product 

   

13 [13] RL Multi Machine–Single 
Product 

   
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Fig.  2. The production system. 

Manufacturing machines have depreciation levels that vary from the as-good-as-new d0 to the breakdown 

dmax. Depreciation level increases due to failures at the rate of λf during the production process. The 

probability of breakdown at each level of degradation levels has a probability of p
b,di

. The higher degradation 

level increases the breakdown probability. Maintenance and repair activities return the degradation level of 

the production machine to the as-good-as-new state d0.  

The semi-final parts are produced by machine M1. The production time follows the exponential distribution 

with the parameter λp
1
. After that, the semi-final parts are stored in the intermediate buffer to be processed 

by the machine M2. The processing time to produce the final parts follows the exponential distribution with 

parameter λp
2
. The quality of the semi-final and final parts varies depending on the degradation level of the 

machine M1 and M2. The probability of producing low-quality semi-final parts in each degradation level of 

the machine M1 is pdi. The quality of the final parts is related to the quality of the semi-final part and the 

degradation level of the machine M2. The probability of producing high-quality parts by machine M2 is 

1-pdi,𝑞ℎ
when the semi-final product's quality is high, or 1-pdi,𝑞𝑙

 when the quality is low. On the other hand, 

the wastage is produced with the portability pdi,𝑞ℎ
 and pdi,𝑞𝑙

 when the quality of semi-final parts is high or 

low, respectively. The probability of producing high-quality parts from the low-quality semi-final parts 

increases when the degradation level of the machine M2 is close to d0. Therefore, at a certain degradation 

level,  pdi,qh
<pdi,ql

. 

At the end of each day, the demand that follows the Poisson distribution with parameter λd arrives, and 

satisfies when the inventory of the final parts is sufficient. Otherwise, the demand is backordered until the 

inventory is available. The maximum number of allowed backorders is Smax and the number of missed orders 

is calculated by Eq. (1).  

 

4|Methodology 

4.1|The Agent-Based Modeling 

There are three major paradigms in simulation modeling: DES, System Dynamics (SD), and ABM. Despite 

the traditional approaches such as DES and SD, ABM is relatively new and is more general. ABM enables the 

modelers to capture more complexities in dynamic systems [18]. So, in dynamic systems where the events are 

time-related, ABM can be used to model the system. There is no universal agreement for the definition of 

agents; e.g., the agent is defined as an entity with autonomous behavior [19] or an independent component 

[20]. In much literature, self-contained, autonomous, self-directed, and the ability to interact are mentioned 

as the essential characteristics of the agent [21]. 

The ABM consists of the following elements [21]: 

 The agents, characteristics, and behaviors. 

 The way the agents interact. 

 The environment. 

Missed orders=|I-D+Smax|. (1) 
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This paper uses ABM to simulate the production system due to the flexibility of the approach to capture all 

details and ease communication with the decision-maker agent. In the proposed production system, the agents 

are: 

 The Production machine M1. 

 The production machine M2. 

 The decision-maker agent. 

And the environment consists of the storage of the final products and the place where the agents interact.  

4.1.1|The agent's behavior 

In Fig. 3, The behavior of the production agents is shown. The production agents can be in one of the 

following states: 

 ReadyForMessage: In this state, the production agent is waiting to receive a message from the decision-maker agent 

 ReadyForProduction: In this state, the production agent investigates the buffer and storage volume and the remaining 

time till the end of the shift, and if all the required conditions are met, the production process will be started.  

 Produce: The production agent starts the production process at the rate of λp  . 

 Check condition: When the production process is going to be completed, depending on the degradation level of the 

production agent  M1, The production has high quality with 1-p
di

 and low-quality with probability p
di

. In the case of 

the production agent  M2, depending on the quality of the semi-final part and the degradation level of the agent, The 

production has high quality with the probability 1-p
di,q

 or the production becomes wastage with p
di,q

. Also, the agent's 

state transits to the Breakdown state with probability p
b,di

or to the ReadyForProduction state with the probability 

1-p
b,di

. 

 Breakdown: The operating agent will fail, and maintenance and repair activities will be necessary.  

 Maintain: The maintenance and repair activities are performed to return the degradation level of the agent to as-good-

as-new d0. 

 Idle: the production agent does not perform any activity during the shift. 

Fig. 3. The production agent's behavior. 
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4.1.2|The decision-maker agent's behavior 

In this paper, the decision-making process of the decision-maker agent is implemented based on the Markov-

decision process, which consists of the following elements: state-space, actions, transition probability, and 

reward [4].  

First, The decision-maker agent observes the state of the system and authorizes an action. The action is sent 

to the production agents as a message. Next, the agent considers the new state of the system and the 

corresponding reward of the authorized action. Then, this process continues until the optimal policy is 

obtained (Fig. 4).  

 

Fig.  3. The Markov-decision process of the 

decision-maker agent. 

The decision-maker agent authorizes the actions that maximize the discounted future reward. Therefore, the 

agent authorizes an action in such a way that the following equation is maximized: 

4.1.3|The State of the system 

In every decision epoch, the decision-maker agent observes the state of the system as the following vector 

Where q
lq
 and q

hq
 are the number of low-quality and high-quality semi-final parts in the intermediate buffer, 

respectively. I is the inventory level of final parts, and d1 and d2 are the degradation level of machine M1 and 

M2. The system state-space is 

Consequently, the number of states that the decision-maker agent can find itself in is: 

4.1.4|Actions 

In every decision epoch, the decision-maker agent authorizes one of the following actions based on the 

system's state: produce, maintain, and idle. The feasible action set in every state is: 

 If the number of final parts reaches the maximum storage capacity Imax, the "maintain" or "idle" action can only be 

performed for machine M2. 

 The maintenance and repair activities are the only options if the production agents are in "breakdown" state. 

 All the actions are feasible if the inventory of the final parts is less than the maximum allowed capacity and the 

production agent is in "readyformessage" state.  

Gt=Rt+1+γRt+1+γ
2Rt+1+…= ∑ γkRt+k+1

∞
k=0 . (2) 

S(t)=(S1,t,S2,t,S3,t,S4,t,S5,t)=(qlq,qhq,I,d1,d2). (3) 

S1: 0, …, Bmax, 

S2: 0, …, Bmax, 

S3: -Bmax, …, Imax, 

S4: 0, …, dmax, for the machine M1, 

S5: 0, …, dmax, for the machine M2. 

(4) 

N(s)=(Bmax+1)×(Bmax+1)×(Imax+Smax+1)×(dmaxM1+1)×(dmaxM2+1). (5) 
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4.1.5|Reward 

Let A = {A1, A2, A3, … . } denotes the actions that the decision-maker agent takes in each decision epoch. The 

agent receives a numerical reward in each decision epoch regarding the previously performed action by 

Where 

Chb : The holding cost of the semi-final parts stored in the buffer. 

Cℎ𝐼 : The holding cost of the final parts stored in the storage. 

Cs: The cost of backordered orders. 

Cp: The cost of production. 

Cm: The cost of maintenance and repair activities. 

Cw: The cost of producing wastages. 

Cb: The cost of production machine breakdown. 

Cl: The cost of missed orders. 

Sp: The sales profit of the final parts. 
The main goal of the decision-maker agent is to obtain a policy that maximizes the total acquired rewards 

(minimizing Eq. (6)).  

4.2|Reinforcement Learning 

In this research, the optimal joint policy of the decision-maker agent is achieved by a RL algorithm called R-

learning [22]. The R-learning algorithm has been applied in recent research [7], [8]. 

Let td = {td,1, td,2, td,3, … }  denotes the decision epochs that the decision-maker agent takes action and Rtd,i
 is 

the obtained reward in decision epoch i. The R-learning seeks to maximize the following equation: 

In the R-learning, the value of the performed action in the state (state-action) is calculated by 

Where 

Q(St,At): The value of action A in state S in time t. 

α: Learning rate. 

Rt+1: The obtained reward regarding the performed action A in state S in time t. 

max
a

Q(St+1,a): The action that yields the maximum value in state S in time t+1. 

Also, the following equation updates the average reward ρ: 

Where β is a real-valued parameter between 0 and 1. The decision-maker agent applied the ε-greedy "policy"  

to take action. In this policy, the agent chooses the action that yields the maximum value by the probability 

1 − ε, and selects the action randomly with the probability ε.  

R=Chb+ChI+Cs+Cp+Cm+Cw+Cb+Cl-Sp. (6) 

ρ= lim
n→ ∞

1

n
E {∑ Rtd,i

n
i=1 }. (7) 

Q(St,At)← Q(St,At)+α [Rt+1-ρ+ max
a

Q(St+1,a) -Q(St,At)]. (8) 

Q(St,At)← Q(St,At)+α [Rt+1-ρ+ max
a

Q(St+1,a) -Q(St,At)]. (9) 
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It is worth mentioning that in methods such as dynamic programming, the state transition probability matrix 

is needed to solve the MDP. However, in many real-world problems, it is impossible to calculate the state 

transition probabilities matrix of the system. In this case, the RL algorithms are helpful because there is no 

need to calculate the transition probabilities. The algorithm uses the simulation model to act and observe the 

next state of the system and reward.  

4.3|Simulation-Optimization 

The term "SO" refers to techniques used to optimize stochastic problems in parametric optimization [23]. 

Specifically, it involves searching for the optimal values of input parameters in a simulation model to achieve 

a specific objective. 

The integrated production, maintenance, and quality control in this research can be represented as a discrete 

parametric optimization problem. The input parameters in this context refer to the set of feasible actions 

available in each state of the system. SO techniques can be employed to find the best action in each state, 

maximizing the total reward or objective function. In this research, the SO package is utilized to find the 

optimal or near-optimal values for the combined optimization problem. The SO package integrates various 

metaheuristic approaches, including scatter search, tabu search, and neural networks, into a single 

optimization procedure, enabling efficient and effective optimization. The SO process is shown in Fig. 5. 

Fig. 4. The process of SO. 

 

5|Numerical Results 

Four scenarios evaluate the efficiency of the proposed method. The first scenario is the base case, as illustrated 

in Table 2. In the second scenario, the efficiency of the policies to decrease missed orders is examined. In the 

third scenario, the effect of increasing the production rate is studied. The efficiency of the policies in reducing 

missed orders and wastages is evaluated in Scenario 4.  

In the "policy learning" phase, the RL-based decision-maker agent acquires the optimal joint production, 

maintenance, and quality policy using the agent-based simulation of the production system of each scenario. 

Next, in the "policy evaluation" phase, the decision-maker agent selects the action based on the obtained 

policy in the simulation model of the scenarios. By the Monte-Carlo, the policy will be evaluated, the 

simulation model is iterated for a certain number of runs, and a unique random seed performs each iteration 

to capture all the events.   

Two alternatives evaluate the RL-based policy: the random decision-maker agent and the SO method.  

As discussed in Section 5, the decision-maker agent uses the ε-greedy policy to select an action in every 

decision epoch. If the value of ε is set to be 1, the agent chooses the action randomly in all decision epochs. 

This case is considered as an alternative to evaluating the policies. 
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The SO method is also studied to evaluate the policies. The SO package observes the simulation model of 

each scenario as a black box, and the system's states are defined as the input parameters of the simulation 

model. In each iteration, the state-action pairs are set as decision variables to minimize the obtained cost. 

Table 2. The parameter's value of the production system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Due to the stochasticity of the simulation model, the model is replicated for a certain number of runs, and 

the average obtained costs are considered as the objective function value. The best state-action pairs that yield 

the minimum total cost are the acquired optimal joint policy by the SO package. In Table 3, the input 

parameters of the RL algorithm, the Monte Carlo method, and the SO package are illustrated. 
 

Table 3. The input parameter's value. 

 

 

 

 

 
 

5.1|Scenario 1-Base Case 

In Scenario 1, the input parameters of the agent-based simulation are set by the values of Table 2. The RL-

based decision-maker agent observes the state of the system and authorizes the action. In the next step, the 

new state of the system and the corresponding reward (Eq. (6)) is returned. This process continues until the 

optimal policy is obtained. The acquired reward by the agent in each episode is shown in Fig. 6. 

10  Imax Environment 

10  Bmax 
10  Smax 
1  ChI

 

3  Chb
 

5  Cs 
15  Cw 
50  Cl 
10  Sp 

(0,1,2,3) d Machine M2 (0,1,2,3) d Machine M1 
20×λp λf 20×λp λf 

2 λp 1.5 λp 
(0,0.06,0.25,0.8) p

b,di
 (0,0.05,0.2,0.8) p

b,di
 

- p
di

 (0,0.1,0.5,1) p
di

 
(0,0.2,0.5,0.9) p

di,ql
 - p

di,ql
 

(0,0.1,0.25,0.6) p
di,qh

 - p
di,qh

 

0.5 Cp 0.5 Cp 

120 Cm 100 Cm 
200 Cb 150 Cb 

12 Hours Shift duration The Agent- 
Based Model 2160 Hours Model execution time 

25000 Number of episodes RL 

2160 Hours Number of steps 

5000 Number of Iterations Monte-Carlo 

2160 Hours The simulation model execution time 

25000 Number of iterations SO Package 

30 Minimum number of replications 

100 Maximum number of replications 

2160 Hours The simulation model execution time 
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Fig. 5. The obtained reward by the decision-maker agent in scenario 1. 
 

It is observed that the decision-maker agent initially receives a reward of about 47000 due to the random 

action selection. However, the policy gradually became goal-oriented and finally converged to the reward of 

about 19000. To evaluate the policy, the agent's decision-making process in the simulation model is 

implemented according to the acquired policy, and the Monte Carlo method is used for evaluation. The results 

are presented in Table 4. 

 

Table 2. The results obtained by the RL-based policy in scenario 1. 

 

 

 

 

In order to evaluate the policy obtained by the decision-maker agent, the random decision-making policy is 

implemented in the agent-based simulation model. A comparison is given in Table 5. 

 

Table 3. The comparison of the RL-based and random policy in scenario 1. 

 

 

 

 
 

The random decision-maker agent performed more maintenance and repair activities than the RL-based 

decision-maker agent, resulting in reduced produced wastage. However, the number of missed orders by the 

random policy is significantly higher than the RL-based policy. The RL-based policy performed maintenance 

and repair activities on time and succeeded in reducing 438 units of missed orders and not drastically 

increasing the wastage.  

5.2|Scenario 2- Decreasing the Missed Orders  

In this scenario, the cost associated with missed orders is denoted as Cl is ten times higher than the base case. 

This intentional adjustment aims to incentivize the RL-based algorithm to minimize missed orders effectively. 

The achieved rewards by the agent in each episode are depicted in Fig. 7. 

Title Average Std. Dev 
Total cost 18,884.25 1,900.18 
Number of performed maintenance activities on machine M1  44.699 1.168 
Number of performed maintenance activities on machine M2  44.609 1.14 
Number of breakdowns of machine M1  8.134 2.556 
Number of breakdowns of machine M2  8.428 2.607 
Number of missed orders 165.097 31.549 
Number of wastages 15.135 4.039 

Title RL-Based  
Decision-Maker Agent 

Random  
Decision-Maker Agent 

Number of performed maintenance 
activities on machine M1  

44.699 58.452 

Number of performed maintenance 
activities on machine M2  

44.609 58.801 

Number of breakdowns of machine M1  8.134 4.277 
Number of breakdowns of machine M2  8.428 4.685 
Number of missed orders 165.097 603.038 
Number of wastages 15.135 8.092 

×10
2
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Fig. 6. The obtained reward by the decision-maker agent in scenario 2. 

 

The agent receives a reward of about 320000 at the beginning of episodes, But with more learning, the reward 

converged to 93000. The results of the policy evaluation by the Monte-Carlo method are presented in Table 

6. 

Table 4. The results obtained by the RL-based policy in scenario 2. 

 

 

 

 

 

The RL-based policy decreases missed orders compared to the base case. But the number of breakdowns of 

the machine M1 has increased. It means that the machine M1 must produce even at a high level of degradation 

to satisfy the demand. 

The comparison between the RL-based policy and the random policy is presented in Table 7.  

Table 5. The comparison of the RL-based and random policy in scenario 2. 

 

 

 

 

 

 

Although the RL-based decision-maker agent decreases the missed orders, it is not significant. The main 

reason is that the production rate of machine M1 and M2, by considering the required maintenance and repair 

activities, can not meet the demand. In the following scenario, the effect of increasing the production rate is 

examined.  

5.3|Scenario 3-Increasing the Production Rate 

In order to increase the possibility of satisfying the demand, the production rate is tripled. The cost of missed 

orders is the same as in the previous scenario. In this case, the acquired reward by the agent in each episode 

is shown in Fig. 8. 

Title Average Std. Dev 
Total cost 93,775.34 16,349.80 
Number of performed maintenance activities on machine M1  42.927 1.948 
Number of performed maintenance activities on machine M2  44.724 1.168 
Number of breakdowns of machine M1  16.281 3.29 
Number of breakdowns of machine M2  8.584 2.561 
Number of missed orders 155.145 32.159 
Number of wastages 15.955 4.138 

Title RL-Based  
Decision-Maker Agent 

Random  
Decision-Maker Agent 

Number of performed maintenance 
activities on machine M1  

42.927 58.529 

Number of performed maintenance 
activities on machine M2  

44.724 58.866 

Number of breakdowns of machine M1  16.281 4.269 
Number of breakdowns of machine M2  8.584 4.631 
Number of missed orders 155.145 603.481 
Number of wastages 15.955 8.048 

×10
2
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Fig. 7. The obtained reward by the decision-maker agent in scenario 3. 

 

In scenario 3, the agent initially receives a reward of about 250000, but over time, the reward converges to 

14000. The results of the policy evaluation by the Monte-Carlo method are presented in Table 8. 

 

Table 6. The results obtained by the RL-based policy in scenario 3. 

 

 

 

 

 

The RL-based policy succeeded in decreasing missed orders by almost 96% compared to scenario 2. The 

number of maintenance, breakdowns, and wastages has also increased due to the increased production.  

The comparison between the RL-based policy and the random policy is provided in Table 9.  

 Table 7. The comparison of the RL-based and random policy in scenario 3. 

 

 

 

 

 

 

As it is observed, the performance of the RL-based decision-maker agent is impressive in the current scenario. 

The increased production gives more flexibility to the agent in selecting the time of production, maintenance, 

and repair activities or being idle so that the total cost is minimized. Table 9 shows that although there is no 

significant difference in the number of maintenance and repair activities performed between the two agents, 

the RL-based decision-making agent's missed orders are much lower. However, the increase in production 

rate has not led to a significant increase in the number of wastages, which has been due to the timely 

authorized maintenance and repair activities by the RL-based decision-maker agent.  

5.4|Scenario 4-Decreasing the Wastages 

In this scenario, the algorithm's efficiency in maintaining the quality of the final parts and reducing the number 

of wastages is examined. So, the probability of producing low-quality semi-finished parts in machine M1 at 

different degradation levels are increased. In addition, the probability of making waste from high-quality and 

Title Average Std. Dev 
Total cost 14,256.19 4,274.82 
Number of performed maintenance activities on machine M1  56.095 2.24 
Number of performed maintenance activities on machine M2  56.083 1.936 
Number of breakdowns of machine M1  18.613 3.762 
Number of breakdowns of machine M2  11.937 3.299 
Number of missed orders 5.727 7.513 
Number of wastages 21.553 5.65 

Title RL-Based  
Decision-Maker Agent 

Random  
Decision-Maker Agent 

Number of performed maintenance 
activities on machine M1  

56.095 62.92 

Number of performed maintenance 
activities on machine M2  

56.083 62.842 

Number of breakdowns of machine M1  18.613 10.889 
Number of breakdowns of machine M2  11.937 10.871 
Number of missed orders 5.727 470.454 
Number of wastages 21.553 18.571 

×10
2
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low-quality semi-final parts at different degradation levels of machine M2 has also increased. The new values 

are presented in Table 10. 
 

Table 10. The quality-related probabilities in scenario 4. 

 

 

 

 

Therefore, a large percentage of the final parts will be wasted in the case of insufficient maintenance and 

repair activities. Also, to jointly optimize the production, maintenance, and quality at the same time, the cost 

of missed order is the same as the third scenario, and the cost of wastage Cw is examined in two cases: 15 and 

500. The yielded reward by the agent in each episode is presented in Fig. 9 (Cw=15) and Fig. 10 (Cw=500).  

Fig.  8. The obtained reward by the decision-maker agent in scenario 4 (Cw=15 ). 

Fig.  9. The obtained reward by the decision-maker agent in scenario 4 (Cw=500 ). 

Similar to the previous scenarios, the performance of the RL-based decision-maker agent and the random 

decision-maker agent are compared in Table 11. 

Table 8. The comparison of the RL-based and random policy in scenario 4. 

 

 

 

 

 

 

 

New Values The Production Machine Quality-Related Probabilities 
(0, 0.3, 0.7, 1) Machine M1 p

di
 

(0, 0.3, 0.8, 0.9) Machine M2 p
di,q

l

 

(0, 0.2, 0.6, 0.8) Machine M2 p
di,q

h

 

Title Scenario 4-1 (Cw=15) Scenario 4-2 (Cw=500) 
RL-Based  
Decision-
Maker Agent 

Random  
Decision-
Maker Agent 

RL-Based  
Decision-
Maker Agent 

Random  
Decision-
Maker Agent 

Number of performed maintenance 
activities on machine M1  

57.845 62.926 58.049 62.992 

Number of performed maintenance 
activities on machine M2  

58.13 63.067 57.909 63.065 

Number of breakdowns of machine M1  18.75 11.056 18.846 10.977 
Number of breakdowns of machine M2  12.415 11.052 11.721 11.028 
Number of missed orders 2.199 488.505 2.852 489.384 
Number of wastages 47.048 39.222 44.876 38.969 

×10
2 

×10
2 
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It can be seen that although the increased probability of producing wastages leads to a decrease in final 

products, the RL-based agent has succeeded in balancing the number of missed orders and wastages in the 

current scenario.  

5.5|The Policy Evaluation by SO 

Meta-heuristic methods have been widely used to obtain optimal or near-optimal policies for different mixes 

of production, maintenance, and quality problems [3], [16], [17], [20]. In this research, in addition to the 

Random Agent (RA), the SO method is also used as an alternative to evaluating the obtained policy by the 

RL-based decision-maker agent. The SO package is initialized by related parameters (Table 3), and the 

connection of the package and simulation model of each scenario is established, as shown in Fig. 5. Similar 

to the evaluation process of RL-based policy, the acquired joint policy by SO package is evaluated by the 

Monte Carlo method. The results are shown in Fig. 11. 

Fig.  10. The comparison between SO, RL, and RA policies. 

 

The results indicate that the decision-maker agent, through RL, has successfully achieved an optimal or near-

optimal policy. Its performance is very close to, and in some cases, even better than, the SO approach, and 

both methods have superior performance in minimizing the cumulative reward of Eq. (6). SO methods, due 

to the use of metaheuristic algorithms, provide near-optimal solutions, which serve as a suitable benchmark 

for evaluating the performance of other proposed methods. Therefore, it can be concluded that the derived 

joint policy through the RL algorithm can be an effective policy for the real-time decision-making process in 

manufacturing systems. RL can provide the best action regarding production, maintenance, repair, and quality 

in various states of the production system. 

6|Conclusion 

Production planning, maintenance, and quality control are always the most critical challenges of production 

systems. Regarding mutual interactions, it is necessary to investigate these issues jointly to achieve the optimal 

integrated policy of the system.  

This paper examined the joint optimization of production, maintenance, and quality of the multi-machine 

single-product system with an intermediate buffer and final product. The ABM approach was applied to 

simulate the production system, and an RL-based agent was designed to interact with the simulation model 
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to obtain the combined policy. The random policy and the meta-heuristic methods in the form of the SO 

approach were used to evaluate the acquired RL-based optimal policy.  

Four scenarios were considered to cover all aspects of the production system. In each scenario, the 

performance of the policies in authorizing maintenance and repair activities, reducing missed orders, and 

reducing wastage were examined. The results showed that RL-based policy has superior performance in 

minimizing production costs, maintenance costs, inventory costs, lost orders, breakdown of production 

machines, and low-quality production. By the RL-based achieved joint policy, the decision-maker agent 

authorizes the most proper action in each system's state. Thus, it can be used for an autonomous real-time 

decision-making process necessary for industry 4.0. 

The results also showed that the RL algorithm has a high potential to solve problems defined in the Markov 

Decision Process (MDP). Dynamic programming is another approach to solving the MDPs, but the transition 

probabilities matrix is required, which is very hard or impossible to define in many real-world problems. In 

addition, the Curse-of-dimensionality is another challenge, specifically when the system's state space is 

numerous. 

SO methods prove their efficiency in solving the complex optimization problem. However, it is 

computationally expensive to obtain a joint policy in large states and action spaces. It is necessary to assign 

an action to every state of the system as a decision variable in each iteration. However, with the advent of 

DRL, agents can now bypass exhaustive state exploration by integrating RL algorithms with neural networks. 

By harnessing the learning capabilities of neural networks, RL agents can adapt and make decisions even in 

unencountered states. This advantage positions RL as a promising approach to finding the joint optimal 

policy. However, there are also some limitations, such as reward design, stability, and convergence issues 

when applying RL. So, acquiring optimal policies for diverse problem domains relies crucially on selecting the 

most fitting methodology. 

Finally, this research can be extended by considering the multi-machine multi-product system. In this case, 

DRL or Multi-agent RL is proposed to find the joint optimal or near-optimal policy because the state of the 

system will be dramatically increased. Dealing with multiple machines and products simultaneously introduces 

a more complex and extensive state space, making traditional RL methods less effective. By leveraging DRL 

techniques, such as Deep Q Networks (DQNs) or Policy Gradient methods, the agent can handle high-

dimensional state representations and learn more sophisticated strategies. Alternatively, Multi-agent RL can 

be employed to model interactions and dependencies among multiple machines and products, allowing the 

agents to coordinate and collectively optimize the system performance. 
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