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1|Introduction    

Residential electricity load optimization has become one of the key issues in solving energy crisis problems in 

the past few years. In several nations worldwide, residential buildings constitute a large energy consumption. 
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Abstract 

The paper considers a modelling framework for a set of households in residential areas using electricity as a form of 

energy for domestic consumption. Considering the demand and availability of units for electricity consumption, 

optimal decisions for electricity load allocation are paramount to sustain energy management. We formulate this 

problem as a stochastic decision-making process model where electricity demand is characterized by Markovian 

demand. The demand and supply phenomena govern the loading and operational framework, where shortage costs 

are realized when demand exceeds supply. Empirical data for electricity consumption was collected from fifty 

households in two residential areas within the suburbs of Kampala in Uganda. Data collection was made at hourly 

intervals over a period of four months. The major problem focussed on determining an optimal electricity loading 

decision to minimize consumption costs as demand changes from one state to another. Considering a multi-period 

planning horizon, an optimal decision was determined for loading or not loading additional electricity units using the 

Markov decision process approach. The model was tested, and the results demonstrated the existence of optimal 

state-dependent decision and consumption costs considering the case study used in this study. The proposed model 

can be cost-effective for managers in the electricity industry. Improved efficiency and utilization of resources for 

electricity distribution systems to residential areas were realized, with subsequently enhanced service reliability to 

essential energy market customers.  
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In the European Union, for instance, the residential sector accounted for 26.1% of the total energy 

consumption in 2018, and this catered to space, water heating, and electric end users such as lighting or 

appliances. In residential areas, variations of social, economic and technical characteristics among consumer 

groups influenced electricity consumption. This was based on the timing, location, peak and distribution of 

electric power. Considering the socioeconomic aspects and technical equipment used in Uganda, residential 

electricity load significantly influenced the type of dwelling and location. Indirect influences on electricity load 

were also attributed to the number of occupants [1], the number of bedrooms [2], the dwelling area [3], the 

floor area [4], incomes [5] and the household ownership of physical appliances. 

Electricity consumption in residential areas was also affected by several social-economic factors worldwide. 

In some households, it was noted how much electricity appliances consumed to enable households to acquire 

knowledge about the expenditure patterns associated with such appliances. It was, therefore, prudent to devise 

appropriate methods for understanding electricity consumption based on household appliances. The degree 

to which such appliances were used in residential areas was of paramount importance. 

In practical situations, the usage of an appliance and the related operational cost calculations considered 

estimates of the daily hours run by appliances that determined the product's wattage, daily consumption, 

annual energy consumption and the annual cost to run the appliance. The estimated daily run time of 

appliances was made through a rough estimate by keeping a log. Through a rough estimate, the household 

predicted the usage rates of an appliance daily, and such a household determined the hourly usage rate. As 

the number of power appliances consumed varied considerably depending on the setting, realistic estimates 

of current in residential areas were obtained considering the current and voltage used by the household 

appliance. Determining the daily consumption, annual consumption, and annual cost to run the appliance 

were critical factors influencing electricity loading decisions and consumption patterns of households in 

residential areas. 

1.1|Residential Electricity Load Background 

The goal of meeting people's energy needs has become a crucial research topic of global concern in recent 

years. In modern society today, however, electric and electronic devices have increased tremendously, 

contributing to energy consumption for smartphones, televisions, appliances and various related devices. It 

had been widely believed that load demand for electricity did not vary significantly among households 

regardless of socioeconomic circumstances, considering the inhabitants of a family or an apartment building. 

However, residential electricity loading lacked predictability guidelines for modelling purposes since a solid 

understanding of the residential load profile and its prevailing state was needed. Despite this challenge, 

residential electricity load profiles had a big role in capacity planning by improving the efficiency of system 

operations, electricity grids, generation investment energy market, electricity tariffs, price structures, 

incentives, customer satisfaction, and other economic considerations. 

1.2|Research Objectives 

I. To develop and optimize the residential electricity load model under stochastic demand. 

II. To optimize electricity consumption costs under stochastic demand. 

III. To test the residential electricity load model. 

1.3|Research Questions 

I. What is the optimal residential electricity loading decision under stochastic demand? 

II. What are the electricity consumption costs under stochastic demand? 
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1.4|Methodology 

1.4.1|The survey instrument 

Questionnaires were developed and pre-tested for the field survey, then administered to the residential areas 

and a sample of households within the residential areas. The first questionnaire established the demand 

transitions, electricity demand and electricity units available under the decision of loading additional units 

versus not loading additional units. 

1.4.2|Research participant 

Field participants were trained to administer the questionnaire in this study and collected relevant data from 

households of a given residence. 

1.4.3|Study population/sample 

The study was conducted on an accessible population that comprised two residential areas and one hundred 

households.    

1.4.4|Data analysis 

To reduce the data collected to usable dimensions, the raw data collected was edited, processed and analyzed 

so that the data generated was organized and interpreted. An electronic database was created from the 

database generated. Data was analyzed from frequencies generated and presented to show the relationship 

between state transitions, the number of households, demand, available electricity units and the respective 

electricity loading decisions. 

1.5|Residential Load Management under Stochastic Demand 

The study's theoretical foundation [6] emphasized the great challenge encountered while considering 

uncertainty in residential load demands. Considerations to load uncertainty of each residential customer were 

modelled using the simplex method with fuzzy numbers. The input for electricity consumers was used to 

optimize this fuzzified demand using the price vector as the input of the optimization problem. The 

effectiveness of the proposed stochastic load management scheme was validated by solving a two-demand 

problem. Each demand expected a minimum level of power contribution defined by a fuzzy constraint. In 

our approach, the residential electricity load under stochastic demand considered the nature of demand using 

a two-state Markov chain. The states of residential electricity demand represented possible states of demand. 

The optimal electricity loading decision and associated consumption costs were determined using the Markov 

decision process methodology over a designated finite period planning horizon. 

The paper was organized as follows. After reviewing the literature in Section 2, the model was formulated in 

Section 3, where consideration was given to the process of estimating model parameters. The model was 

solved in Section 4, and a case study was presented in Section 5. The study showed the practical application 

of the proposed model, where analysis/discussion of the results and limitations of the study were presented. 

Lastly, conclusions followed in Section 6, with prospects for future research. 

2|Related Literature 

In a recent study, an electrical system framework that measured the accessibility of electrical power [7] was 

considered. The author examined stochastic residential load management using fuzzy-based optimization 

approaches. A novel stochastic optimization framework to model the day-ahead load profile of a residential 

energy hub [8] was suggested using an incentive-based DR program. That was done through a distributed 

approach, where the load profile became smoother by considering the related aggregator's desirable load 

profile limits. Previous work on residential load considered three steps where an independent system 

operation ISO day-ahead RTP to a Residential Load Aggregator (RLA) was considered [9]: 1) the RLA 

predicted individual household loads, 2) aggregated the loads that minimized the costs, and 3) in the second 
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layer, the RLA announced incentives to homes, and more Energy Management Systems (EMS) controlled 

the loads and maximized the reward in real-time. 

A recent study of the load combination of power sales companies was based on various power values [10], 

where demand response data was extracted by load characteristics index and power consumption index. The 

proposed method reduced the power purchase cost and increased the power company's revenue. A systematic 

literature review, however, pointed to a diversity of modelling techniques and associated algorithms on short-

term load forecasting [11]. The authors concluded that having a unified data set, a set of benchmarks, and 

well-defined metrics was desirable to compare all the modelling techniques and the corresponding algorithms 

clearly. A related approach that used a stochastic bottom-up model for generating electrical loads for 

residential buildings in Canada [12] was presented. The model investigated the impact of different household 

characteristics, appliance stock and energy behaviour on the timing and magnitude of non-HVAC energy 

loads at multiple houses and yielded significant results. The stochastic perturbation method and the 

transformed random variable method [13] produced important results, where energy-demand analysis was 

performed for the representative single house in Poland. The expanded polystyrene thermal conductivity and 

external temperature were considered uncertain. The stochastic perturbation method determined energy 

consumption's expected value and central moments. 

In contrast, the transformed random variable method obtained the explicit form of the energy consumption 

probability density function. However, the highly resolved electricity consumption data of Austria, German 

and UK households [14] and the proposed applicable data-driven load model made critical awareness to 

model developers. Based on time series data, the average demand profiles were disentangled from the demand 

fluctuations. A stochastic model was then introduced to capture the intermittent demand fluctuations. A 

related study assigned pre-generated electricity and heat demand curves to georeferenced residential buildings 

in Germany [15]. That provided a large variety of residential load profiles that spatially corresponded to official 

social–demographical data. Results were validated on different aggregation values. The forecasting 

performance of models based on functional data analysis [16] gave important insights. The demand time 

series was first treated for the extreme values. The filtered series was then divided into deterministic and 

stochastic components. The additive modelling technique was used to model the deterministic component, 

whereas the functional autoregressive was used to forecast the stochastic component. 

The literature cited showed important insights by current scholars that were crucial in studying the residential 

electricity load problem. However, the optimality of electricity loading decisions with associated consumption 

costs was not fully considered under demand uncertainty. The Markov decision process model provided a 

powerful framework for optimizing electricity loading decisions and electricity consumption costs under 

demand uncertainty considering several households in residential areas. 

The major contributions of this paper to residential electricity load under stochastic demand highlighted the 

following: 

I. The state-transition matrices that characterized the demand and consumption cost were computed under the 

prevailing electricity loading decisions. 

II. The computation procedure calculated the expected consumption costs and accumulated consumption costs 

for the electricity loading decisions. 

III. The Markov decision process formulation allowed the decision maker to load or not load extra units of 

electricity under different states of demand. 

3|Model Formulation 

A discrete-time finite horizon MDP model was developed with decision epochs tϵT= {1, 2, …, E}. At each 

decision epoch t, the decision maker (i.e., electricity regulator) observed the electricity demand states by 

conducting some observatory tests concerning the electricity demand levels; when the available electricity 

exceeded demand, loading additional units was stopped, and the decision process was terminated. Otherwise, 
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the decision maker decided (based on residential electricity demand) the optimal loading decision that had to 

be taken. The decision continued until the loading exercise ended for each decision maker's action. Therefore, 

an immediate reward emerged representing the total electricity consumption costs based on the decision 

taken. 

Our goal was to solve the trade-off problem between loading additional electricity units with the associated 

consumption costs versus not loading additional electricity units. A formal definition of the core components 

of our MDP model follows. 

3.1|States 

The demand state i was composed of two variables: favourable (state F) and unfavourable (state U). The 

favourable state was defined by the presence of customer NS, with demand DS observed by the decision maker 

at each decision epoch t within residential area r; where Sϵ{0,1}, r ϵ{1,2}, t=1,2,…………T. 

3.2|Actions 

We denoted the action space by A= {a0, a1, … … ak} where ai = 0 represented not loading, and ai = 1 

represented loading additional units. We assumed that if ai = 0 was chosen, additional electricity units were 

not loaded when customers in residential areas were fully supplied, while additional units needed to be loaded 

whenever electricity demand exceeded available electricity. 

3.3|Transition Probabilities 

When the decision maker chooses action stϵS at decision epoch t when demand was in state st, the demand 

state moved to st+1 at t+1 with probability Pt (St /St+1, at). We assumed that  

where 

where the transition probabilities for the favourable and unfavourable demand states, respectively. This 

assumption was consistent with our proposition that favourable and unfavourable demand depended not on 

each other but on the decision maker's action. More specifically, we assumed that 

where ct+1 represented a favourable state. 

where ƛ𝑡+1 represented unfavourable state than ƛ𝑡. 

3.4|Reward Functions 

Our model included a reward function ƛt(st , at) that reflected the utility/disutility of the decision maker as 

realized  demand state st with action at which was taken at decision epoch t. This was defined as 

where αt,i (ci, at) represented the immediate reward for favourable demand state ci and αt(αt, ai) was the 

immediate reward for unfavourable demand state αt.  

Hence, the corresponding reward functions were assumed to follow the following inequality for all t: 

Pt(St+1/St  , at) =Pt
ƛ(ct , at ) x Pt

α(αt+1  Pt
α (αt+1 , αt), (1) 

Pt
ƛ (ct , at ) and Pt

α (αt+1 / αt ,at ),  

Pt
ƛ (ct+1/ct ,a1) > Pt

ƛ (ct+1 /ct , a2)   >……………….>Pt
ƛ(ct+1 / ct, ak), (2) 

Pt
ƛ(ƛt+1/ƛt ,a1) < Pt

ƛ (ƛt+1/ƛt , at) <…………<Pt
ƛ(ƛt+1 /ƛt , ak), (3) 

αt(st/at) =  ∑ αt,i
N
i=1 (ci, at) + αt (αt , at), (4) 

αt (ci , at) < αt(ci
′ , at), αt (α,at) < αt (α′ , at). (5) 
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3.5|Value Function  

Our MDP model aimed to find the optimal strategy for loading electricity units. Therefore, a rule was sought 

to take action at each state to minimize the expected total electricity consumption costs over the planning 

period. This could be achieved by solving Bellmann's recursive equations for all st ϵ S and t=1, 2, …, T. 

where vt(st) represented the minimum expected total reward at the decision epoch t when demand was in 

state st with the boundary condition 

 

3.6|Formulating the Finite-period Dynamic Programming Problem 

Since demand was considered a favourable state (state F) or unfavourable state (state U), the problem was 

considered an optimal electricity loading decision, and this was modelled as a dynamic programming problem 

over a finite period planning horizon. We denoted gn(i, r) as the expected total consumption costs 

accumulated by residential area r during the periods n, n+1,…..., N given that the system's state at the 

beginning of period n was iє{F, U}. The recursive equation relating gn and gn+1 became 

The following condition was sufficient: 

The consumption costs CS
ij (r) + gn+1 (j) resulting from reaching state jϵ{F, U}at the start of period n+1 from 

state i ϵ{F, U} at the start of period n occurred with probability QS
ij(r). Clearly, 

The corresponding dynamic programming recursive equations were thus obtained. 

Electricity demand in excess of supply yielded the consumption cost matrix. 

Otherwise, 

when supply exceeds demand. Clearly,  

For i,j є{F,U}, r = {1,2},  Sϵ{1,0).       

The justification for Eq. (13) and Eq. (14) was that DS
ij(r) – AS

ij(r) units had to be loaded to meet excess 

demand. Otherwise, loading was cancelled when demand was less than or equal to supply. The following 

conditions were, therefore, sufficient to execute the model: 

I. S=1 when cl > 0 otherwise S=0 when cl = 0. 

II. cs > 0 when shortages were allowed; otherwise, cs=0 when shortages were not allowed. 

Vt(st) = minat ϵA
{αt (st , at) + ∑ Ptst+1ϵS

(st+1/st,at) vt+1(st+1)/st, at)vt+1(st+1)}, (6) 

Vα+1(s) = αT+1(s).  

gN(i, r) = minS[ei
S (r) + QiF

S (r) gn+1(F,r) + QiU
S  (r) gn+1(U,r)]. (7) 

gN+1(F,r) = gN+1(U,r) = 0. (8) 

eS(r) = [QS(r)] [CS(r)]T,      Sε [0, 1],    r =  [1,2]. (9) 

gN(i,r) = minS[ei
S(r) + QiF

S (r) gn+1(F,r) + QiU
S (r) gn+1(U,r)]. (10) 

gN(i,r) = minS [ei
S(r) ]. (11) 

CS(r) = (cl + cs) [DS(r) - AS(r)]. (12) 

CS(r) = co[AS(r) - DS(r)], (13) 

Cij
S (r) ={

(cl  +  cs  +  co)[Dij
S(r) −  Aij

S (r)], if   Dij
S(r) >  Aij

S (r),

 co[Aij
S (r) − Dij

S (r)], if    Dij
S (r) ≤  Aij

S (r).                        
       (14) 
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4|Optimization 

The electricity loading decision/consumption costs were optimized for periods 1 and 2 in residential area r. 

4.1|Optimization-Period 1 

Considering favourable (state F) demand, the optimal loading decision was determined as 

with expected consumption costs 

When demand was unfavourable (i.e., in state U), the optimal loading decision was determined as 

with expected consumption costs 

 

  

4.2|Optimization-Period 2 

Using Eq. (10) and Eq. (11) and recalling that aS
i(r) denoted the already accumulated consumption costs at the 

end of period 1 as a result of decisions made during that period. 

Therefore, for favourable demand (i.e. in state F), the optimal loading decision during period 2 was 

determined as 

While the associated accumulated  consumption costs were 

Similarly, when demand was unfavourable (i.e. in state U), the optimal loading decision during period 2 was 

determined as  

In this case, the associated accumulated consumption costs were 

5|A Case Study of Uganda Electricity Distribution Company 

The model developed was presented using a case study of Uganda Electricity Distribution Company (UEDC) 

in Uganda, which experienced random electricity demand in residential areas. The UEDC sought the 

S={
1,   if   eF

1(r)  <  eF
0(r),

 0,   if   eF
1(r) ≥  eF

0(r),
       (15) 

g1 ={
eF

1(r),       if   S = 1,

eF
0(r),   if   S =  0.  

       (16) 

S={
1,    if   eU

1 (r)  <  eU
0 (r),

0,   if   eU
1 (r) ≥  eU

0 (r),
       (17) 

g1 ={
eU

1 (r),      if   S = 1,

eU
0 (r),     if   S =  0.

       (18) 

ai
S(r) = ei

S(r) + QiF
S (r) min[eF

1(r), eF
0(r)] + QiU

S (r) min[eU
1 (r) ,eU

0 (r)].       (19) 

ai
S(r) = ei

S(r) + QiF
S (r) g2(F,r) + QiU

S (r)g2(U,r). (20) 

S ={
1,   if   aF

1 (r)  <  aF
0(r),

0,   if   aF
1 (r) ≥  aF

0(r).  
       (21) 

g2 ={
aF

1 (r),       if   S = 1,

 aF
0(r),     if   S =  0.  

       (22) 

S={
1,   if   aU

1 (r)  <  aU
0 (r),

0,   if   aU
1 (r)  ≥  aU

0 (r).  
       (23) 

g2 ={
aU

1 (r),          if   S = 1,

aU
0 (r),     if     S =  0.  

       (24) 
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elimination of excess electricity supply under unfavourable demand (state U) or avoiding shortages when 

demand was favourable (state F), and hence, UEDC sought an optimal electricity loading decision and 

consumption costs considering a planning horizon of two week. 

5.1|Data Collection 

A number of households, demand and electricity units available (in kwh) were observed and recorded from 

two residential areas. The states of demand under electricity loading decisions were considered over ten weeks 

for favourable demand (state F) and unfavourable demand (state U). The data was captured in Tables 1-3. 

Table 1. Households versus state-transitions for electricity loading decisions. 

 

 

 

 

Table 2. Demand (in kwh) versus state-transitions in residential areas for electricity loading decisions. 

 

 

 

 

Table 3. Available electricity (in kwh) versus state-transitions in residential areas for 

electricity loading decisions. 

 

 

 

 

For either loading decision taken, unit loading cost (cl) = 1.20 USD per kwh, unit operational cost(co) = 0.80 

USD per week and unit shortage cost(cs) = 0.32 USD per week. 

5.2|Computation of Model Parameters 

We illustrated how the demand transition matrices and consumption cost matrices were determined from 

empirical data. For example, considering matrix Q1(1) for residential area 1 and electricity loading decision 1 

and referring to Eq. (1). 

Hence, Q1(1) =(
QFF

1 QFU
1

QUF
1     QUU

1  
) =(

0.5617 0.4383

0.8289    0.1711 
).      

  Load Additional Units (S=1) Do not Load Units (S=0) 
Residential Area (r) States of Demand                 F U F U 

1 F 91 71 82 30 
 U 63 13 55 25 
2 F 45 59 64 40 
 U 59 13 45 11 

  Load Additional Units (S=1) Do not Load Units (S= 0) 
Residential Area (r) States of Demand                 F U F U 

1 F 78 38 62 39 
 U 60 65 39 40 
2 F 100 30 36 39 
 U 30 70 69 60 

  Load Additional Units (S=1) Do not Load Units (S= 0) 
Residential Area (r) States of Demand                    F U F U 

1 F 95 80 34 45 
 U 54 75 47 55 
2 F 47 40 81 79 
 U 36 56 38 72 

QFF
1 (1) = 

NFF
1 (1)

NFF
1 (1)+ NFU

1 (1)
  = 

91

91+71
 = 0.5617, 

QFU
1 (1) = 

NFU
1 (1)

NFF
1 (1)+ NFU

1 (1)
 = 

71

91+71
 = 0.4383, 

QUF
1 (1) = 

NUF
1 (1)

NUF
1 (1)+ NUU

1 (1)
 =

53

63+13
 = 0.8289, 

QUU
1 (1) = 

NUU
1 (1)

NUF
1 (1)+ NUU

1 (1)
 = 

13

63+13
 = 0.1711.       
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We note that ∑ QiF
1

iϵF,U (1) + QiU
1 (1) = 1 and  QiF(1) ≤ 0 for all i ϵ{F,U}. 

Considering matrix C1(1) for residential area 1 given electricity loading decision 1, from Eqs. (12)-(14). 

Hence, 𝐶1(1)= (
𝑐𝐹𝐹

1 𝑐𝐹𝑈
1

CUF
1     CUU

1  
) =(

18 33.6

13.9    8.0 
).            

Using a similar approach, the remaining matrices were calculated. 

Using Eq. (19) and Eq. (20), the expected consumption costs (in USD) and accumulated consumption costs 

(in USD) for the two residential areas were computed under favourable demand (state F) and unfavourable 

demand (state U); whose results were presented in Table 4. 

Table 4. Expected and accumulated consumption costs (in USD) for residential areas. 

 

 

 

 

 

5.3|Analysis of Results 

Week 1 (Residential area 1) 

Considering residential area 1, when demand was favourable and noting that 22.37 < 48.80, S=1 was chosen 

as an optimal electricity loading decision for week 1 with associated expected consumption costs of 22.37 

USD for the case of favourable demand. Since 4.78<12.89, S=0 was chosen as an optimal electricity loading 

decision for week 1 with associated expected consumption costs of 4.78 USD for the case of unfavourable 

demand.  

Week 1 (Residential area 2) 

Considering residential area 2, since 33.84<57.71, then S=0 was chosen as an optimal electricity loading 

decision for week 1 with associated expected consumption costs of 33.84 USD for the case of favourable 

demand. Since 9.80<52.73, S=1 was chosen as an optimal electricity loading decision for week 1 with 

associated expected consumption costs of 9.80 USD for the case of unfavourable demand. 

Week 2 (Residential area 1) 

Considering residential area 1, since 37.03<66.46, S=1 was chosen as an optimal electricity loading decision 

for week 2 with associated accumulated consumption costs of 37.03 USD for the case of favourable demand. 

Since 21.65<32.25, S=0 was chosen as an optimal electricity loading decision for week 2 with associated 

accumulated consumption costs of 21.65 USD for the case of unfavourable demand.  

Week 2 (Residential area 2) 

Considering residential area 2, since 57.45<78.05, S=0 was chosen as an optimal electricity loading decision 

for week 2 with associated accumulated consumption costs of 57.45 USD for the case of favourable demand. 

cFF
1  (1) = (95 – 78) (0.80) = 18.6, 

cFU
1  (1) = (80 - 38) (0.80) = 33.6, 

cUF
1  (1) = (60 - 54) (12+0.80+ 0.32) = 13.9, 

cUU
1  (1) = (75 - 65) (0.80) = 8.0.       

 

Residential 
Are (r) 

State of 
Demand (i) 

Expected Consumption Costs eS(r) Accumulated Consumption Costs 
aS(r) 

Load Additional 
Units (S=1) 

Do not Load 
Units (S=0) 

Load Additional 
Units (S=1) 

Do not Load 
Units (S=0) 

1 F 
U 

22.37 
12.80 

48.80 
4.78 

37.03 
32.25 

66.46 
21.65 

2 F 
U 

57.71 
9.80 

33.84 
52.73 

78.05 
35.30 

57.45 
79.75 
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Since 35.30<79.75, S=1 was chosen as an optimal electricity loading decision for week 2 with associated 

accumulated consumption costs of 35.30 USD for the case of unfavourable demand. 

5.4|Model Validation 

In this section, we considered out-of-sample data in two residential areas to demonstrate the proposed 

model's predictive ability. A sample of 100 customers was considered in each residential area, and 

considerations on demand and available electricity units were captured in Table 5 and Table 6 below. 

Table 5. Households versus state-transitions for electricity loading decisions. 

 

 

 

 

 

Table 6. Demand (in kwh) versus state-transitions for electricity loading 

decisions in residential areas. 

 

 

 

 

 

Table 7. Available electricity (in kwh) versus state-transitions for electricity loading 

decisions in residential areas. 

 

 

 

 

 

For either loading decision taken, unit loading cost (cl) = 1.20 USD per kwh, unit operational cost (co) = 0.80 

USD per week and unit shortage cost (cs) = 0.32 USD per week. 

5.5|Computation of Model Parameters 

5.5.1|Demand transition matrices 

 

Residential 
Area (r) 
 

States of 
Demand (F/U) 

Load Electricity 
Units (S=1) 
F               U 

Do not Load Electricity 
Units (S=0) 
F               U  

1 F 
U 

70              30 
40              60 

80              20 
25              75 

2 F 
U 

90              10 
35              65 

55              45 
15              85 

Residential 
Area (r) 
 

States of 
Demand (F/U) 

Load Electricity Units 
(S=1) 
F               U 

Do not Load Electricity 
Units (S=0) 
F               U 

 
1 

F 
U 

80              60 
30              60 

10              30 
30             40 

 
2 

F 
U 

30              20 
20              40 

70              60 
20              60 

Residential Area 
(r) 
 

States of 
Demand (F/U) 

Load Electricity Units 
(S=1) 
F               U 

Do not Load Electricity 
Units (S=0) 
F            U 

1 F 
U 

70              60 
45              70 

20            20 
40            50 

2 F 
U 

40              10 
40              30 

60            70 
0              50 

Residential area 1 Residential area 2 

Q1(1) = (0.700    0.300
0.400    0.600

),   Q1(2) =(0.900    0.100
0.350    0.650

).      

Q0(1) = (0.800    0.200
0.250    0.750

),   Q0(2)= (0.550    0.450
0.150    0.850

).  
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5.5.2|Consumption cost matrices  

5.5.3|Expected consumption costs 

Residential area 1 

Residential area 2 

5.5.4|Accumulated consumption costs 

Residential area 1 

Residential area 2 

 

 

Table 7. Expected and accumulated consumption costs (in USD) for residential areas. 

 

 

 

 

 

Residential area 1 Residential area 2 

C1(1) = (6.4    1.28
23.2    3.2

),   C1(2) =(9.28    3.2
3.2    23.2

).      

C0(1) = (6.94    3.2
3.2    3.2

),   C0(2)= (1.60    12.8
69.6    6.4

).  

 

eF
1(1) = (0.700)(6.4) + (0.300)(1.28) = 8.32, 

eF
0(1) = (0.800)(6.94) + (0.200)(3.2) = 6.172, 

eU
1 (1) = (0.400)(23.2) + (0.600)(3.2) = 11.200, 

eU
0 (1) = (0.250)(3.2) + (0750)(3.2) = 3.20.       

 

eF
1(2) = (0.900)(9.28) + (0.100)(3.2) = 8.672, 

eF
0(2) = (0.55)(1.6) + (0.45)(8.32) = 6.640, 

eU
1 (2) = (035)(3.2) + (0.65)(23.2) = 16.200, 

eU
0 (2) = (0.15)(69,6) + (0.850\)(6.4) = 15.880.       

 

aF
1(1) = 13.60 + (0.700)(6.172) + (0.300)(3.200) = 13.600, 

aF
0(1) = 6.172 + (0.800)(6.172) + (0.200)(0.540) = 11.750, 

aU
1 (1) = 11.200+ (0.400)(6.172) + (0.600)(3.20) = 15.589, 

aU
0 (1) = 3.200+ (0.250)(6.172) + (0750)(3.2) = 7.143.       

 

aF
1(2) = 8.672 + (0.900)8.672) + (0.100)15.880) = 18.065, 

aF
0(2) = 6.64 + (0.55)(8.672) + (0.45)(15.880) = 18.556, 

aU
1 (2) = 16.20+ (0.35)(8.672) + (0.65)(15.880) = 29.557, 

aU
0 (2) = 15.880+ (0.150)(8.672) + (0850)(15.880) = 30.679.       

 

Residential 
Area (r) 

State of 
Demand (i) 

Expected Consumption Costs eS(r) Accumulated Consumption Costs 
aS(r) 

Load Additional 
Units (S=1) 

Do not Load 
Units (S=0) 

Load Additional 
Units (S=1) 

Do not Load 
Unit (S=0) 

1 F 
U 

8.320 
11.200 

6.170 
3.20 

13.360 
15.589 

11.750 
7.143 

2 F 
U 

8.672 
16.200 

9.200 
15.880 

18.065 
29.557 

18.556 
30.679 
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5.6|Analysis of Results 

Week 1 (Residential area 1) 

Considering residential area 1, when demand was favourable and noting that 6.17 < 8.32, S=0 was chosen as 

an optimal electricity loading decision for week 1 with associated expected consumption costs of 6.17 USD 

for the case of favourable demand. Since 3.20<11.20, S=0 was chosen as an optimal electricity loading 

decision for week 1 with associated expected consumption costs of 3.20 USD for the case of unfavourable 

demand.  

Week 1 (Residential area 2) 

When demand was favourable (state F) and noting that 8.672<9.200, S=1 was chosen as an optimal electricity 

loading decision with associated expected consumption costs of 8.672 USD. When demand was unfavourable 

(state U), S=0 was chosen as an optimal electricity loading decision with associated expected consumption 

costs of 8.67 USD for the case of unfavourable demand (state U). 

Week 2 (Residential area 1) 

When demand was favourable (state F) and noting that 11.750<13.60, S=0 was the optimal electricity loading 

decision with associated accumulated consumption costs of 11.750 USD. Similarly, since 7.143<15.589, S=0 

was the optimal electricity loading decision with accumulated consumption costs of 7.143 USD for the case 

of unfavourable demand (state U).  

Week 2 (Residential area 2) 

When demand was favourable (state F) and noting that 18.065<21.116, S=1 was the optimal electricity loading 

decision with associated accumulated consumption costs of 18.065 USD for the case of favourable demand 

(state F). Since 29.557<30.679, then S=1 was the optimal electricity loading decision with associated 

accumulated consumption costs of 29.5557 USD for the case of unfavourable demand (state U). 

5.5|Discussion of Results 

Considering the case study of UEDC presented, the optimality of electricity loading decisions and 

consumption costs over a finite period planning horizon yielded important results for discussion. Results 

indicated optimal state-dependent electricity loading decisions and consumption costs were dependent and 

consistent at every stage of the decision problem. This was attributed to the stationary demand transition 

probabilities considered at the decision epochs. 

 When demand was initially favourable (state F), additional electricity units were needed for weeks 1 and 2 of 

residential area 1. However, when demand was initially unfavourable (state U), additional electricity units were 

not required for weeks 1 and 2 of residential area 2. 

6|Conclusions  

A Markov decision process model that optimized electricity loading decisions and consumption costs with 

stochastic demand was presented in this paper. An optimal electricity loading decision was determined for 

residential areas over a multi-period planning horizon using dynamic programming. Therefore, as an 

optimization strategy for electricity loading decisions and consumption costs in residential areas, 

computational efforts using the Markov decision process model showed promising results. 

6.1|Model Implications on the Electricity Industry 

The proposed model has interesting implications in practical terms as a decision-making tool for sustaining 

electricity regulation strategies in industry. Considering the case study results, demand uncertainty affected 

electricity regulatory policies, which was a driving force for the comparative analysis of electricity 

consumption. Although Markov decision processes for optimizing electricity loading options were 
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fundamental for practical purposes, stationarity of demand transition probabilities raised a number of salient 

issues to consider. For example, changing demand patterns for electricity consumption among users, 

unpredictable power outages during the demand cycle, price fluctuations of electricity supply etc, left a lot to 

be examined; especially in the Ugandan context. It was also noted that the study used a smaller number of 

residential areas, considering the two areas captured in the case study and the model validation section. Future 

studies must aim to increase the number of residential areas to establish a realistic representative sample. This 

can also improve the model's predictive ability as a decision-making tool. In effect, the electricity regulatory 

authorities for energy distribution can be in a position to gain a competitive advantage over energy providers 

for domestic consumption. 
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