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Abstract 

   

1 | Introduction 

Supply chain management is a complex system of interrelated components that can significantly 

impact each other. Two critical components of supply chain management are transportation and 

inventory management [1]. In the literature, the coordination between transportation and inventory 

management is often referred to as the Inventory Routing Problem (IRP). The IRP aims to minimize 

costs by determining the optimal distribution and inventory strategy [2]. It involves three main 

decisions: how much and when to deliver to each customer, what routes to use for each delivery, and 

what inventory levels to maintain at each location [3]. The IRP is a challenging and practical problem 

that arises in various industries and contexts [4].

This paper focuses on the multi-period IRP, which involves determining the optimal inventory levels 

for each period. Additionally, this problem is classified as an NP-hard problem, meaning that exact 

methods cannot efficiently solve large-scale and complex instances [5]. Therefore, metaheuristic 

algorithms, which are approximate methods inspired by natural phenomena or human behavior, are 
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often employed to find good solutions for the IRP. These metaheuristic algorithms are widely used 

across different fields to tackle complex real-world problems [6]. One of the most popular metaheuristic 

algorithms is the Genetic Algorithm (GA), which mimics the process of biological evolution [7]. The 

GA operates on a population of solutions called chromosomes, applying operators such as selection, 

crossover, and mutation to improve them over generations. The key elements of metaheuristic 

algorithms are intensification and diversification [8]. The GA’s performance depends on several 

parameters, including population size, crossover rate, and mutation rate [9]. In this paper, we propose a 

new chromosome representation for the IRP and use the Taguchi method to fine-tune the GA 

parameters. We tested our approach on several benchmark instances and compared it with existing 

methods from the literature. We demonstrate that our approach can find better or more competitive 

solutions for the IRP in a reasonable time. 

The rest of the paper is organized as follows: Section 2 reviews the related work on the IRP and 

metaheuristic algorithms. Section 3 presents the mathematical model and the notation for the IRP. 

Section 4 describes the proposed GA and its components in detail. Section 5 reports the numerical 

results and the analysis of our approach. Finally, Section 6 concludes the paper and suggests some 

directions for future research. 

2 | Literature Review 

The first time IRP was presented by Bell et al. [10], and it has been studied by researchers from various 

aspects since then. The field of IRP is broad, and researchers have addressed this problem from various 

angles, such as time periods, transportation fleet, inventory policies, and algorithms. The multi-period 

inventory routing problem considering the carbon emission regulations was proposed by Cheng et al. 

[11]. Perishable products were studied in a multi-period inventory routing problem [12]. Xiao and Rao 

[13] presented the multi-product and multi-period IRP, considering the time window. Alinaghian et al. 

[14] presented a piecewise linearized green multi-period IRP with time windows. There are other cases 

that are not the subject of this research and have been discussed in detail in the review article [15]. 

Exact algorithms for IRP were designed by Solyalı and Süral [16], where the branch-and-cut algorithm 

is represented by Coelho and Laporte [17], and branch-and-price-and-cut by Andersson et al. [18]. Since 

exact methods are not efficient for large dimensions of the IRP, the solution to this problem was 

presented by Archetti et al. [19] using an efficient matheuristic algorithm. Yu et al. [20] introduced a 

distance-based clustering method based on an ant colony optimization approach. Cordeau et al. [21] 

designed a decomposition approach to tackle large-scale instances of the IRP. Su et al. [22] integrated a 

local search-based metaheuristic with mathematical programming. An augmented Tabu Search (TS) 

algorithm and a Differential Evolution (DE) algorithm for IRP were implemented by Alinaghian et al. 

[14]. A two-stage hybrid metaheuristic algorithm was proposed by Wu et al. [23] for a multi-period 

location-inventory-routing problem with time windows and fuel consumption. 

John Holland [24] developed the first GA in the early 1970s. To obtain good solutions for multi-period 

IRP, various GA approaches have been developed [25]. A GA for the IRP with lost sales proposed in 

[26] uses two matrix chromosomes: the first to determine clustering and the second to determine the 

route. Using the GA method, Othman et al. [27] proposed simulation optimization modeling for the 

IRP. The stochastic periodic Can-Deliver policy, which permits early replenishment, serves as the 

foundation for the IRP simulation model. The chromosomal structure in this study is determined by 

three levels of warehouse replenishment, and the GA presents a classification of customers. Routing in 

each category is done by a heuristic algorithm. 

Hiassat et al. [28] have developed an efficient GA approach to solve the location-inventory-routing 

problem with perishable products. The authors used a new chromosomal structure in their GA. Azadeh 

et al. [29] proposed an IRP for a single perishable product, which has been solved using a GA. The 

proposed algorithm parameters are tuned using the Taguchi method. In the chromosome presented in 
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this study, the initial and final customers for the visit are determined using a matrix. However, the sequence 

of middle customers is not determined. 

Arab et al. [30] proposed a Non-Dominated Sorting Genetic Algorithm (NSGA-II) for solving the multi-

objective, multi-period, and multi-product inventory-routing problem. Yavari et al. [31] investigated solving 

the multi-period location-inventory-routing problem of perishable products with a GA. Amri Sakhri [32] 

developed a GA to solve IRP with different crossover structures. Mahjoob et al. [4] proposed a Modified 

Adaptive Genetic Algorithm (MAGA) to solve the multi-product and multi-period IRP. In this research, 

two matrix structures consisting of real and binary numbers have been used to represent chromosomes. 

Furthermore, the method uses a GA only for clustering, while routing is done by another heuristic 

algorithm. For the IRP with deterministic customer demand, Sakhri et al. [33] created a Memetic Algorithm 

(MA) based on GA and Variable Neighborhood Search (VNS) methods. 

A review of the literature shows that the matrix structures presented in previous research are incapable of 

simultaneously classifying, routing, and managing inventory for the IRP. For this reason, the researchers 

solved the model using a two-step procedure: clustering first and then routing with VRP heuristic 

algorithms. Chromosome structures must contain all the necessary information about the problem. 

However, this issue complicates chromosome structure. The complexity of chromosome structure reduces 

the speed and accuracy of the GA. A simpler chromosome has a better ability to improve the performance 

of the GA. 

In this research, a new chromosomal structure has been presented for the GA, which addresses the defects 

in previous algorithms for solving the IRP problem. Among the important features of this structure, the 

following can be mentioned: 

I. Using this matrix structure, there is no need to solve the problem of routing and inventory management 

in two stages; both problems will be solved simultaneously. 

II. All information related to each solution method, including the distribution route, order of distribution, 

shipping amount, stock level of warehouses, customers not covered, and unused machines, is contained 

in a simple way. 

III. The simplicity of chromosome encoding and decoding increases the speed and accuracy of solving the 

problem, thereby enhancing the performance of the GA in the IRP problem. 

IV. The ability to develop this structure for the Production Routing Problem (PRP) is also one of its other 

features. 

In summary, the chromosomal structure presented for the first time has improved the performance of the 

GA in solving the IRP by addressing the defects of previous algorithms. 

3 | Problem Description and Formulation 

In this study, the problem is expressed as a multi-period inventory routing problem. The supplier must 

decide which products to transfer to customers to meet the demand specified over the finite planning 

horizon. The problem is periodic: in each period, the beginning inventory for customers is known, and the 

demand level for each customer in each period is both known and limited. These demands are specific, 

deterministic, but variable over time periods, and backlogging and split-delivery are not allowed. 

Capacitated vehicles transfer goods from the supplier to the customers and return them to the supplier. It 

is assumed that there is enough inventory at the supplier to satisfy all demands. 

A homogeneous transportation fleet is used to respond to customer demand. The holding cost is also 

assumed to remain constant over the planning horizon. The transportation cost per trip consists of a fixed 

cost incurred on each trip and a variable cost proportional to the distance traveled. To meet customer 

demands, the Order-Up-to (OU) policy was adopted, which states that the quantity delivered to a customer 

must equal the inventory capacity policy. The objective of the problem is to minimize the total 
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transportation and inventory holding costs of the system while ensuring there are no unsatisfied 

demands from customers in each period. Decision variables in the problem include inventories for 

customers, material delivery levels to customers, and routes for delivering materials in each period. 

The mathematical model is proposed as a single-product, multi-period, and single-objective one. The 

assumptions considered for modeling and evaluation are as follows: 

 Demands from customers must be met completely in each period. 

 Distances between points are expressed as Euclidean distances. 

 The location of suppliers and customers is fixed and determined. 

 Customer demands are known and fixed. 

 Each customer must be visited once, with the same vehicle, in each period. 

 Each vehicle can be launched once in each period. 

 Vehicle capacities and customers’ inventories are limited and determined. 

 Established routes must only begin from the supplier and end at the supplier. 

 Customer demands remain fixed and consistent across all periods. 

3.1 | Notation 

The notation adopted in the current formulation is described as follows: 

 3.1.1 | Sets and indices 

 

 

 

 

3.1.2 | Parameters 

 

 

 

  

3.1.3 | Variables 

 

3.2 | Model Formulation 

The mathematical formulation is presented in this section. The objective function given in Eq. (1) 

minimizes the total cost. The first section of the objective function minimizes the fixed cost of the 

Set of all nodes. 

Set of suppliers. 
={1,2,…,|C|} Set of customers. 

={1, . . ., |K|} Set of homogeneous vehicles. 

={1, . . ., |T|} Set of time periods. 

Supplier and customers index. 

Vehicle index. 

Time period index. 

Demand of customer i in time period t. 

Distant-dependent travel cost between customer i and j. 

Unit inventory holding cost at the place of customer i. 

f Fixed transportation cost. 

Q Maximum capacity of vehicles. 

Maximum inventory holding capacity of customer i. 

1, if the path from node i to node j is traversed by vehicle k in time period t, and 0 otherwise. 

The amount of transferred product to customer i by vehicle k in time period t. 

The loading amount of vehicle k in route from node i to node j in time period t. 

Inventory level of customer i in time period t. 



401 

 

A
 n

e
w

 e
ff

ic
ie

n
t 

g
e
n

e
ti

c
 a

lg
o

ri
th

m
-t

a
g

u
c
h

i-
b

a
se

d
 a

p
p

ro
a
c
h

 f
o

r 
m

u
lt

i-
p

e
ri

o
d

 i
n

ve
n

to
ry

 r
o

u
ti

n
g

 p
ro

b
le

m
 

 
supplier’s used vehicle. The second section illustrates the inventory holding cost at the customer locations. 

Routing and transshipment costs are represented in the third section. 

Eq. (2) ensures the inventory level of each customer never exceeds the maximum inventory holding 

capacity. The inventory balance constraint at customer i, as shown in Eq. (3), is equal to the inventory level 

in period t-1, by adding the total quantity transshipped in period t and subtracting the demand in period t. 

Eq. (4) ensures that the quantity delivered to the customer is below the remaining customer’s inventory 

holding capacity. Eq. (5) states that each vehicle is not used more than once in each period by the supplier, 

as Eq. (6) ensures that each customer is not visited more than once in each period. Eqs. (7) and (8) represent 

the sub-tour elimination constraints. The flow conservation constraints, which confirm the equality of the 

number of incoming and departing arcs at a vertex, are defined in Eq. (9). Eq. (10) enforces that the amount 

of vehicle loading on a route should not exceed the amount assigned to that route’s customers. 

Furthermore, Eq. (11) specifies that if the demand of customer i is not met in period t, no product will be 

sent to them. Finally, Eq. (12) guarantees that the vehicle’s capacity is not exceeded. Constraints (13) and 

(14) further define restrictions for the variables. 

4 | Genetic Algorithm 

Biologically motivated approaches are particularly popular in solving complex optimization problems. The 

GA is a stochastic optimization approach constructed based on evolutionary processes inspired by the 

process of natural selection. Using operators such as crossover, mutation, and selection, the GA synthesizes 

s.t. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 
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the good features of different individuals within the population in order to create individuals who are 

better suited. It is widely applied to solve different classes of NP-hard problems. The IRP belongs to 

the NP-hard class of problems, and exact solution methods are highly time-consuming for large-sized 

problems. Therefore, in the proposed problem, the GA approach is utilized. The flowchart of the 

general procedure of the proposed GA in this study is shown in Fig. 1. This procedure was adapted from 

the one presented by Gen et al. [34]. 

Start

Parameters tuning

Encoding

Parent Pc(g)

Initial solutions
Input

P, Cr, Mr and g

Termination

Condition

g=Gmax?
Output Best solution

Stop

Yes

No

Roulette Wheel

New population

Selection

Merge Populations

Fitness evaluation

Decoding

Decoding

Chromosome 1

Chromosome 2

Chromosome P-1

Chromosome P

Chromosome i

Chromosome j

Chromosome i 

Chromosome j 
Crossover

Population P(g) Offspring Oc(g)

P(g)+O(g)

0g

.

.

.

Parent Pm(g)

Chromosome j Chromosome j 

Offspring Om(g)

Mutation

g g+1

O(g)

P                    population

Cr                  Crossover Rate

Mr                Mutation Rate

Gmax             Maximum of generation

g                    Generation

O(g)              Offspring in generation g

 Pm(g)             Selected Parents for mutation

Om(g)            Offspring from mutation

Pc(g)              Selected parents for Crossover

 

Fig. 1. General procedure of the proposed GA. 

GA are initialized by a set of chromosomes (solutions) called the population. These chromosomes 

progress through successive iterations, known as generations. During each iteration, fitter 

chromosomes, evaluated by a fitness function, have higher chances of being selected to produce several 

offspring as new solutions. In the new population, which includes parents and children, the best 

individuals are chosen based on their fitness. The population size remains constant throughout all 

iterations. The GA may converge to the best solution after a certain number of iterations. The pseudo 

code for the GA proposed for the current problem is depicted in Algorithm 1. 
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Algorithm 1. The pseudo code for general procedure of the proposed GA. 

 

 

 

 

 

 

 

 

4.1 | Chromosome Representation 

The chromosome representation and encoding of a solution is the first and most crucial task when utilizing 

a GA. Each chromosome must carry all the necessary information about the solution. In this problem, the 

chromosomes represent both served and unserved customers, as well as the route and amount of products 

transshipped to customers in each period. 

The proposed encoded chromosome takes the form of a matrix with dimensions t *(c+k), where t, c, and 

k represent the number of time periods, number of customers, and number of vehicles available, 

respectively. Each row in the matrix is a permutation of real numbers between 1 and c+k, specifically: 

 Numbers 1 to c correspond to customers. 

 Numbers c +1 to c +k represent vehicles. 

In the t'th row of the chromosome, genes related to customers appear before genes related to vehicles. 

These represent the customers served by the desired vehicle during period t. The vehicle route starts at the 

supplier and returns to the supplier after visiting the assigned customers. Fig. 2 provides an example of the 

encoding procedure used in this paper. 

Vehicle usage 

If the first gene value in the chromosome string corresponds to a vehicle or if there are no genes related 

to customers between the two genes related to vehicles, that particular vehicle will not be used in this 

specific time period. 

Unserviced customers 

The gene values after the last vehicle gene up to the end of the chromosome string indicate those customers 

who were not serviced during this period. 

All customers visited 

Logically, if there are no other gene values after the last vehicle gene at the end of the chromosome string, 

it implies that all customers will be visited in this particular period. 

Procedure: GA for IRP 
Input: Customers demand, Vehicle capacity, Planning horizon, Taguchi-based tuned 
parameters 
Output: The best solution (vehicle route and amount of products assigned to customers) 
begin 
g ¬ 0; 
initialize P(g) by encoding routine; 
evaluate P(g) by decoding routine; 
while (not termination condition) do 
create Oc(g) from P(g) by crossover routine; 
create Om(g) from P(g) by mutation routine; 
evaluate O(g) by decoding routine; 
form P(g+1) out of P(g) and O(g); 
set the best current solution; 
g +1 ¬ g 
end 
output: The best solution 
end 
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This encoding ensures that each chromosome carries essential information about customer service, 

vehicle routes, and transshipment of products. It’s a crucial step in utilizing a GA to solve the problem. 

68 11 5 1 1012 7 13 14 2 9 4 3

914 1 4 7 122 10 5 6 3 11 13 8

810 7 5 1 1314 11 2 3 12 4 6 9

Time period 1

Unserved Customers 

in period 1

Customers served by 

vehicle 2 in period 1

Customers served by 

vehicle 1 in period 1

Time period 2

.

.

. 

Time period t

.

.

.

62 10 3 9 113 4 8 5 12 7 11 14

Unused vehicle in 

period 1

Time period 3

1510 7supplier supplier

Customer visit route

 

Fig. 2. Chromosome representation. 

The example in Fig. 2 refers to a chromosome with 11 customers and 3 vehicles, operating over t time 

periods. Gene values 1 to 11 correspond to customers, while genes 12 to 14 represent supplier-available 

vehicles. In time period 1, the value of genes from the beginning of the chromosome string up to the 

first gene related to vehicles (i.e., gene 12) represents customers serviced by the first vehicle. The genes 

after gene 12 up to the second gene related to vehicles (i.e., gene 13) are serviced by the second vehicle. 

This procedure is repeated for the number of available vehicles (i.e., 3). Customers assigned to each 

vehicle are served in the order of their appearance on the chromosome. This arrangement determines 

the route for each vehicle, which starts from the supplier and returns to the supplier after visiting the 

assigned customers (S-8-11-5-1-S). 

4.2 | Initialization 

To initiate the exploration of a nearly ideal solution, a population with the desired number of members 

is generated as an initial solution. Each individual chromosome in the population is represented by a 

t*(c+v) matrix, where t, c, and v denote the number of time periods, customers, and available vehicles, 

respectively. Each row of the matrix consists of a random permutation of real numbers between 1 and 

c+v. 

4.3 | Chromosome Decoding 

The values of the decision variable,  are obtained from permutation numbers of the chromosome as 

follows (k regardless of its gene value, is the kth vehicle's gene in each row): 

 

 

The values of  and  for the customers according to the values of  are then determined as follows: 

 

 

(15) 

(16) 

(17) 
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 Then, the values of  which is related to the amount of vehicle loading, are obtained by the chromosome 

depending on the values of  and  as follows: 

4.4 | Evaluation 

The fitness function is calculated according to the objective function to evaluate the solutions in the 

population. In this model, the fitness value is attained through the cost components of the objective 

function, along with two penalty terms. These cost components include the routing cost, the cost of using 

the vehicle (known as the fixed cost), and the inventory holding cost. According to the constraints of the 

model, penalties related to exceeding the capacity of the vehicle and unsatisfied customer demand in each 

period are also added to the value of the fitness function. After calculating the fitness function, genetic 

operators are applied to solutions with better-fitted values, and costly solutions are removed from the 

population. 

4.5 | Genetic Operations 

Genetic operators, which are generally categorized as selection, crossover, and mutation, are used to create 

better solutions and replace them with existing solutions. 

4.5.1 | Selection 

The chromosome chosen for genetic operations is determined by the roulette wheel operator. Each 

chromosome in the population is given a selection probability proportional to its fitness value. The fitter 

chromosomes have lower cost values and subsequently have higher selection probabilities. The selection 

probabilities are determined based on the total fitness value (F) according to Eq. (19). 

The selection probability Ph for each chromosome h is: 

Then, a random number r is generated in the range (0,1]. If qh−1< r ≤ qh, then chromosome h is selected. 

4.5.2 | Crossover 

Crossover, the primary GA operator, reproduces individuals by combining the data of parents who were 

chosen at random in such a way that the resulting offspring exhibit traits from both parents. The fitness 

function is used to compare these offspring and pass the information on to the following generation. One-

point, two-point, and uniform crossover are three different types of crossover that can occur between 

chromosomes. Cyclic permutations are the best candidates for the two-point crossover. Another method 

for more quickly covering the search space is to reorganize the chromosomes after the crossover process. 

In this situation, the Order Crossover (OX) operator, which has proven effective in a variety of routing-

related situations [33], is chosen to be used. This kind of crossover occurs as described below: 

  (18) 

(19) 

 (20) 
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I. The first and last genes on the chromosome undergo a two-point crossover. Integer numbers are used 

to code the genes. 

II. The two cut points’ locations are chosen at random. 

III. The genes between the cut points are first replicated in the offspring in the same order and location. 

IV. The genes of the other parent are then copied in the same order, skipping the existing genes, starting 

from the second cut point of one of the parents. 

The OX process to create the first offspring is demonstrated in the example in Fig. 2. The exchange of 

gene sequences between P1 and P2's cut points is what is done first. The first parent's genes from the 

second cut point are arranged in the following order: 5-7-6-1-3-4-2-8. After genes 7, 1, 4, and 2, which 

are duplicated in the first child, are deleted, a new sequence, 5-6-3-8, will be copied from the second cut 

point. The second child goes through the same procedure. The mentioned crossover operator is 

illustrated in Fig. 3. 

68 11 5 1 1012 7 13 14 2 9 4 3

914 1 4 7 122 10 5 6 3 11 13 8

Time period 1

Time period 2

115 6 13 4 107 12 8 2 3 1 9 14

147 3 9 5 41 10 2 8 6 13 12 11

Time period 1

Time period 2

Crossover Point

Parent 1

Parent 2

Time period 1

Time period 2

Time period 1

Time period 2

Offspring 1

Offspring 2

Crossover Point

11 107 12 8 2 3

14 41 10 2 8 6

9 4 3

11 13 8

8 11 5 1

14 1 4 7

6 1012 7 13 14 2

9 122 10 5 6 3

Duplicated genes that should omitted

6 1012 7 13 14 2

9 122 10 5 6 3

1 9 14

13 12 11

115 6 13 4 107 12 8 2 3

147 3 9 5 41 10 2 8 6

11 107 12 8 2 3

14 41 10 2 8 6

9 4

11 13

5 1

7

6 13 14

9 12 5 3

6 1012 7 13 14 2

9 122 10 5 6 3

1 9

13 11

115 4 8 3

147 41 8
 

Fig. 3. Order crossover OX process. 

4.5.3 | Mutation 

Mutation is another genetic operator. The primary purpose of this operator is to investigate novel 

solutions in the solution space. Additionally, it is used to broaden the search space by randomly changing 

individual genes to avoid becoming trapped in local optima. In this study, three different mutations are 

used for the mutation process, as presented below: 

Swap mutation 

In swap mutation, two genes are selected randomly, and then their values are swapped in all time periods. 

Permutation is maintained, and perturbation is accomplished using swap mutation. 
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Reversion mutation 

In reversion mutation, a part of the chromosome is reversed. First, two genes are randomly selected, and 

then all the gene values between the two selected genes are reversed. This procedure is done for all time 

periods. 

Insertion mutation 

In the insertion mutation, two genes are randomly selected, and then the value of the first selected gene in 

all time periods is inserted after the second selected gene. 

Each proposed mutation can explore new solutions in the solution space that other mutations are not able 

to explore. To select the mutation, the roulette wheel operation has been used, which selects mutations 

with unequal probabilities. The selection probability of mutations is determined according to the 

performance of the algorithm. The three mentioned mutations are shown in Fig. 4. 

68 11 5 1 1012 7 13 14 2 9 4 3

914 1 4 7 122 10 5 6 3 11 13 8

Time period 1

Time period 2
Parent

a)
Randomly Selected Genes

Swap

68 11 5 9 1012 7 13 14 2 1 4 3

914 1 4 11 122 10 5 6 3 7 13 8

Time period 1

Time period 2

Offspring

68 11 5 1 1012 7 13 14 2 9 4 3

914 1 4 7 122 10 5 6 3 11 13 8

Time period 1

Time period 2
Parent

b)
Randomly Selected Genes

148 11 5 9 132 7 10 6 12 1 4 3

614 1 4 11 53 10 12 9 2 7 13 8

Time period 1

Time period 2

Offspring

Reverse

68 11 5 1 1012 7 13 14 2 9 4 3

914 1 4 7 122 10 5 6 3 11 13 8

Time period 1

Time period 2
Parent

c)
Randomly Selected Genes

108 11 5 12 76 13 14 2 9 1 4 3

1214 1 4 2 109 5 6 3 11 7 13 8

Time period 1

Time period 2

Offspring

Insert

 

Fig. 4. Mutation operation: a. Swap; b. Reversion; c. Insertion. 

4.5.4 | Stop condition 

The algorithm stops when a predefined number of generations is reached. 

5 | Taguchi-based Parameters Tuning 

The appropriate configuration of parameters significantly impacts the effectiveness and efficiency of 

metaheuristic algorithms. Most research studies rely on either literature-based reference values or trial-and-
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error to set these parameters. Since the ideal algorithmic parameters vary depending on the specific 

problem, newly developed algorithms require tailored adjustments to their parameters, resulting in 

improved algorithmic solutions. To estimate the appropriate algorithmic parameters, the Taguchi 

method is employed for optimizing the proposed GA’s parameters. The Taguchi experimental design 

has found widespread application in optimization problems. It relies on two main tools: the Orthogonal 

Array (OA) and the Signal-to-Noise (S/N) ratio. The OA represents a numerical matrix containing 

experimental plans based on various levels of factors. The robustness of this experimental design is 

ensured by the S/N ratio, which quantifies variation. In this context, “signal” refers to the desired value 

(mean response variable), while “noise” corresponds to the undesirable value (standard deviation) [35]. 

1) the Taguchi method aims to minimize the impact of noise while simultaneously determining optimal 

levels for controllable parameters based on robustness [36], and 2) for minimization problems, the goal 

is to maximize the S/N ratio for each parameter i at its level j, as calculated by Eq. (21). 

where n is the number of times level j of parameter i is repeated over the runs of all trials and Zij is the 

objective function value using parameter i on level j. Algorithm 2 contains the proposed Taguchi method's 

pseudo code. 

 Algorithm 2. The pseudo code for Taguchi-based tuning of the proposed GA. 

 

 

 

 

 

  

  

To implement the selected experimental design, the initial step in parameter configuration involves 

choosing the parameters that will act as controls and determining their corresponding levels. The 

proposed GA considers parameters such as population size, number of iterations, crossover rate, 

mutation rate, and selection pressure for fine-tuning. Table 1 outlines the different levels in the tuning 

process for these parameters. 

 Table 1. Different levels of GA parameters used for turning. 

 

 

  

  

L16 (45) was selected from the standard table of OAs. Table 2 provides a summary of the sixteen 

different combinations of the constructed parameters and the outcomes attained through various 

parameter designs. In this table, the rows represent the parameter levels in each experimental scheme, 

and the columns represent the particular parameter levels that can be changed for each scheme. 

 

(21) 

Procedure: Taguchi design for GA parameters 
Input: Levels of Iterarion-N, Population-size, Crossover-R, Mutation-R, 
Selection-P 
Output: Optimum level of parameters 
begin 
select L16(45) as the suitable OA; 
apply GA on each sheme of L16(45); 
obtain Z for each sheme; 
for i ¬ 1 to (5)  do 
for j ¬ 1 to (4)  do 
calculate S/N ratio; 
end 
end 
determine optimum level of parameters; 
end 

Factors (GA Parameters) Levels 
1 2 3 4 

Population size 80 100 120 140 
Number of iterations 100 150 200 250 
Crossover rate 0.7 0.75 0.8 0.85 
Mutation rate 0.2 0.25 0.3 0.35 
Selection pressure 6 7 8 9 
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Table 2. Results obtained from different designs of Taguchi approach. 

 

Using Minitab 18, the proposed design was applied to each parameter at four levels. According to the mean 

for the answers and S/N ratio plot shown in Fig. 5, a good solution for the population size, number of 

iterations, mutation and crossover rates, and selection pressure is 120, 150, 0.3, 0.85, and 6, respectively. 

 

Fig. 5. Comparison of the mean for the answers and S/N ratios of the algorithms. 

6 | Results Analysis 

The performance of the developed GA was tested in this section. The modified GA has been implemented 

in MATLAB and run on a Core i5 and 8 GB RAM personal computer. The modified GA was tested on 

benchmark instances used in [37]. These instances are presented in two sizes: small with 5 to 50 customers 

and large with 50 to 200 customers. Each of the instances has been proposed over three and six time 

horizons. The OU policy was intended as a replenishment inventory policy, according to which every visit 

to a customer brings its inventory to the maximum level. In this research, relevant small instances have 

been used. The termination criterion is reaching the number of iterations, which is 150 iterations according 

to parameter tuning. Therefore, the number of iterations is fixed and running times are used for time 

Design GA Parameters Fitness 
Function Population-Size Iteration-N Crossover-R Mutation-R Selection-P 

1 80 100 0.7 0.2 6 5620.65 
2 80 150 0.75 0.25 7 5201.23 
3 80 200 0.8 0.3 8 5303.56 
4 80 250 0.85 0.35 9 5905.84 
5 100 100 0.75 0.3 9 5543.23 
6 100 150 0.7 0.35 8 5757.52 
7 100 200 0.85 0.2 7 5889.54 
8 100 250 0.8 0.25 6 5856.69 
9 120 100 0.8 0.35 7 5153.68 
10 120 150 0.85 0.3 6 5914.68 
11 120 200 0.7 0.25 9 5956.87 
12 120 250 0.75 0.2 8 5380.56 
13 140 100 0.85 0.25 8 5563.65 
14 140 150 0.8 0.2 9 5152.84 
15 140 200 0.75 0.35 6 5419.37 
16 140 250 0.7 0.3 7 5682.75 
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comparison. To achieve average results of executed instances, each instance was run 30 times. By making 

the problem more complex, the exact algorithm is less able to solve it in a reasonable time. Table 3 

displays results of developed metaheuristic as well as those from earlier studies that were applied to same 

benchmark. 

 Table 3. Average result values obtained by the different resolution 

methods for the small-instances. 

 

The size of the instance sets is shown in the first column. The second column shows the optimal solution 

to the problem solved in [37]. The third, fifth, and seventh columns show the average of the best 

outcomes obtained with GA-OX and MA of [33] and modified GA developed in this paper, respectively. 

The average computation time needed to obtain the results from GA-OX, MA, and modified GA is 

shown in the fourth, sixth, and eighth columns, respectively. The Error Rate (ER) of the modified GA, 

in the ninth column, was computed with Eq. (22). 

As can be seen, the developed algorithm shows better performance in solving instances. The calculated 

ER is 0% in many cases and up to 0.87% in other cases. The ER in these instances does not even reach 

1%, which indicates good performance of the algorithm in the problem due to low time to solve it. 

Modified GA was able to accurately solve five instance sets of three delivery periods and four instance 

sets of six delivery periods. By examining the percentage of solution improvement in these instances, it 

shows the efficiency of the modified GA algorithm. Two algorithms, MA and GA-OX, have cumulative 

deviations of 1.09% and 9.86% from optimal solution in all instances, respectively. The deviation 

percentage of proposed algorithm is 1.14%, which is very good compared to GA-OX algorithm. Also, 

compared to MA algorithm, although difference is very small considering solving time, better 

performance is obtained from presented algorithm. Better performance of proposed algorithm 

compared to other two algorithms can be seen not only in value of objective function but also in time 

taken to reach solution of problem. Modified GA has achieved optimal or close to optimal solution in 

less time than MA and GA-OX in all instances. This issue can be seen in the diagram in Fig. 6. The 

effect of reducing the solution time will be more pronounced in larger samples. 

 

 

Instance Optimal 
Solution 

GA-OX Time(s) MA Time(s) Modified 
GA 

Time(s) ER 

 Number of Time Periods = 3 

Small-5 1418.76 1418.76 71.95 1418.76 83.14 1418.76 68.11 0 
Small-10 2228.67 2228.67 81.27 2228.67 98.49 2228.67 76.01 0 
Small-15 2493.47 2493.47 118.41 2493.47 179.31 2493.47 99.12 0 
Small-20 3053.02 3121.43 160.38 3053.02 221.17 3053.02 132.75 0 
Small-25 3451.15 3451.15 220.20 3451.15 238.53 3456.14 185.85 0.144589 
Small-30 3643.22 3643.22 232.84 3643.22 253.87 3643.22 201.31 0 
Small-35 3846.87 3958.73 248.13 3848.46 281.28 3848.46 213.44 0.041332 
Small-40 4125.70 4150.79 275.58 4136.57 296.43 4132.70 249.85 0.169668 
Small-45 4270.61 4279.19 293.91 4279.19 311.27 4279.19 286.53 0.200908 
Small-50 4810.87 4887.16 364.84 4811.92 409.31 4853.12 301.72 0.87822 
 Number of Time Periods = 6 
Small-5 3299.98 3299.98 213.77 3299.98 249.23 3299.98 198.85 0 
Small-10 4832.89 4832.89 259.19 4832.89 301.87 4832.89 236.32 0 
Small-15 5566.39 5638.59 297.43 5566.39 366.30 5566.39 284.18 0 
Small-20 6833.29 6838.42 427.23 6833.29 528.54 6838.42 361.68 0.075074 
Small-25 7454.15 7475.88 483.59 7475.88 631.86 7462.11 416.79 0.106786 
Small-30 7847.39 7899.12 713.74 7868.36 843.39 7877.52 506.60 0.383949 

(22) 
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Fig. 6. Comparison of solving times of the algorithms. 

Premature convergence in the local optimum is one of the problems of the GA that prevents reaching the 

global optimum. Fig. 7 shows the convergence behavior of the proposed GA over 150 generations. This 

diagram is related to the solution of the first standard example. As it is clear in the figure, the algorithm 

has converged to local solutions in generations 22 to 30 and 36 to 50, but due to the defined mutation, the 

algorithm has been able to exit this convergence and continue the solution procedure. The solution 

converges to the global optimum at 61 generations, which is relatively fast. 

Fig. 7. Convergence behavior of the proposed GA over 150 generations. 

7 | Conclusions 

The IRP has gained much attention from practitioners in the literature. The problem’s complexities imply 

more use of meta-heuristic algorithms to solve it. The GA is widely used to solve optimization problems. 

Various approaches have been employed for the chromosomal structure of the GA based on the under-

investigation problem, all of which try to improve the performance of the problem algorithm. Introducing 

a novel chromosomal structure based on IRP, this study could use GA with better conditions. Simple 

chromosome structure, encrypting and decrypting the chromosome, and higher speed of the algorithm are 

some characteristics of this structure. To evaluate and investigate the algorithm performance, IRP has been 

modeled as a linear single-objective mixed integer programming. The parameters of the algorithm are 

adjusted and determined by using Taguchi method with 16 trials. To compare algorithm efficiency, 26 

standard samples with small and large sizes available in the literature were used. Due to the random nature 

of the algorithm, each sample was solved 30 times, and the average values were used to perform 

comparisons. A comparison of the results with those in other studies shows that modified algorithm has 
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good performance. In many cases, this algorithm provided higher-quality solutions than its counterparts. 

In all samples compared, presented algorithm performed better concerning time and could reach 

solutions in a shorter time. As a suggestion for the future, one can develop the same chromosomal 

structure for PRP. As well, this algorithm can be combined with others to improve performance. 
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