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Abstract 

 

1 | Introduction  

Production scheduling is an important challenge in the field of production and operation planning 

and attracted the attention of many researchers. It can be defined as the determination of a sequence 

to assign tasks that utilize resources to produce products [1]. Being classified as an NP-hard problem, 

Job shop Scheduling (JSP) is the most known and complex scheduling problem [2]. Besides, the 

Flexible Job shop Scheduling Problem (FJSP) is one of the extensions of the JSP with more 

complication and Mati and Xia [3] proved that it belongs to the class of NP-hard problems as well. 

One of the most important issues in the field of FJSP is the so-called reverse flows involved within 

an assembly/disassembly network, in which non-conforming and used assembled products are 

returned by the customers. To have a sustainable production line, these products are then 

disassembled to use their good components in recovery activities. Over the past few years, most of 

the research on reverse logistics dealt with the return of products in a supply chain [4]. 
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The first crucial step involved in product recovery operation is disassembly. Disassembly scheduling, as 

one of the important operational problems, can be generally defined as the problem of determining the 

quantity and the timing of the end-of-use/life products while satisfying the demand for their parts over 

a planning horizon [5]. Some disassembly operations are almost always needed in remanufacturing, 

recycling, and disposal. Several questions arise which increase the uncertainty in disassembly yield: 1) is 

the component missing? 2) is the component functional? 3) What is the version of the component? If 

these questions can be answered before the disassembly of the component, unnecessary disassembly of 

a non-functional or unneeded component can be avoided [6]. In disassembly, the flow process is 

divergent and there is a high degree of uncertainty in the quality of the returned products. The reusability 

of parts creates a demand and availability of the reusable parts is significantly less predictable than what 

is found in the assembly process [7]. 

As an operational (short-term) decision, the current study seeks to determine proper scheduling for the 

FJSP of an assembly/disassembly network that involves reverse flows. In what comes in the next 

section, some relevant works in this area are surveyed in chronological order. 

2 | Literature Review 

In this section, a few relevant and recent researches on the JSP are first reviewed. Then, some studies 

on the reverse flow and disassembly problems are surveyed.  

Gao et al. [8] addressed the FJSP with two constraints, namely fuzzy processing time and new job 

insertion. A Two-stage Artificial Bee Colony (TABC) algorithm with several improvements was 

proposed to solve FJSP with fuzzy processing time and new job insertion constraints. 

A JSP was considered in Giglio et al. [9], where the authors proposed a design to integrate an energy-

efficient JSP and lot sizing for manufactured raw materials and remanufactured return products. Stating 

that their Mixed-Integer Linear Programming (MILP) formulation was NP-Hard, they proposed a relax-

and-fix heuristic to solve their problem. Wu and Sun [10] formulated a FJSP, in which turn-on/off 

machines and speed levels were taken into account to save energy. They solved their problem using a 

Non-dominated Sorted Genetic Algorithm (NSGA-II). 

A Flexible Job-shop Rescheduling Problem (FJRP) for new job insertion was addressed by Gao et al. 

[11]. Their paper deal with bi-objective FJRPs to minimize: 1) instability and 2) one of the following 

indices: a) makespan; b) total flow time; c) machine workload; and d) total machine workload. A 

metaheuristic algorithm, named DJaya presented to solve FJRP.  

Gong et al. [12] introduced a Double Flexible Job shop Scheduling Problem (DFJSP) model that not 

only takes into account the processing time but also considers green production measures including 

environmental protection and human factor indicators. They solved their problem by utilizing a Newly 

proposed Hybrid Genetic Algorithm (NHGA). 

A FJSP to minimize the total energy consumption of the shop was investigated by Meng et al. [13]. The 

authors solved their proposed models using the CPLEX SOLVER, based on which the effectiveness of 

their approach was assessed. They showed that their MILP models outperform the existing model that 

minimizes idle time. Gong et al. [14] developed a many-objective integrated energy- and labor-aware FJS 

model. The objectives involved in their model included makespan, total labor cost, total energy cost, 

total workload, and maximal workload. They used an NSGA-III meta-heuristic to solve their problem. 

On the subjects of reverse flow and disassembly, we refer interested readers to Dondo and Mendez [15], 

Osmani and Zhang [16], and Giri et al. [17] for the latest research in reverse flows conducted in supply 

chains. Here some works related to heuristic and meta-heuristic approaches to solve the reverse flow 

problem in assembly and disassembly environments are discussed. McGovern and Gupta [7] developed 
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a Genetic Algorithm (GA) for disassembly line balancing problems. Adenso-Diaz et al. [18] presented a 

path-relinking-based heuristic that seeks the optimal disassembly sequence plan. Duta et al. [19] provided 

a GA for finding the disassembly sequence with the best financial income. Kim et al. [20] provided a 

Branch and Bound (B&B) algorithm to meet the demand for end-of-use product components by 

determining the quality and time of this component's disassembly. Ilgin and Gupta [6] studied the sensors 

implanted in products on the performance of a washing machine disassembly line. Wan & Gonnuru [21] 

proposed a GA that provides a disassembly sequence to maximize the benefits by taking into account the 

recovery value and the disassembly cost. Abdeljaouad et al. [22] proposed a hybrid heuristic algorithm for 

job-shop scheduling problems with reverse flows for disassembly. Tanimizu et al. [23] proposed a 

scheduling method for open-shop scheduling problems containing both disassembly and post-processing 

operations. Finally, Ren et al. [24] proposed a model for the asynchronous Parallel Disassembly Planning 

(i.e. aPDP) problem. They adopted an efficient meta-heuristic based on GA to identify the disassembly 

sequence and manipulator allocation. Aghighi et al. [25] investigated open shop scheduling with the reverse 

flow. A MILP model was developed to solve the problem. The proposed model includes an objective to 

minimize the maximum completion time of all jobs (makespan). A numerical example is presented and 

solved by using the GAMS software to validate the proposed mathematical model. Seven meta-heuristic 

algorithms (VDO, SA, ICA, BAT, HSA, ACO, and CS) were used to solve larger-size examples.  

Given the above-mentioned literature, in this paper, a FJSP with reverse flow is studied. A Mixed Integer 

Programming (MIP) model is presented and the B&B method is used to solve small-size problems. Due 

to the NP-hardness of the problem, a meta-heuristic algorithm, namely a Vibration Damping Optimization 

(VDO) algorithm is used to solve large-scale problems. The Taguchi method is used to calibrate the 

parameters of the algorithm, in an attempt to find better solutions. Finally, the proposed algorithm is 

compared with the GA by solving some randomly generated test problems. 

The remainder of the paper is organized as follows; in Section 3 the problem is defined, the assumptions 

are made, the notations are defined, and the problem is formulated. The proposed solution approach 

comes in Section 4. Some problems are solved in Section 5 to validate the proposed algorithm as well as 

to assess its performance when compared to the one of a GA. Finally, the conclusion and future research 

recommendations are in Section 6. 

3 | The Problem and its Model 

In this section, the problem is defined explicitly. Then, notations are defined, based on which the 

mathematical formulation of the problem is developed. 

3.1 | Problem Definition 

In this paper, there are  jobs that must be scheduled at  stages on  machines in the kth workshop. 

There are two operating ranges: the direct jobs cover the stages in the order , and the reverse jobs 

cover the stage in the order . The set of  shows the set of direct jobs and  shows the set 

of reverse jobs. Fig. 1 shows the direct and reverse flows involved in this job shop. 

Note that for any flexible job-shop scheduling problem with reverse flows, where there are two flows of 

jobs at each stage in opposite directions, optimal solutions are using the following policies [22]: 

 At the first stage, all of the direct jobs should be processed before the reverse jobs (on any machine). 

 At the last stage, all of the reverse jobs should be processed before the direct jobs (on any machine). 
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Fig. 1. An overview of the flows. 

3.2 | Assumptions 

There are two types of jobs (direct and reverse). 

Direct and reverse flows enter and exit each stage. 

All jobs are available at zero time and are independent. 

There are  jobs in stage . 

All machines are independent of each other.  

All machines are continuously available. 

At a time, each machine can process at most one job, and each job can be processed only on one 

machine. 

Each machine can process only one operation. 

The machines in each stage are different from each other. 

The machines of a direct and a reverse path are the same. 

Preemption is not allowed. In other words, the processing of a given job on a machine cannot be 

interrupted once started. 

The processing time can be different in various machines. 

The machine setup time is ignored. 

3.3 | Notations 

The indices, the sets, the parameters, and the decision variables defined to formulate the problem are as 

follows. 

3.3.1 | Indices 

 An index used for a job, . 



435 

 

A
 v

ib
ra

ti
o

n
 d

a
m

p
in

g
 o

p
ti

m
iz

a
ti

o
n

 a
lg

o
ri

th
m

 t
o

 s
o

lv
e
 f

le
x

ib
le

 j
o

b
 s

h
o

p
 s

c
h

e
d

u
li

n
g

 p
ro

b
le

m
s 

w
it

h
 r

e
ve

rs
e
 f

lo
w

s 

 
 An index used for a stage,  . 

 An index used for a machine in stage ,  . 

 The position index, . 

 The previous position index,  . 

 Number of jobs in the direct flow. 

 Number of jobs in the reverse flow. 

3.3.2 | The sets 

: The set of all jobs. 

: The set of direct jobs. 

: The set of reverse jobs. 

3.3.3 | The parameters 

: The number of all jobs. 

: The number of all machines. 

: The number of jobs in stage . 

: The number of positions. 

: The operation of job  on machine  at stage . 

: The time required to process job  on machine  at stage . 

: A large positive number. 

3.3.4 | Decision variables 

 : The starting time of job  in stage . 

: The real processing time (real duration) of job at stage . 
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3.4 | Mathematical Modeling 

The proposed mathematical model of the problem follows: 

 

The mathematical Eq. (1) represents the objective function minimizing the completion time (  of 

the last job on the last machine. Constraint (2) defines that each job at each stage can be processed only 

in one position and only on one machine. Constraint (3) ensures that only one job can be processed at a 

position of one stage on a machine. Constraint (4) assures that if a direct job is processed at the first 

position of the first stage (on each machine), its starting time of operation at the first stage is zero. 

Constraint (5) defines that if a reverse job is processed at the first position of the last stage (on each 

machine), its starting time of operation at the last stage is zero. Constraint (6) shows the real processing 

time of job  at the kth stage. Constraint (7) implies that the starting time of a direct job at each stage is 

equal to its starting time at the previous stage plus its processing time (a pre-required direct job 

constraint). Constraint (8) indicates that the starting time of a reverse job at each stage is obtained by 

adding its starting time at the next stage with its processing time (pre-required reverse job constraint). 

Constraint (7) and Constraint (8) are initial precedence constraints on the operations of the jobs. Constraint 

(9) and Constraint (10) determine the finishing times ( ) of the direct and reverse jobs, respectively, 

obtained by the finishing times of the last job. Constraint (11) ensures that if job  at stage  is processed 

after job j, then the starting time of job  must be equal to the starting time of job  plus its processing 

time. Constraint (12) defines the type of the variable being used. 

(1) 

s.t.  

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 
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3.5 | An Illustrative Example 

A small example is solved in this section using the Lingo 16 software to illustrate the applicability of the 

model developed in Section 3.4. In this example, there are 3 direct jobs (1, 2, and 3) and 3 reverse jobs (4, 

5, and 6) to be scheduled at 5 stages. While there are 2 machines in Stages 1 and 2, in the other three stages, 

3 machines are available. Table 1 shows the duration of each job at each stage on each machine and Fig. 2 

displays the optimal solution. 

 Table 1. The duration of each job at each stage on each machine [p(k, j, s)=Pkjs]. 

 

 

 

 

 

 

 

 

 

Fig. 2. The optimal solution obtained by Lingo 16. 

 

p(1,1,1)= 4 p(2,1,1)=2 p(3,1,1)=3 p(4,1,1)=1 p(5,1,1)=1 
p(1,1,2)=5 p(2,1,2)=5 p(3,1,2)=4 p(4,1,2)=1 p(5,1,2)=1 
p(1,1,3)=3 p(2,1,3)=3 p(3,1,3)=1 p(4,1,3)=2 p(5,1,3)=1 
p(1,2,1)=4 p(2,2,1)=5 p(3,2,1)=3 p(4,2,1)=2 p(5,2,1)= 1 
p(1,2,2)=5 p(2,2,2)=2 p(3,2,2)=5 p(4,2,2)=1 p(5,2,2)=1 
P(1,2,3)=1 p(2,2,3)=4 p(3,2,3)=4 p(4,2,3)=1 p(5,2,3)=1 
p(1,3,1)=1 p(2,3,1)=4 p(3,3,1)=4 p(4,3,1)=1 p(5,3,1)=1 
p(1,3,2)=1 p(2,3,2)=1 p(3,3,2)=4 p(4,3,2)=2 p(5,3,2)=1 
p(1,3,3)=5 p(2,3,3)=1 p(3,3,3)=3 p(4,3,3)=3 p(5,3,3)=1 
p(1,4,1)=3 p(2,4,1)=5 p(3,4,1)=3 p(4,4,1)=3 p(5,4,1)=1 
p(1,4,2)=1 p(2,4,2)=1 p(3,4,2)=2 p(4,4,2)=1 p(5,4,2)=1 
p(1,4,3)=3 p(2,4,3)=2 p(3,4,3)=3 p(4,4,3)=2 p(5,4,3)=1 
p(1,5,1)=1 p(2,5,1)=1 p(3,5,1)=3 p(4,5,1)=1 p(5,5,1)=1 
p(1,5,2)=2 p(2,5,2)=4 p(3,5,2)=5 p(4,5,2)=2 p(5,5,2)=1 
p(1,5,3)=1 p(2,5,3)=4 p(3,5,3)=5 p(4,5,3)=2 p(5,5,3)=1 
p(1,6,1)=3 p(2,6,1)=2 p(3,6,1)=2 p(4,6,1)=2 p(5,6,1)=1 
p(1,6,2)=5 p(2,6,2)=5 p(3,6,2)=4 p(4,6,2)=1 p(5,6,2)=1 
p(1,6,3)=1 p(2,6,3)=3 p(3,6,3)=5 p(4,6,3)=1 p(5,6,3)=1 
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4 | The Solution Approach 

Due to the NP-hardness of the problem [22], a VDO algorithm is utilized in this section to solve large-

scale problems. VDO, was first proposed by Mehdizadeh et al. [26] and has been used to solve many 

optimization problems especially Production Scheduling Problems (PSPs) so far. Aliabadi et al. [27] 

studied the scheduling and sequence of multi-product flow-shops problem with sequence-dependent 

setup times. Three meta-heuristics including a hybrid Particle Swarm Optimization (PSO), a hybrid 

VDO, and a hybrid GA were used to solve this problem. Mehdizadeh et al. [26] used a VDO algorithm 

for the identical parallel machine scheduling problem with sequence-independent family setup times to 

minimize the total weighted completion time and computationally compare the results obtained by the 

proposed VDO with the results of the GA and branch-and-bound method. Yazdani et al. [28] employed 

two meta-heuristics, namely SA and VDO to minimize the makespan of a Dual-Resource Constrained 

Flexible Job-shop Scheduling Problem (DRCFJSP). Alaghebandha et al. [29] considered an efficient 

Hybrid Vibration Damping Optimization (HVDO) with an Imperialist Competitive Algorithm and 

Simulated Annealing to solve the economic lot sizing and scheduling problem in distributed permutation 

flow shop problem with several non-identical factories and machines and used GA and VDO for 

comparison. Rashidi Komijan et al. [30] applied a VDO algorithm to solve an integrated airline feet 

assignment and crew scheduling problem. To evaluate the performance of the proposed VDO 

algorithm, the obtained results were compared with PSO and optimal solutions. Aghighi et al. [25] used 

the VDO algorithm and six other algorithms including SA, ICA, BAT, HSA, ACO, and CS) to solve 

larger-size examples of open shop scheduling with the reverse flow. Soofi et al. [31] used the VDO 

algorithm to solve the Dual-Resource Constrained Flexible Job-shop Scheduling (DRCFJSS) problem 

under machine breakdown and operational uncertainty. 

4.1 | Vibration Damping Optimization Algorithm 

There is a useful connection between vibration damping and combinatorial optimization. VDO 

algorithm is a powerful meta-heuristic algorithm with a stochastic search method based on the concept 

of vibration damping in mechanical vibration [32], [33]. All bodies possessing mass and elasticity are 

capable of vibration. Vibrating systems are all subject to damping to some degree because energy is 

dissipated by friction and other resistances. This process is called vibration damping.  At a given 

amplitude, the probability distribution of the oscillatory system is determined by the Rayleigh 

probability. At high amplitude, the probability converges to 1 for all energy states. It can also be seen 

that there exists a small probability that the system might have high energy at low amplitudes. Therefore, 

the statistical distribution of energies allows the system to escape from a local energy minimum. Table 2 

indicates an analogy between optimization problems and vibration damping. 

Table 2. The analogy between optimization problems 

and VDO algorithm [26]. 

 

 

 

The algorithm consists of a sequence of iterations. Each iteration consists of randomly changing the 

current solution to create a new solution in the neighborhood of the current solution. The neighborhood 

is defined by the choice of the generation mechanism. Once a new solution is created the corresponding 

change in the cost function is computed to decide whether the newly produced solution can be accepted 

as the current solution. If the change in the cost function is negative the newly produced solution is 

directly taken as the current solution. Otherwise, it is accepted according to Raleigh's probability. If the 

difference between the cost function value of the current and the newly produced solutions is equal to 

VDO Optimization Problems 

System states 
Energy 
Change of state 
Amplitude 
Vibration damping 
Degrees of freedom 

Feasible solution 
Objective function 
Neighbouring solution 
Control parameter 
Heuristic solution 
Number of decision variables 
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or larger than zero, a random number in [0, 1] is generated from a uniform distribution, and if 

, then the newly produced solution is accepted as the current solution. If not, the current solution is 

unchanged. The pseudo-code of the vibration damping algorithm for single objective function problems 

is shown in Algorithm 1. 

Algorithm 1. The pseudo-code of the VDO algorithm [26]. 

 

 

 

 

 

 

 

 

 

 

4.1.1 | Solution representation 

A solution is designed and represented in two steps. In Step 1, direct jobs are placed before the reverse 

jobs, and in Step 2, the reverse jobs are placed before the direct jobs. Note that the direct and the reverse 

jobs are selected randomly. In addition, a solution is represented by two C × N matrices called  and , 

where  is the number of stages and  is the permutation of all jobs (direct and reverse). Depending on 

the rows of the  matrix, the order the jobs are placed in each stage is determined. In addition, the  matrix 

shows how the machines are assigned to the jobs placed in each stage. Fig. 3 depicts a solution structure 

with 10 jobs, 4 stages, and up to 4 machines in each stage. In this figure, the number 3 in the first row of 

the  matrix and the number 1 in the same row of the m matrix indicate that the third job (direct) at the 

first stage is processed on Machine 1. 

 

Fig. 3. Proposed solution representation. 

4.1.2 | Initial solution 

Choosing the proper start solution plays an essential role in the quality of the near-optimum solution and 

the time required. Various methods such as a related priority dispatching rule or a random method can be 

Step 1. Generating a feasible initial solution. 
Step 2. Initializing the algorithm parameters, which consist of: initial amplitude (A0), maximum 
iteration at each amplitude (L), damping coefficient (γ), and standard deviation (σ). Finally, 
parameter t is set in one (t=1) 
Step 3. Calculating the objective value U0 for the initial solution. 
Step 4. Initializing the internal loop. In this step, the internal loop is carried out for l =1 and 
repeat while l < L. 
Step 5. Neighbourhood generation.  
Step 6. Accepting the new solution 

  Set 
 
Now, if ∆ < 0, accept the new solution, else if ∆ > 0 generate a random number r 

between [0, 1]; 
 
 

   
 
 

If , then accept a new solution; otherwise, reject the new solution and accept the 

previous solution. 
 If l > L, then t +1 t and go to Step 7; otherwise, l +1 l and go back to Step 5. 


Step 7. Adjusting the amplitude. In this step, 

 

is used for reducing 

amplitude at each iteration of the outer cycle of the algorithm. If At = 0 return to Step 8; 
otherwise, go back to Step 4. 
Step 8. Stopping criteria. In this step, the proposed algorithm will be stopped after pre-specified 

minimum amplitude  is achieved. At the end, the best solution is obtained. 
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applied to yield an initial solution. In this research, a random method is employed to select initial 

solutions for the VDO algorithm. 

4.1.3 | Neighborhood structure 

Three operators (swap mutation, insertion, and reversion) are used in this paper to construct a 

neighborhood for the solution representation . In the swap mutation shown in Fig. 4, two cells in each 

row of the  matrix corresponding to the job orders in different stages are chosen randomly and then 

their locations are exchanged.  

 

Fig. 4. The considered swap operator. 

Next, the fitness of the solution before and after the swap is compared. If the fitness is not improved, 

then the solution remains unchanged. Similarly, the insertion and reversion operations are employed as 

shown in Figs. 5 and 6, respectively. In addition, the uniform operator is used for the solution 

representation m (the m matrix), based on which 50% of the cells are selected randomly and then 

reproduced. Fig. 7 depicts this operation. 

 

Fig. 5. The insertion operator. 
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Fig. 6. The reversion operator. 

 

Fig. 7. The uniform operator. 

For a new solution to remain feasible, when the S operator is applied, it is necessary to make sure that each 

job in each row is replaced only once. Moreover, in calculating the makespan (fitness function), the first 

operation of each direct job should be scheduled at the first stage and the first operation of each reverse 

job should be scheduled at the last stage. When the m operator is applied, the new solution remains feasible 

anyway. 

4.1.4 | Reducing amplitude 

After each iteration in the main loop of the VDO algorithm, the amplitude is reduced using Eq. (13). This 

can reduce the probability of accepting neighbors generated to avoid increasing the number of iterations 

and hence to increase the speed [32]. 

 

4.1.5 | Neighborhood acceptance/rejection mechanism 

 After each generation, a new solution is created based on which the corresponding change in the objective 

function is computed to decide whether the newly produced solution can be accepted as the current 

solution [26]. If the new member overcomes the current member, the new member replaces it. Otherwise, 

. (13) 
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the probability in Eq. (14) is calculated after that a uniform random number  is generated within [0, 1]. 

If  is less than the probability obtained by Eq. (14), the new solution will replace the current solution. 

 

 

 

4.1.6 | Repeating the number of inner loops 

Another important parameter for finding better solutions is the number of neighborhood searches for 

each amplitude  repeated for each member of the population. The amplitude is used to reduce them in 

each iteration [34]. The number of repetitions of the inner loop depends on the success rate of the 

forced vibration. The number of these repetitions is directly related to the algorithm time, meaning that 

a large number of the inner loop leads to an increase in the time of the algorithm while not improving 

the quality of the solutions. 

4.1.7 | Stop criterion 

While there are different criteria such as the maximum number of iterations available in the literature to 

stop a meta-heuristic, in this paper the VDO algorithm and other mentioned algorithms are stopped 

when it achieves a good convergence behavior. 

5 | Computational Results  

To demonstrate the applicability of the proposed methodology alongside validating the results obtained 

in terms of the solution quality and computational time, the solutions obtained using the proposed VDO 

algorithm are compared with those obtained by the Lingo 16 software, when both solve some small-

size problems. In addition, a GA [35] is also utilized to analyze and compare the results found by the 

VDO algorithm when they solve some randomly generated test problems. Before doing this, the 

parameters of both solution algorithms are first calibrated in the next subsection using the Taguchi 

method [36] to find better quality solutions in a reasonable time. 

5.1 | Parameter Tuning 

In this paper, the Taguchi method is implemented to tune the parameters of the VDO algorithm and 

GA. In this method, a statistical measure, called the Signal-to-Noise (S/N) ratio, is calculated to evaluate 

the performance of the algorithm based on a specified combination level of its parameters. Here, the 

term “signal” denotes the mean objective function value which is desirable, and “noise” denotes the 

standard deviation of the objective function values which is undesirable. The aim is to maximize the 

signal-to-noise ratio [31], [32]. 

The parameter levels of the algorithms to solve a typical problem are presented in Tables 3 and 4. Besides, 

the L25 design of the Taguchi method is employed for the proposed algorithms. The algorithms are 

coded in MATLABR2013a, Version 8.1.0.604, and are executed on a PC with 6 GB RAM and a 2.30 

GHz CPU. For each algorithm, the related S/N ratio is obtained using the Minitab 17 software as 

illustrated in Figs. 8 and 9. In these figures, the best level of each parameter is selected to be the one with 

the highest S/N ratio. As a result, the proper values of the parameters are presented in Tables 5 and 6. 

 Table 3. Parameters and their levels for the GA. 

  

 

(14) 

mP cP Npop Parameters 
0.1 0.6 25 

Presented levels 

0.15 0.7 50 

0.20 0.8 100 

0.30 0.9 150 

0.40 0.95 200 
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 Table 4. Parameters and their levels for 

the VDO algorithm. 

 

 

Fig. 8. The mean S/N ratio plot at each level of the parameters for the 

objective function values found by GA (Larger mean of S/N is better). 

 Fig. 9. The mean S/N ratio plot at each level of the parameters for objective 

function values found by the VDO algorithm (A larger mean of S/N is better). 

Table 5. Optimal levels of the GA parameters. 

 

 

 

 

 

L γ 0A Parameters 
1 0.001 100 

Presented levels 

2 0.005 300 

3 0.01 500 

4 0.05 700 

5 0.1 1000 

Pm Pc Npop Parameters 

Forth level Forth level Forth level Selected levels 
0.30 0.90 150 The amount of levels 
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 Table 6. Optimal levels of the VDO algorithm parameters. 

  

  

5.2 | Numerical Results and Validation 

To validate the proposed algorithm in terms of the solution quality (makespan) and computational time, 

the results found by the proposed VDO algorithm are compared with those obtained by the Lingo 16 

software and GA. 

5.2.1 | Validation results 

At first, the results found by the proposed VDO algorithm are compared with those obtained by Lingo 

16 software 14 problems. In the first 10 small-size problems, the numbers of direct and reverse jobs are 

both 2 and 3, while the number of stages is chosen in the range 2-7. Besides, the maximum number of 

available machines in each stage is 3 and the processing times are selected randomly from a uniform 

distribution in [1, 99]. The VDO algorithm stops when it converges to a solution. 

The optimal makespans of 14 test problems obtained by Lingo software are shown in the 6th column of 

Table 7. The 8th and the 9th columns of this table present the best and the average solutions found by the 

VDO algorithm when it solves each problem 5 times. A review of the results in Table 7 shows that the 

VDO algorithm and the Lingo software 16 are capable of attaining the optimal solutions for test 

problems 1-10. In the last four test problems, however, the VDO algorithm works better, whereas Lingo 

is unable to solve these problems in reasonable computational times.  

In addition, the best solutions found by the VDO algorithm for all small-size problems are identical to 

the optimal solutions obtained by Lingo while the computational time required by Lingo is larger than 

the one needed in the VDO algorithm to solve each problem. The required computational times for the 

proposed algorithm are significantly smaller than the Lingo software 16 as shown in Table 7. 

Furthermore, the average solutions found by the VDO algorithm are not far from the best solutions. 

This somehow validates the proposed VDO algorithm. 

5.2.2 | Experimental results 

As Lingo is unable to solve medium and large-size problems in a reasonable computational time, in this 

section, the proposed solution algorithm is compared with (GA) when both solve 30 randomly generated 

test problems. In these problems, the numbers of direct and reverse jobs range are in 6-20, the number 

of stages is in the range of 2-3, the maximum number of machines in each stage is 3, and again the 

processing times are selected randomly from a uniform distribution in [1, 99]. The algorithms are 

stopped when they converge. In addition, each of the problems is solved by the two algorithms five 

times. The last six columns of Table 8 contain the best solution, the average solution, and the 

computational time of the two algorithms. 

 

 

 

 

 

L γ 0A Parameters 
Fifth level Second level Forth level Selected levels 
5 0.005 700 The amount of levels 
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 Table 7. The result obtained by the proposed VDO and LINGO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 Table 8. Results obtained by the proposed VDO and GA. 
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3 7 7 2 3 29.11 29.65 99.65 51 51.68 117.70 
4 7 7 3 3 31.20 31.82 24.30 83.20 83.78 53.66 
5 8 8 2 3 29.90 32.09 84.51 68 68.54 105.12 
6 8 8 3 3 52.10 52.77 80.40 135.31 136.77 182.326 
7 9 9 2 3 36 36.17 55.32 46.8 47.05 95.49 
8 9 9 3 3 52 52.50 87.13 170 170.27 123.54 
9 10 10 2 3 36.10 36.72 96.23 72 72.89 147.17 
10 10 10 3 3 29.1 30.19 114.21 214 214.88 164.103 
11 11 11 2 3 39 39.44 214.72 118.10 118.59 259.63 
12 11 11 3 3 63.11 63.92 222.94 99 99.28 261.03 
13 12 12 2 3 47 47.6 235.19 56.11 56.58 299.8 
14 12 12 3 3 83.91 84.04 216.77 84 84.47 238.33 
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22 16 16 3 3 82.99 83.50 680.42 229.11 229.57 798.4 
23 17 17 2 3 84 84.40 699.54 263 263.57 814.3 
24 17 17 3 3 115.96 116.14 704.26 289 289.40 825.4 
25 18 18 2 3 96 96.7 725.33 135.2 135.73 840.3 
26 18 18 3 3 128 128.17 739.22 202 202.14 869.69 
27 19 19 2 3 153 153.68 804.20 206.96 207.26 902.33 
28 19 19 3 3 155.10 155.57 822.25 218 218.42 934.5 
29 20 20 2 3 188 188.21 840.50 294 294.57 955.4 
30 20 20 3 3 200 201.13 891.23 314 314.12 999.12 
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The results in Table 8 show that the VDO algorithm has a better performance in terms of solution quality 

and computational time compared to GA. To further compare the two solution algorithms, another 

measure, namely the Relative Percentage Deviations (RPD) is defined in Eq. (15). 

In Eq. (13),  is a solution found for a problem by either of the two solution algorithms and  

is the smallest solution when both algorithms solve the problem 5 times. The average RPDs of the VDO 

algorithm and GA for each of the 30 test problems are reported in Table 9 and the graphical comparison 

of the relative deviation index is shown in Fig. 10. The results in Table 9 as well as in Fig. 10 indicate that 

VDO algorithm is the better algorithm in terms of RPD. 

Table 9. Averag RPD of the VDO algorithm and GA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Graphical comparisons of the RPD index. 

 

. (15) 

Problem Number Algorithm 
GA VDO 

1 0.05 0.00 
2 3.71 0.40 
3 0.90 0.09 
4 2.08 0.17 
5 1.52 0.18 
6 7.03 0.94 
7 0.73 0.33 
8 5.26 0.93 
9 1.68 0.35 
10 6.90 0.11 
11 3.36 0.45 
12 2.65 1.35 
13 9.28 0.75 
14 10.21 2.09 
15 1.08 0.81 
16 2.11 1.24 
17 9.08 1.04 
18 10.23 1.06 
19 1.85 1.33 
20 3.47 2.40 
21 8.49 1.81 
22 7.44 2.07 
23 8.69 2.09 
24 9.64 3.27 
25 3.99 2.59 
26 6.43 3.71 
27 6.62 4.65 
28 7.03 4.72 
29 9.83 5.91 
30 10.54 6.39 
Average 5.40 1.77 

0
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To verify the validity of the algorithms in terms of average RPD statistically, their means are compared 

using a two-sample Student's t-test. The samples have been accomplished using the MINITAB 17.0 

software and are summarized in Table 10, where the p-value of the test statistic in comparing the two means 

becomes 0.000. It means that the two RPD means are significantly different at almost 100% confidence 

level. In other words, the VDO is the better algorithm in terms of the average RPD for sure. In addition, 

the mean plot and the LSD intervals of the two algorithms in Fig. 11 reveal this fact better. 

Table 10. Statistical comparison of VDO and GA in terms of average RPD. 

 

 

 

Fig. 11. Mean plot and LSD intervals of RPD for the proposed meta-heuristic algorithms. 

6 | Conclusions and Future Research 

In this paper, the FJSP with two flows of jobs (direct and reverse) at each stage was investigated. A 

mathematical programming model was presented and a numerical example was solved by Lingo 16 

software to demonstrate the applicability. A small example was solved by using the Lingo 16 software to 

illustrate the applicability of the developed mathematical. Then the results found by the proposed VDO 

algorithm were compared with those obtained by Lingo 16 software on 14 problems. A review of the 

results showed that the VDO algorithm and the Lingo software 16 were capable of attaining the optimal 

solutions for small test problems. In the last test problems, however, the VDO algorithm worked better, 

whereas Lingo was unable to solve these problems in reasonable computational times. In addition, the best 

solutions found by the VDO algorithm for all small-size problems were identical to the optimal solutions 

obtained by Lingo while the computational time required by Lingo was larger than the one needed in the 

VDO algorithm to solve each problem. Furthermore, the average solutions found by the VDO algorithm 

are not far from the best solutions. Due to the NP-hardness of the problem, a metaheuristic algorithm 

namely the VDO algorithm was applied to solve large-scale problems. To validate the results obtained by 

the VDO algorithm in terms of solution quality and time, the results were compared with those obtained 

from Lingo 16 software for small-size problems. Finally, the proposed algorithm was compared with a GA 

by solving some randomly generated large test problems, based on which the results were analyzed 

statistically. Computational results showed that the VDO algorithm had better performance than GA. 

Developing a multi-objective mathematical model for the FJSP with reverse flows, taking into account real 

conditions such as sequence-dependent setups-times, blocking, etc., and considering the reverse flow 

concepts in other scheduling environments can be considered as future studies. 

Result T-Value P-Value Se Mean St.Dev Mean N Factor 

H0 is 
rejected 

5.12 0.000 
0.32 1.76 1.77 30 VDO 
0.63 3.46 5.40 30 GA 

RPD GARPD VDOA

7

6

5

4

3

2

1

D
a
ta

Interval Plot of RPD VDOA, RPD GA
95% CI for the Mean

Individual standard deviations were used to calculate the intervals.
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