
  Corresponding Author: mh.sattarkhan@stu.yazd.ac.ir 

                        https://doi.org/10.22105/riej.2022.335596.1306 

 

E-ISSN: 2717-2937 | P-ISSN: 2783-1337 | 

Abstract 

  

1 | Introduction  

Production planning is a branch of science that focuses on planning and scheduling productions at 

different levels of decision-making. Production planning has long been the subject of many studies 

to increase productivity in manufacturing systems. The problem of scheduling and sequencing of the 

operations is a branch of production planning that allocates any activity to the machine or the 

production line at the right time and determines the best possible sequencing of activities on 

machines or production lines. Various objectives have already been defined in these types of 

problems, each of which has been identified and resolved according to a specific need. 

The production scheduling problem basically consists of the selection of a set of tasks to be 

performed and the construction of a schedule complying with the technological requirements and 

satisfying as much as possible the given demands for a final production [1]. With the global 

economy's rapid development, the manufacturing industry's production model has changed [2]. The 
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real-life production scheduling problems may encompass many specific technological and business 

requirements such as due dates, sequence-dependent changeovers, unit blockages, etc. [3]. 

A multi-product system is one of the different manufacturing systems in which many products have 

been produced that complement each other and have interdependence. These types of systems have 

recently been widely used in various industries. 

In recent years, some types of multi-product manufacturing industries, including the ceramic tile 

industry, have offered their products as packages. The components of each package have their own 

production schedule. The completion times of these components may directly affect the appropriate 

management of the supply chain, customer satisfaction, etc. Therefore, a new problem has been defined 

that the primary purpose of its production scheduling, in addition to reducing the completion time of 

the products, is to make various items forming a package, get ready over a short interval of time, and to 

supplied to the sales unit so that the package can be delivered to the final consumer. 

In this paper, we attempt to express such a problem in the form of a linear programming problem and 

solve it. Therefore, two mathematical models are built that, unlike the usual procedure in the literature, 

the objective function of both models is to reduce the weighted sum of the time intervals between the 

various products of each package. Both models take into account the general state of n production lines 

and m products (jobs), and the relevant constraints on reality are developed in the models. To our 

knowledge, this is the first study that considers this objective function for a real-world problem and 

would be the paper's most important contribution. Besides, since it is impossible to solve either of the 

two proposed models for large-scale problems precisely in a meaningful time, an efficient genetic 

algorithm is proposed to solve the problem logically. 

2 | Literature Review 

Parallel machines’ scheduling has been the subject of several pieces of research over the years, and each 

has added a new dimension to the problem, depending on its intended application. Considering setup 

times/costs [4]-[8], [17], [24], cost of earliness/tardiness [4]-[6], [12], [15], [17]-[19], [24], and machines 

availability [9], [10] are the examples of various issues that gradually have applied in the formulation of 

the problem. 

Kim et al. [4] focused on the scheduling problem of identical parallel machines to minimize total 

tardiness. At the same time, there are Sequence-Dependent Setup Times (SDST) between the jobs with 

different part types. They presented a mathematical model with two encoding schemes for meta-

heuristic solutions and three decoding methods for obtaining a schedule from the meta-heuristic 

solutions. They developed six different Simulated Annealings (SA) and genetic algorithms, with six 

combinations of two encoding schemes and three decoding methods. They then performed 

computational experiments to find the best combination. Their suggested algorithm provided better 

solution quality with less computation time than commercial optimization solvers. 

With the same objective, Zhu and Heady [5] developed a mixed-integer programming formulation to 

minimize job Earliness and Tardiness (ET) in a multi-machine scheduling problem, which considers 

setup times for the jobs, due dates, and also cost penalties. At the same time, the characteristics of the 

machines are not uniform. Also, Omar and Teo [6] studied the problem of identical parallel machine 

scheduling with specific due dates and early due date restrictions. They developed a mixed-integer 

programming model to tackle such problems. The objective is to minimize the sum of 

earliness/tardiness in the presence of setups. 

Lee et al. [7] considered the scheduling problem of two identical parallel machines with multi-attribute 

setup times, while each job has some attributes, and each attribute has several different levels. The 

objective is to minimize the makespan. They presented a heuristic and a Variable Neighborhood Search 

https://www.sciencedirect.com/topics/mathematics/integer-programming
https://www.sciencedirect.com/topics/mathematics/integer-programming
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(VNS) metaheuristic. Also, Heydari and Aazami [8] developed a two-objective model to solve job shop 

scheduling problems with SDST when the aim is to optimize both objectives (makespan and maximum 

tardiness) simultaneously. They utilized the ε-constraint method to solve the model. A set of generated 

numerical data validates the model’s efficiency and flexibility. 

Wang and Cheng [9] investigated a problem of two identical parallel machine scheduling, in which one 

machine is available for processing jobs in a limited time interval. In contrast, the other machine is always 

available over the scheduling horizon. The objective is to maximize the number of on-time jobs. They also 

developed a heuristic to deal with the problem. Liao and Sheen [10] studied the scheduling problem of 

identical machines considering machine availability and eligibility constraints to minimize the makespan. 

In contrast, the machines are not continuously available at all times, and each job can only be processed 

on specified machines. A network flow approach is utilized to formulate the problem into a series of 

maximum flow problems. They proposed a polynomial-time binary search algorithm to verify the 

infeasibility of the problem or find the optimal solution if a feasible schedule exists. 

Jia et al. [11] studied the scheduling problem of parallel batch machines with arbitrary capacities, where the 

non-identical-size jobs have identical processing times and unequal weights. After being processed, the 

jobs are delivered to the customers by some vehicles. The objective is to minimize the total weighted 

delivery time of all jobs. To solve the problem, they presented two heuristic algorithms, developed an 

algorithm based on ant colony optimization, and compared their performance. 

Tavakkoli-Moghaddam et al. [12] presented a new mathematical model for a multi-criteria parallel machine 

scheduling problem to minimize the total earliness, tardiness penalties, and machine costs. They proposed 

a metaheuristic method based on the genetic algorithm and represented computational results. 

Cheng et al. [13] considered parallel batch processing machines scheduling problems, where the job sizes 

are non-identical and are processed in batches, and the machines’ capacities are the same. Using a mixed-

integer programming method, they presented models for minimizing makespan and total completion time 

and then provided a polynomial time algorithm for minimizing the two objectives. Different-scale random 

instances were used to test the effectiveness of the proposed algorithm. In a similar study, Muter [14] 

investigated the scheduling problem of single and parallel batch processing machines to minimize 

makespan and presented a reformulation for the scheduling of parallel batch processing machines, which 

is based on decomposition in two levels, and proposed an exact algorithm to solve it. Mirmohseni et al. 

[15] developed a dynamic programming framework for minimizing total tardiness for sequencing weighted 

jobs on a single machine. Fuzzy numbers were utilized to cope with the uncertainty. 

Shabtay et al. [16] studied a single-machine scheduling problem, where there exists an expected due date 

for all jobs to minimize the objective function, including job-dependent penalties due to early and late 

work. Then they provided a pseudo-polynomial time algorithm to solve the problem and studied two 

particular cases that are solvable in polynomial time. Rafiei et al. [17] presented a mathematical model for 

optimizing multi-product single-machine scheduling problems when a considerable percentage of available 

production times is allocated to machine setup times. The model considers sequence-dependent setup 

costs, costs of delays in deliveries, holding costs, and costs of idle times. The objective is to minimize the 

total production time, earliness, and tardiness times. Random small-size test cases are defined and solved. 

In recent years, some new topics have been considered. Considering energy consumption is one of these 

new topics [18]-[21]. In addition, several pieces of research have studied the integration of production 

scheduling and other subjects such as maintenance planning, distribution planning, etc. [22]-[25]. 

Antoniadis et al. [18] considered the problem of scheduling jobs on parallel machines with release dates, 

deadlines, and processing times, which aims to minimize the total energy consumed. Machines may be in 

one of the two states: ‘sleep’ or ‘active’. By entering into the ‘sleep’ state, they consume no energy. Each 

machine requires L units of energy to awaken from the ‘sleep’ state, and by entering into its ‘active’ state, 

http://www.journal-aprie.com/?_action=article&au=282619&_au=Seyedeh+Maedeh++Mirmohseni
http://www.journal-aprie.com/?_action=article&au=244292&_au=Ali++Rafiei
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the machine can process jobs and consumes a unit of energy per unit of time. They provided a constant 

approximation algorithm for this problem. 

Módos et al. [19] considered a production scheduling problem in companies with large electricity 

consumption, where there is one machine and release times for the operations. The objective function 

is to minimize total tardiness. They presented robust production schedules that guarantee that the energy 

consumption constraints are not violated for each given set of uncertainty scenarios. A pseudo-

polynomial algorithm was proposed to find the optimal robust schedule of the given sequence of 

operations. Then, they utilized this algorithm in three different (two exact and one heuristic) algorithms 

for finding the optimal sequence. 

Aghelinejad et al. [20] investigated a single-machine manufacturing system to minimize the production 

system’s total energy costs. They presented two mathematical models to formulate such a problem and 

developed a heuristic and a genetic algorithm to solve the model and provide solutions in reasonable 

computational time. Different numerical experiments were utilized to test the effectiveness of the 

proposed optimization methods. The results approved the accuracy and efficiency of both algorithms. 

Anghinolfi et al. [21] investigated the multi-objective combinatorial optimization problem of scheduling 

jobs on multiple parallel machines, while the objective is minimizing both the makespan and the total 

energy consumption. An ad-hoc heuristic method was developed to solve the problem. 

Bhosale and Pawar [22] considered integrating production planning and scheduling. They selected a case 

study based on the parallel-line continuous process plant and optimized its performance by a real coded 

genetic algorithm. Results represent that the algorithm outperforms the solutions obtained by previous 

researchers. 

Cui et al. [23] investigated the integration of production scheduling and maintenance planning to 

optimize two objectives of quality robustness and solution robustness for flow shops when the 

occurrence of failure is uncertain. They proposed a mathematical model to formulate the problem. They 

also presented a two-loop algorithm that optimizes the sequence of jobs, positions of preventive 

maintenance, and idle times. Computational results approved the performance of the proposed 

algorithm. Also, Chansombat et al. [24] also utilized mixed-integer linear programming and presented a 

model that simultaneously solves the integrated production and preventive maintenance scheduling 

problem in the capital goods industry. The objective was to minimize total costs, including earliness/ 

tardiness penalty costs, component and assembly holding costs, preventive maintenance costs, and the 

costs of setup, production, transfer, and production idle time. They tested the model using real data. 

The results show that the total cost may be reduced to 63.5%. 

Furthermore, Devapriya et al. [25] focused on the integrated production and distribution scheduling 

problem of a perishable product that its production and distribution must be done before it becomes 

unusable. Minimizing the costs is considered when the product has a limited lifetime, and the total 

demand must be satisfied within the planning horizon. They presented a mixed-integer programming 

model to solve the problem, then provided heuristics based on evolutionary algorithms to resolve the 

model. Sifaleras et al. [26] proposed a mathematical production-planning model for a real-world 

production optimization problem of a non-alcoholic soft drinks company in Northern Greece. The 

model's objective is to minimize the company's idle human-hours subject to fulfilling customers' 

demands. Then they solve the model using Python and Gurobi solver.  

Various objectives have been considered in the formulation of production schedules all over the world. 

Many of them studied minimizing the makespan. Others applied to minimize (total) costs, total 

completion time, total earliness and/or tardiness, total energy consumed (costs), delivery times, and 

maximizing the number of on-time jobs. To the best of our effort, minimizing the time intervals between 

https://www.sciencedirect.com/topics/engineering/preventive-maintenance
https://www.sciencedirect.com/topics/engineering/preventive-maintenance
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the completion times of different items of each package has not been studied before. Therefore, since 

several industries use multi-product systems, it requires a comprehensive study. 

3 | Problem Statement 

The research problem is determining the sequence and scheduling of producing the products offered in a 

product package. Each product package consists of some products; each has its own processing time and 

limitations; e.g., in a ceramic tile factory, a product package may include various components, such as floor 

tiles, wall tiles, decors, borders, etc. The goal is to schedule the production such that reducing product 

completion times minimizes the difference between the completion times of the first product and the final 

product in each package. In the literature, frequently minimizing the makespan has been considered the 

objective, which does not apply to this research. 

3.1 | Definitions and Assumptions 

The general state of n production lines and m jobs is considered. We define the first product of the first 

package as job 1, the second product of the first package as job 2,… and the final product of the last 

package as job m. 

The following concepts are assumed in modeling the general state of the problem: 

I. Production lines are identical, and each one is able to do all the jobs. 

II. Preemption is not permitted; i.e., assigning one job to one line requires the whole job to be done on the 

same line, and part of the job is not entitled to transfer to another line. It is also not allowed to interrupt 

and perform part of it at another time. 

III. Setup times for all products on all lines are negligible. 

IV. Each line is capable of doing one job at a time. 

V. Each job may be replaced with another job on each line (no precedence is considered). 

VI. All jobs may start from time zero. 

VII. All lines from time zero and during the planning horizon are continuously available and capable of 

operating (there is no unavailability to the lines). 

VIII. The processing time of each job on each line is known. 

IX. All lines have continuous production and no idle time. 

4 | Mathematical Modeling 

4.1 | Model 1 

Some indices are used to model this problem, which we describe below. 

4.1.1 | Indices used in the first model 

i: line (machine) index, i = 1, 2, ..., n. 

j: job index, j = 1, 2, ..., m. 

k: package index, k = 1, 2, ..., o. 

: the processing time of job j on line I. 

M: a large positive number. 
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: the importance (weight) of package k. 

: the set of jobs related to package k. 

4.1.2 | Decision variables 

In this linear integer model, six types of decision variables are used: 

: completion time of the last product of package k which gets prepared,   . 

: completion time of the first product of package k which gets prepared,   . 

: 1, if job j gets done on line i, otherwise 0. 

: 1, if job j gets done immediately after job j' on line i, otherwise, 0. 

: 1 if job j gets done as the first job on line i, otherwise 0. 

: completion time of job j.  

,  and  are zero-one variables; , , and  are non-negative ones. 

4.1.3 | First model 

The proposed linear model is as follows: 

 

 

 

 

 

 

 

 

Eq. (1) represents the objective function of the problem. As stated, the purpose is to determine the 

production sequence of different products on different lines so that the least possible time interval would 

exist between the completion times of various items of each package. 

(1) 

 

(2) 

(3) 

(4) 

ˊ ˊ ˊ ˊ ˊ, (5) 

ˊ ˊ ˊ ˊ ˊ, (6) 

ˊˊ
ˊ

(7) 

ˊˊ
ˊ

(8) 

ˊ
ˊ

ˊ ˊ,
(9) 

(10) 

 (11) 

 (12) 

(13) 

ˊ ˊ. (14) 
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Eq. (2) ensures that each job is only performed on a single line. Eqs. (3) to (6) indicate the completion times 

of different items and guarantee that idle time does not occur on the lines. Eq.s (3) and (4) guarantees that 

each line's first job begins at zero. Eqs. (5) and (6) guarantees no idle time between each job and its previous 

one. Eq. (7) ensures that none of the lines' jobs will have more than one position and will not be placed on 

more than one line (only has one position on all lines). Eq. (8) ensures that none of the lines' jobs will be 

placed after more than one job. Eq. (9) ensures that none of the lines' jobs will be placed before more than 

one job. Eq. (10) ensures that no more than one job will be identified as the first on any of the lines. Eqs. 

(11) and (12) define the decision variables  and  that to include these variables in the linear 

programming problem, Eqs. (11) and (12) have been added to the model. Eqs. (13) and (14) indicate the 

types of decision variables. 

The number of decision variables in this model equals to: {(i.j) (j + 1) + 2k + j}. The number of constraints 

in this model equals: 

 

4.2 | Model 2 

While both models give the same solutions ultimately, their mechanisms are different in determining the 

optimal solution. The first model specifies that each task should be performed after which task and on 

which line (without specifying the position number of that task), while the second model only specifies the 

position number of each task on each of the lines (without specifying the tasks before and after it). 

4.2.1 | Indices used in the second model 

i: Line (machine) index, i = 1, 2, ..., n. 

j: Job index, j = 1, 2, ..., m. 

f: Position number index, f = 1, 2, ..., m. 

k: Package index, k = 1, 2, ..., o. 

: The processing time of job j on line I. 

M: A large positive number. 

: The importance (weight) of package k. 

: The set of jobs, related to package k. 

4.2.2 | Decision variables 

In this linear integer model, five types of decision variables are used: 

: Completion time of the last product of package k which gets prepared,   . 

: Completion time of the first product of package k which gets prepared,   . 

: 1, if job j gets done on line i, otherwise 0. 
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: 1 if job j gets done as the fth job on line i, otherwise 0. 

: Completion time of job j. 

 and  are zero-one variables; , , and  are non-negative ones. 

4.2.3 | Second model 

The proposed linear model is as follows: 

 

 

 

 

 

 

 

 

 

 

 

  

Eq. (15) represents the objective function of the problem, which is the same as the objective function 

of the first model. Eq. (16) ensures that each job is only performed on a single line. Eqs. (17)-(20) indicate 

the completion times of different items and guarantee that idle time does not occur on the lines. Eqs. 

(17) and (18) guarantees that each line's first job begins at zero. Eqs. (19) and (20) guarantees no idle time 

between each job and its previous one. Eq. (21) ensures that none of the lines' jobs will have more than 

one position and will not be placed on more than one line (only has one position on all lines). Eq. (22) 

ensures that none of the lines' positions (f indices) will be assigned to more than one job. Eq. (23) ensures 

that if one job is done on one line, it has precisely one position on that line. Eq. (24) ensures that no 

position is assigned on any lines until its preceding position is assigned. Eqs. (25) and (26) define the 

decision variables  and  that to include these variables in the linear programming problem, Eqs. (25) 

and (26) have been added to the model. Eqs. (27) and (28) indicate the types of decision variables. 

The number of decision variables in this model equals to: (i.j) (f + 1) + 2k + j. The number of constraints 

in this model equals to: (i.j) (2 (j-1). (f-1) + 3) + i (2f-1) + 4j. 

(15) 

 

(16) 

(17) 

ˊ ˊ

(18) 

ˊ ˊ

ˊ ˊ

(19) 

ˊ ˊ (20) 

(21) 

(22) 

(23) 

ˊˊ (24) 

 (25) 

 (26) 

 (27) 

(28) 
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5 | Genetic Algorithm 

Genetic algorithm is a global search technique based on natural genetic concepts and is one of the most 

widely used meta-heuristic approaches. We try to solve the stated problem utilizing the GA. 

5.1 | Answer Representation 

To represent the chromosomes, we use the structure presented in Fig. 1. Each chromosome contains i + j- 

1 genes that the numbers 1, 2, ..., j are the jobs indicators, and i-1 numbers from j + 1 onward, placed in 

the genes, each one indicates a change in producing line. An example of a sequence of genes in a 

chromosome on two lines is shown in the following figure: 

 

Fig. 1. Chromosomes representation. 

 

5.2 | Generation of an initial population 

To get faster access to the optimal answer, a condition was considered for selecting the initial population: 

First, one package is selected randomly, then the jobs related to that package are chosen randomly and 

randomly assigned to one of the lines. After completing the jobs of that package, the following package is 

selected randomly, and this process is repeated until all jobs are assigned to the lines. Each chromosome 

is compared to all the previous chromosomes and will not be selected if it is duplicated.  

For example, if there are 12 jobs in 4 packages and 2 production lines, some of the permitted combinations 

in the initial population are shown in Fig. 2. 

 

Fig. 2. Some permitted combinations in the initial population. 
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5.3 | GA Operators 

Selection operator 

For selecting parents, we use the roulette wheel method so that by applying a coefficient (selection 

pressure) for each chromosome, a modified fitness function will be defined, and based on that, 

chromosomes will be ranked. Then, each chromosome will be assigned a probability (a fraction of the 

accumulation probability of the chromosomes). Finally, two non-same chromosomes will be selected 

randomly as the parents. 

Crossover operator 

The generation of offspring is performed by a particular single-point crossover operator designed below. 

First, a random number is generated over the interval (the length of the chromosome), then as many as 

the generated random number, the genes of the first parent are repeated in the first offspring. Its 

remaining genes are arranged in the following order of placement in the second parent chromosome. 

Contrary to the above procedure will be done for generating the second offspring. 

Mutation operator 

Two genes of the parent’s chromosome are randomly selected and replaced, called mutants population. 

5.4 | Formation of the Next Generation 

In order to resume the algorithm to the next generation, 30% of the elites of the previous generation 

will be transferred to the next generation. Then, 40% of the offspring produced by the intersection 

operator, 5% of the mutant population, and the rest of the population of the previous generation will 

be considered, and up to 70% of the size of the population will be chosen randomly among them and 

transferred to the next generation. 

5.5 | Stopping Rule 

Two conditions for stopping the algorithm are considered. If the algorithm meets each one, then it will 

stop, and the results will be announced. These two conditions are: 

I. Producing 500 generations. 

II. No change in the best value obtained from the fitness function for 200 consecutive generations. 

6 | Solving Numerical Examples 

To determine the efficiency of the proposed solution method, we will compare three small and modest 

size numerical examples, and the obtained objective function value, as well as the solution time, will be 

compared for the two proposed models and the proposed algorithm. To solve the models, the software 

GAMS 24.8.5 (r61358) and to solve the genetic algorithm, MATLAB R2015 (8.5.0.197613), was used 

on the laptop with Intel® Core ™ i3 processor and 1066 MHz DDR3 memory SDRAM. 
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Fig. 3. Example 1. 

 

 

 

 

 

 

 

 

 

 

 

  

  

Fig. 4. Example 2. 

 

i = 1, 2;  j = 1, 2, 3, 4, 5, 6;  k = 1, 2, 3; 

 
W(1) = W(2) = W(3) = 1 

 

 

i = 1, 2;  j = 1, 2, 3, 4, 5, 6, 7, 8;  k = 1, 2, 3, 4; 

 
W(1) = W(2) = W(3) = W(4) = 1 

 

 

f(k) j=1 j=2 j=3 j=4 j=5 j=6

k=1 * *

k=2 * *

k=3 * *

j=1 j=2 j=3 j=4 j=5 j=6

i=1 3 5 5 4 4 5

i=2 3 4 6 2 5 6

Objective 

 function

Lower 

bound
Gap (%)

Solution 

time (s)

First model 2 2 0 0.31

Second model 2 2 0 1.76

The proposed GA 

(average of 50 trials)
2 2 0 2.65

Comparison of answers of example 1

f(k) j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8

k=1 * *

k=2 * *

k=3 * *

k=4 * *

j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8

i=1 3 5 5 4 4 5 3 3

i=2 3 4 6 2 5 6 2 4

Objective 

 function

Lower 

bound
Gap (%)

Solution 

time (s)

First model 3 3 0 17.91

Second model 3 3 0 90.54

The proposed GA 

(average of 10 trials)
3 3 0 3.07

Comparison of answers of example 2
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Fig. 5. Example 3. 

 

7 | Conclusion 

In this paper, the production scheduling of multi-product manufacturing systems as one of a variety of 

production systems was investigated, and we tried to express such a problem in the form of a linear 

programming problem. For this purpose, two mathematical models were presented that, unlike the usual 

procedure in the literature, the objective function of both models is to reduce the sum of the time 

intervals between the various products of each package. Both models take into account the general state 

of n production lines and m products (jobs) and the relevant constraints on reality developed in the 

models. Besides, since it is impossible to solve either of the two proposed models for large-scale 

problems, precisely in a meaningful time, an efficient genetic algorithm was proposed to solve the 

problem logically. 

Furthermore, a few simple examples were defined. The result is neither of the two models presented for 

large-scale problems can be solved precisely in a justifiable time. Then, the genetic algorithm was utilized 

to solve the problem in a reasonable time with acceptable accuracy. Comparison with the exact solutions 

shows the efficiency of the proposed algorithm. 
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